BLUETOOTH RECEIVER

Ryan Rogel, Kevin Owen
EECS 522 Group Project
Presented on April 15, 2011

Bluetooth

- Started in 1994 by Ericsson, used for low-data rate streaming
- First generation was 1Mb/s
- Uses Gaussian Frequency Shift Keying (GFSK)
- Enhanced Data Rate (EDR) uses π/4- and 8-DPSK to achieve 3 &4 Mb/s, respectively
- 80 channels: 2.420GHz + k*1MHz (kX0...79)

GFSK

 Each bit is passed through a Gaussian filter before frequency encoding

Our Signal

- Precursor + Start Sequence + Data
 - 010101010101...1001...[data]
- Data is differentially encoded

System Flow Chart

Bit Generation, Encoding, Symbol Shaping, Up-Conversion (MATLAB)

MATLAB postprocessing

Quantization Noise

LNA₁

- Performance
 - -S11 < -13.5dB
 - -S21 > 15dB
 - -NF < 2dB
 - 13.9dB Voltage Gain
 - -30dB at 2nd harmonic
 - -P1dB = -21dBm
 - -876uW @ 1.2Vdd

LNA2

- Performance
 - -S21 > 15dB
 - -NF < 6dB
 - -P1dB = -8dBm
 - 990uW @ 1.2Vdd

VCO

- Tuning Range
 - 2.41GHz ~2.49GHz
- Vtune Range
 - 400mV ~ 600mV
 - 2.5mV steps
 - Nonlinear steps
- 350mV swing at 750mV
- 562uW @1.2 Vdd (each)
- Coupling through subc
 - Use PMOS C_{tune} for isolation

Mixer

- Direct Downconversion
 - No IF or image reject
 - DC output of mixer must be matched to next stage
- Performance
 - 1.98mW @ 1.2Vdd (each)
 - 200kHz f_{corner}
 - 9.5dB thermal noise
 - 11dB noise at f_c-f_{mod}
 - 18.5dB Conversion Gain
 - -4dBm P1dB

Active Low Pass Filter

- Envelope Detector
- Active Balun
 - Tail source could provide variable gain
- Performance
 - 136uW @ 1.2Vdd (each)
 - Gain = 19.2dB
 - P1dB = -2.1dBm
 - -BW(7pF) = 750kHz

Input Freq vs Mixer Output

010101010101 at -80dBm

11111111111 at -50dBm

I, Q, I + Q

Binary GFSK Constellation

Layout

- 1.5 x 0.8 mm²
- Separated Mixer and VCO from LNA to decrease subc coupling
- Symmetric Inductors for VCO
- Symmetric Layout

Comparison

	2004 [2]	2008 [3]	Our Design
NF	-	13.11	~16.5
Sensitivity [dBm]	-87	-	-
Gain [dB]	70	~90	67
IIP3 [dBm]	-21	-20.8	-21.9
VDD [V]	2.7	1.2	1.2
P _{VDD} [mW]	135	15.42	7.86
Technology (CMOS)	0.25um	0.13um	0.13um

Future Work

- Noise Analysis
- Demodulation of Cadence Data
- More complex encoding schemes for higher data rates

References

- [1] Cheung, V.S.L.; Luong, H.C.; , "A 1V 10-mW monolithic Bluetooth receiver in a 0.35µm CMOS process," Solid-State Circuits Conference, 2003. ESSCIRC '03. Proceedings of the 29th European, vol., no., pp. 687- 690, 16-18 Sept. 2003.
- [2] Yeon-Jae Jung et al, "A 2.4-GHz 0.25-um CMOS Dual-Mode Direct Conversion Transceiver for Bluetooth and 802.11b", IEEE J.Solid State Circuits, Volume: 39 Issue: 7, JULY 2004.
- [3] Aboueldahab, W.F.; Sharaf, K.M.; , "A 1.2V low power CMOS receiver for Bluetooth," Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, vol., no., pp.1577-1580, 20-23 Oct. 2008.
- [4] Bluetooth Enhanced Data Rate (EDR): The Wireless Evolution. Tech. Agilent Technologies. Print. Application Note.
- [5] Specification of the Bluetooth System Version 4.0. 30 June 2010. Master Table of Contents & Compliance Requirements.

