A 402/433 MHz Low Power, Direct Conversion Medical Implant Communication FSK Receiver Front End

04/14/2011

Daniel Egert, Pranay Rai & Venkatram Pepakayala

Group 7
Outline

- Motivation
- Applications
- Overall Architecture
- Specifications
- Individual Blocks
 - LNA
 - Single to Differential Converter
 - Mixer
 - VCO
 - Low Pass Filter
- Performance Measures
- Summary
- References
Motivation

- To move from reactive healthcare based methods to active and prevention based healthcare solutions.
- To aid in monitoring health based parameters in real time
- Remote access to patient’s data
- Reduce the healthcare cost and improving access to better healthcare to wider population
 - To develop low power low cost radio frequency receiver front end for medical applications
 - Eliminating replaceable components with highly reliable and long life term mechanisms (i.e. batteries with energy harvesting mechanism)
- Provide external control of functionality/measurement of implanted/ embedded devices
Applications

- **Personal Healthcare System**
- **Wireless Bio-signal Acquisition**
- **Implantable Devices**
 - Pacemaker
 - Neurostimulators
 - Cochlear Implants
 - Retinal Prosthesis
 - Implantable Cardioverter/ Defibrillator (ICD)
- **Embedded Measurement/Control/ Other Devices**
 - Drug Infusion & dispensing
 - Implanted sensors for measuring body parameters
 - Artificial Heart & Organ Assist devices
MICS BAND

- Medical Implant Communication Service (MICS)

- Why introduce MICS?
 - Removes limitations associated with existing short range inductive links (low data rate, very short range requires body contact)
 - Opportunity for improved healthcare and new applications

- Why 402-405 MHz?
 - Reasonable signal propagation characteristics in the human body
 - Compatibility with incumbent users of the band (e.g. weather balloons)
 - General world-wide acceptance (US, Europe, Japan, Australia etc)

- Why allocate separate band?
 - Need for higher data rates
 - Need for longer range/ broader applications
 - Required by medical industry
Architecture

- Direct Receiver (Zero IF Architecture)
Specifications

- Frequency of Operation: 402-405 MHz (10 channels MICS)/ 433-434 MHz (2 channels ISM)
- Data Rate: ~20 Kbps
- Modulation Scheme: Non-coherent FSK with index m=0.25
- Adjacent Channel Rejection: 50dB
- Sensitivity: -110 dBm @ 0.1% BER
- Power Consumption: ~1mW
- Range: ~2m
- Minimum Detectable signal (MDS): -91dBm
- Technology: 0.13 um
- NF = 174 -10logB - SNR + MDS = 26 dB (at demodulator input for MICS band)
Biological Signal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement Range</th>
<th>Signal Frequency (Hz)</th>
<th>Standard Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrocardiography (ECG)</td>
<td>0.5 ~ 4 mV</td>
<td>0.01 ~ 250</td>
<td>Skin electrode</td>
</tr>
<tr>
<td>Electroencephalography (EEG)</td>
<td>5 ~ 300 uV</td>
<td>dc ~ 150</td>
<td>Scalp electrode</td>
</tr>
<tr>
<td>Electromyography (EMG)</td>
<td>0.1 ~ 5 mV</td>
<td>dc ~ 10000</td>
<td>Needle electrode</td>
</tr>
<tr>
<td>Electronerography (ENG)</td>
<td>0 ~ 100 uV</td>
<td>250 ~ 5000</td>
<td>Surface or Needle electrode</td>
</tr>
<tr>
<td>Electroretinography (ERG)</td>
<td>0 ~ 900 uV</td>
<td>dc ~ 50</td>
<td>Contact electrode</td>
</tr>
</tbody>
</table>
LNA & Single to differential stage
LNA

Design Challenge:

• High Gain
• Return loss
• Noise Figure
• Impedance matching at input
Single to Differential Stage

Cascaded Common Gate Common Source Balun
Performance

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain (S21) LNA</td>
<td>11.22 dB</td>
</tr>
<tr>
<td>Gain (S21)</td>
<td>16.45 dB</td>
</tr>
<tr>
<td>Return Loss (S11) LNA</td>
<td>-10.28 dB</td>
</tr>
<tr>
<td>Return Loss (S11)</td>
<td>-9.65 dB</td>
</tr>
<tr>
<td>Noise Figure (LNA)</td>
<td>2.71 dB</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>8.03 dB</td>
</tr>
<tr>
<td>Power Consumption (LNA)</td>
<td>9.87 uW</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>44.91 uW</td>
</tr>
</tbody>
</table>
Low Power
Low Noise
Self Mixing Free
I-Q down-conversion
Zero-IF Receiver

Merits:
- Low complexity, cost, power

Susceptible to:
- LO Leakage (DC offset)
- 1/f noise
- I/Q Mismatch
- Even order distortion
DC OFFSET at Mixer output

- LO radiated, reflected and received, mixed with itself
- Hard to remove time varying DC offset
- Removing by root:
 - Oscillator running at half the signal frequency
 - Frequency doubling within the mixer by employing phase shifted LO signals.
 - Oscillator frequency mixed to half the RF frequency

\[\text{flo}=\text{frf}/2 \]

\[\text{fswitch}=2\text{flo} \]
Flicker Noise

- **Main contributor:**
 - Switching pairs
 - $\ln(DC) \sim I_b, 1/Area, 1/frf$

- **Bleed current**
 - decrease switch current
 - reused in driver stage for large gm
 - Makes signal more sensitive to parasitic capacitances
IQ mismatch and low power

- Amplitude and phase of I/Q channels need to match
- Combine trans-conductor for both channels
 - Process variation shared
 - Half power
Mixer Summary

- Power: combined IQ 550 µW
- $f_c=25$ kHz
- NF: 17.5 dB
- Conversion Gain: 23 dB
VCO
Voltage Control Ring Oscillator

Design Challenge:

• Phase Noise
• Low Power
Voltage Control Ring Oscillator
Frequency Spectrum
Phase Noise
Filter
Low Pass Filter Characteristic
Layout

Area:
~ 1124 X 879 \text{um}^2
Performance Summary

- **LNA**
 - NF=2.75 dB Gain=11.22 dB Power= 9.87µW

- **Balun**
 - NF=5.28 dB Gain=5.23 dB Power=35 µW

- **Mixer**
 - NF=18 dB Gain=20 dB Power=550 µW

- **VCO**
 - Phase Noise= -102dBc/Hz at 1 MHz
 - Power=19µW

- **LPF**
 - 3 dB cutoff = 200kHz
 - Tunable gain upto 40 dB

- **System**
 - Overall Gain:76.45 dB (calculated)
 - NF after mixer = 9dB (calculated)
Summary
References

- M.R. Nezhad-Ahmadi, G. Weale, A. El-Agha1, D. Griesdorf, G. Tumbush, A. Hollinger, M. Matthey, H. Meiners, S. Asgaran, “A 2mW 400MHz RF Transceiver SoC in 0.18um CMOS Technology for Wireless Medical Applications’,

- Peter D. Bradley “An Ultra Low Power, High Performance Medical Implant Communication System (MICS) Transceiver for Implantable Devices”, Zarlink Semiconductor (ULP Communications)

- Implantable ultralow-power radio chip facilitates in-body communications, Peter Bradley, www.rficdesign.com, June 2007

- A 490uW Fully MICS Compatible FSK Transceiver for Implantable Devices, “A 490uW Fully MICS Compatible FSK Transceiver for Implantable Devices”
Questions?