A Current Re-use Quadrature Front-End Receiver for ISM Band

Karan J, Abishek M, Aswin S

Introduction

Stacked current reuse architecture for front-end

- Low power, bias current re-use
- No coupling required from stage to stage

I and Q demodulation

Image rejection

ISM Band 915 MHz

- Intermediate frequency is 10 MHz
- IF amplifier with LO leakage reduction
- BPSK coding

Applications:

- Cordless phone
- WSN nodes
- ZigBee devices

Conventional Receiver Architecture

QLMV – Block level

EECS 522 WII - University Of Michigan 4/20/2011

QLMV Cell (Top-Level)

EECS 522 WII - University Of Michigan 4/20/2011

LNA:

- Degenerated Common Source Amplifier
- Tested with balun as well as a direct input port
- S₁₁ : I8dB @ 900MHz
- Inductor to decouple
 - •Open circuit at high frequencies
- Tail current of I.8mA.
- LNA NF (individual characterization) : 2.1 dB

QVCO:

- Gate-modulated architecture proposed by the paper
 - Less frequency pulling and increased phase noise
- Chose to implement a PVCO
- Phase Noise. II5dBc (900Mhz 940Mhz)
- Tunability: Vct 500mV 700mV. (for PLL or outside tuning)
- Bottom cap for increasing Q-factor and reducing feedthrough of LO
- Transistors sized up to reduce flicker noise

Mixer:

- Doubly balanced Gilbert mixer
- Mixer works in triode
 - Running in saturation needs external circuitry (adds noise)

IF Amplifier 2 (IF_2)

- New architecture trans-impedance amplifier
- 40dB/dec roll off
- Power consumption: ImW

IF Amplifier 1 (IF_1)

- Single pole trans-impedance amplifier
- Bandwidth 15 MHz
- > 20dB/dec roll-off
- Power: 300 μW

System Integration and Comparison

RC polyphase filters for image rejection

- Generates bandpass filter
- PLL for frequency control
- Baseband DSP processing

- Typical BER 10⁻⁴
- Link Budget Analysis
 - 900MHz Protocols

EECS 522 WII - University Of Michigan 4/20/2011

| 13

Summary Chart

	QLMV (IF_1)	QLMV (IF_2)	[1] GPS Rx
S ₁₁ (dB)	< -10	< -10	< -10
IIP3 (dBm)	21.5	- 55	- 30
P ₋₁ dB (dBm)	- 41.5	- 65	- 40
Conversion gain (dB)	46	42	42.5
Noise Figure (dB)	9.8	12	6.5
VCO Phase Noise (dBc/Hz) @1 Mhz	-116	-116	-110
VDD (V)	1.2	1.2	1
Current QLMV (mA)	1.8	1.8	1
Current IF Amp (mA)	1	1.8	1

References

- [1] Kuang-Wei Cheng; Natarajan, K.; Allstot, D.J.; , "A Current Reuse Quadrature GPS Receiver in 0.13 m CMOS," Solid-State Circuits, IEEE Journal of , vol.45, no.3, pp.510-523, March 2010
- [2] A. Liscidini, A. Mazzanti, R. Tonietto, L. Vandi, P. Andreani, and R. Castello, "Single-stage low-power quadrature RF receiver front-end: The LMV cell," IEEE J. Solid-State Circuits, vol. 41, pp. 2832–2841, Dec. 2006.
- [3] K.-W. Cheng and D. J. Allstot, "A gate-modulated CMOS LC quadrature VCO," in IEEE Radio Freq. Integrated Circuits Symp. Dig., 2009, pp. 267–270.
- [4] RF Link Budget Analysis at 915 MHz band for Wireless Sensor Networks Abdellah Chehri, Member, IEEE, Hussein Mouftah, Fellow, IEEE, Paul Fortier, Senior, IEEE, and Hasnaa, Aniss, Member, IEEE
- [5] An Ultra-Low-Power 868/915 MHz RF Transceiver for Wireless Sensor Network Applications
 R. van Langevelde I, M. van Elzakker I, D. van Goor, H. Termeer, J. Moss and A.J. Davie
- [6] IEEE 802.15.4-2006 is a standard which specifies the <u>physical layer</u> and <u>media access control</u> for low-rate wireless <u>personal area networks</u> (LR-WPANs). It is maintained by the <u>IEEE 802.15</u> working group.
- [7] http://doodlelabs.com/products-and-services/ofdm-radio-modules/900-mhz-ism-band-dlm108.html

Thank You !!!

EECS 522 WII - University Of Michigan 4/20/2011

Phase Noise

Phase Noise

-vct="500m";Phase Noise; dBc/Hz, Relative Harmonic = 1 -vct="550m";Phase Noise; dBc/Hz, Relative Harmonic = 1 -vct="600m";Phase Noise; dBc/Hz, Relative Harmonic = 1 -vct="600m"

EECS 522 WII - University Of Michigan 4/20/2011

VCO frequency control

► V_{control} vs VCO frequency plot:

EECS 522 WII - University Of Michigan 4/20/2011

Noise figure for LMV cell

Noise figure (LMV cell)

EECS 522 WII - University Of Michigan 4/20/2011

Noise figure

EECS 522 WII - University Of Michigan 4/20/2011

P1dB (-41 dB)

Input referred 1dB Compression Point

EECS 522 WII - University Of Michigan 4/20/2011

IIP3 = -21.493dB

Input Referred IP3 Curve

EECS 522 WII - University Of Michigan 4/20/2011