
Appendix A

Probability, Random Variables and
Random Processes

In this appendix basic concepts from probability, random processes and signal theory are reviewed.

1. Probability and Random Variables

Probability Space
�
Ω � F � P �

Ω is the sample space or set of all possible outcomes.
F is a collection of events which are subsets of Ω (algebra, field)

A � F � B � F � A � B � F ;

Ω � F �
A � F � Ā � F

P is a function from F ��� 0 � 1 	 which satisfies

i) 0 
 P
�
A ��
 1 � A � F

ii) P
�
Ω �
� 1

iii) If A � B � /0 then P
�
A � B ��� P

�
A ��� P

�
B � A � B � F

A random variable X
�
w � is a function from Ω to R

X : Ω � R

that satisfies �
w � Ω : X

�
w ��
 x ��� F � x � R

The distribution function FX
�
x � of a random variable is defined as

FX
�
x ��� P

�
X
�
w ��
 x ��� P

�
w � Ω : X

�
w ��
 x �

Properties of distribution functions

(i) P
�
a � X

�
w ��
 b ��� FX

�
b ��� FX

�
a �

(ii) FX
�
x � is continuous at x iff P

�
X
�
w �
� x ��� 0

(iii) lim
y � x FX

�
y ��� FX

�
x � right continuous
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(iv) lim
x � ∞

FX
�
x ��� 1 � lim

x ��� ∞
FX
�
x ��� 0

If FX
�
x � is continuous for all x then there exists a function fX

�
x � such that

FX
�
x ���

� x� ∞
fX
�
u � du

This function is called the density function. If a random variable has a density function we shall say the random
variable is continuous.

Properties of density functions

(i) P
�
X
�
w ��� B ����� B fX

�
u � du B � R

(ii) fX
�
x � � F �X � x ��� dFX

�
x �

dx

If FX
�
x � is piecewise constant with a countable number of discontinuities then X is said to be a discrete random

variable. For discrete random variables we will use their probability mass function

pX
�
x � ∆� P

�
X � x �

Expectation of a Random Variable
The expectation of a continuous random variable is

E � X 	 �
� ∞� ∞

x fX
�
x � dx

The expectation of a discrete random variable is

E �X 	 � ∑
x:pX � x 	�
� 0

xpX
�
x �

If X1 � X2 ��
�
�
 � Xn are random variables the joint distribution Fn
�
x1 ��
�
�
 � xn � is defined as

Fn
�
x1 ��
�
�
 � xn ��� P

�
X1 
 x1 ��
�
�
 � Xn 
 xn �

If these random variables are (jointly) continuous then their joint density fn
�
x1 ��
�
�
 � xn � is defined as

fn
�
x1 ��
�
�
 � xn �
� ∂nFn

�
x1 ��
�
�
 � xn �

∂x1 
�
�
 ∂xn

If these random variables are discrete then the joint probability mass function is

pn
�
x1 ��
�
�
 � xn �
� P

�
X1 � x1 ��
�
�
 � Xn � xn �

A complex random variable is a function from Ω to C (Cl is the set of complex numbers)

X : Ω � C

such that
�
ℜX 
 xr � ℑ X 
 xi ��� F � xr � xi � R

X
�
w �
� Re

�
X
�
w � ��� j Im

�
X
�
w � ��


Useful Bounds
1) Union Bound:

P
�
A � B � 
 P

�
A � � P

�
B �

P � M�
i � 1

Ai � 
 M

∑
i � 1

P
�
Ai �
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2) Chebyshev Bound: Let mX � E � X 	 and σ2
X � E � � X � mX � 2 	 then

P
���

X � mX

���
δ ��
 σ2

X

δ2 

Proof:

σ2
x �

� ∞� ∞

�
x � mX � 2 fX

�
x � dx� � �

x � mX
� �

δ

�
x � mX � 2 fX

�
x � dx�

δ2
� �

x � mX
� �

δ
fX
�
x � dx

� δ2P
���

X � mX

���
δ �

3) Chernoff Bound:
P
�
X
�

u ��
 e � su E � esX 	 � s
�

0

Proof:

Let g
�
x ���

�
1 � x

�
u

0 � x � u 

Since s

�
0

g
�
x � 
 es � x � u 	 


Thus

P
�
X
�

u � �
� ∞

u
fX
�
x � dx �

� ∞� ∞
g
�
x � fX

�
x � dx

� E � g � X � 	

 E � es � X � u 	 	 � e � su E � esX 	 


Example: Let X1 ��
�
�
 � Xn be random variables. Let H0 and H1 be two events. Let p0
�
x1 ��
�
�
 � xn � be the conditional

density function of X1 ��
�
�
 � Xn given H0 and p1
�
x1 ��
�
�
 � xn � be the conditional density function of X1 ��
�
�
 � Xn given

H1. Find a bound on

Pe � P
�

p1
�
X1 ��
�
�
 � Xn �

�
p0
�
X1 ��
�
�
 � Xn �

�
H0 �

� P
� p1

�
X1 ��
�
�
 � Xn �

p0
�
X1 ��
�
�
 � Xn �

�
1

�
H0 �

� P
�
ln 	 p1

�
X1 ��
�
�
 � Xn �

p0
�
X1 ��
�
�
 � Xn ��
 �

0
�
H0 �

Let Y � ln
p1
�
X �

p0
�
X �

Pe � P
�
Y
�

0
�
H0 	 
 E � esY

�
H0 	

�
�

Rn
exp � s ln

p1
�
x �

p0
�
x ��
 p0

�
x � dx

A random variable is Gaussian if the density function is

pX
�
x ��� 1�

2πσ
exp

�
� 1

2σ2

�
x � µ � 2 �

where µ is the mean and σ2 is the variance. The characteristic function of a random variable X is defined as
φX
�
s ��� E � esX 	 . For a Gaussian random variable the characteristic function is

φX
�
s � � e

s2σ2
2 � µs



1-4 APPENDIX A. PROBABILITY, RANDOM VARIABLES AND RANDOM PROCESSES

Def: A function g : RN � R is said to be concave (convex � ) if for any x1 � Rn � x2 � Rn and 0 � θ � 1

Θg
�
x1 ��� � 1 � Θ � g � x2 ��
 g

�
Θx1 � � 1 � Θ � x2 �

where the vector addition is component-wise addition.
A function g : Rn � R is said to be convex (convex � ) if

Θg
�
x1 ��� � 1 � θ � g � x2 �

�
g
�
Θx1 � � 1 � Θ � x2 �

Jensen’s Inequality: If f
�
x � is a concave (convex � ) function mapping Rn � R then

E � f � X � 	 
 f
�
E � X 	 � 


If f
�
x � is a convex (convex � ) function mapping Rn � R then

E � f � X � 	
�

f
�
E � X 	 � 


Proof for discrete random variables: (By induction) Let X take on values x1 � x2, with nonzero probability

E � f � X � 	 � p
�
x1 � f

�
x1 ��� p

�
x2 � f � x2 �


 f
�
p
�
x1 � x1 � p

�
x2 � x2 �

� f
�
E � X 	 �

where the first inequality is due to the definition of convexity.
Assume if X is discrete taking values

x1 ��
�
�
 � xn � 1 then
n � 1

∑
i � 1

p
�
xi ��� 1

n � 1

∑
i � 1

p
�
xi � f

�
xi � 
 f � n � 1

∑
i � 1

p
�
xi � f

�
xi � �

Now let X take values x1 � x2 ��
�
�
 � xn

E � f � X � 	 � n

∑
i � 1

p
�
xi � f

�
xi ���

n � 1

∑
i � 1

p
�
xi � f

�
xi ��� p

�
xn � f

�
xn �

Let α � n � 1

∑
j � 1

p
�
x j �

E � f � X � 	 � α
n � 1

∑
i � 1

p
�
xi �

α
f
�
xi ��� p

�
xn � f

�
xn �

n � 1

∑
i � 1

p
�
xi �
α

� 1

E � f � X � 	 
 α f � n � 1

∑
i � 1

p
�
xi �

α
xi � � p

�
xn � f � xn �


 f � n � 1

∑
i � 1

p
�
xi � xi � p

�
xn � xn �

� f � n

∑
i � 1

p
�
xi � xi �

Let X1 ��
�
�
 � Xn be a random vector. The covariance matrix of X1 ��
�
�
 � Xn is defined to be

KX �

�����
�

K1 � 1 K1 � 2 
�
�
 K1 � n
K2 � 1 . . .

. . .
Kn � 1 Kn � n

������
� 
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where
Ki � j � E � � Xi � µi � � X j � µ j ��� 	�


and
µi � E �Xi 	

Def: A n � n matrix is said to be nonnegative definite if for any vector
�
a1 ��
�
�
 � an �

n

∑
i � 1

n

∑
j � 1

aiki � ja � j � 0 and real

i.e.,
aKX aT

�
0 and real 


(positive definite if strict inequality holds).
Claim: The covariance matrix is always nonnegative definite.
Proof:

n

∑
i � 1

n

∑
j � 1

aiki ja � j
� n

∑
i � 1

n

∑
j � 1

aiE � � Xi � µi � � X j � µ j ��� 	 a � j
� E

�
n

∑
i � 1

n

∑
j � 1

ai
�
Xi � µi � a � j � X j � µ j �����

� E

�
n

∑
i � 1

ai
�
Xi � µi �

n

∑
j � 1

a � j � X j � µ j �����
� E

�
�������

n

∑
i � 1

ai
�
Xi � µi � �����

2
�
� �

0

Let X1 ��
�
�
 � Xn be a real random vector. The characteristic function of X1 � X2 ��
�
�
 Xn is defined as

ΨX1 � � � � � Xn

�
ν1 ��
�
�
 � νn �
� E

�
exp � j

n

∑
i � 1

νiXi � � 

Def: The random vector X1 ��
�
�
 � Xn is said to be jointly Gaussian if the characteristic function of X1 ��
�
�
 � Xn is

ΨX1 � � � � � Xn

�
ν1 ��
�
�
 � νn ��� exp

�
jνT µ � 1

2
νT Kν �

where νT � �
ν1 ��
�
�
 � νn � � µT � �

µ1 ��
�
�
 � µn � and K is a real symmetric nonnegative definite n � n matrix. If K is
positive definite then the joint density of X1 ��
�
�
 � Xn is

p
�
x �
� � 2π � � 1 	 2 � detK � � 1 	 2 exp

�
� 1 
 2

�
x � µ� T K � 1 � x � µ � � 


Fact: Let X be a random n vector. Then X is jointly Gaussian iff X can be expressed as WY � µ where µ ��
µ1 ��
�
�
 � µn ��� lRn � W is and n � n matrix and Y1 ��
�
�
 � Yn are independent mean zero Gaussian random variables (the

matrix W can be taken to be orthogonal, i.e. the rows of W are orthogonal).

Kx � WKYW T 

Now let X be a jointly Gaussian random vector (of length n) with mean µ covariance matrix K. Let F be a n by n
matrix. Consider the random variable

Y � XFXT
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We would like to be able to determine the density function of this random variable. Instead, we will determine the
characteristic function of this random variable. The characteristic function is

ΨY
�
ν � � E � exp

�
jνY � 	

� exp
�

jνµT � F � 1 � 2 jνK � � 1µ �
det
�
I � 2 jνKF � 


For example, let n � 1, then K � σ2 and

ΨY
�
ν � � exp

�
jνµ2F 
 � 1 � 2 jνσ2F � ��

1 � 2 jνσ2F � 

Inverting this yields the Rician distributed random variable. For ν � � js, F � 1 the characteristic function becomes

E � exp
�
sY � 	 � E � exp

�
sX2 � 	 � exp

�
sµ2 
 � 1 � 2sσ2 � ��

1 � 2sσ2 � 

provided that Re � s 	�� 1 
 2σ2.

2. Random Processes

Def: A random process
�
X
�
t � ;t � T � is an indexed collection of random variables (i.e. for each t � T , the index

set, X
�
t � is a random variable).

Def: The covariance function of a random process
�
X
�
t � ;t � T � is defined as

K
�
s � t ��� E � � X � s ��� µ

�
s � � � X � t ��� µ

�
t � � � 	

where µ
�
t �
� E �X � t � 	 .

Def: A function K
�
s � t � : R � R � R is said to be nonnegative definite if for any n

�
1 and time instants t1 ��
�
�
 � tn

and any function a
�
t �

n

∑
i � 1

n

∑
j � 1

a
�
ti � K � ti � t j � a � � t j �

�
0 (and is real)

(positive definite if strict equality holds). Equivalently � � a
�
t � K � t � s � a � � s � dtds

�
0 and is real.

Claim: The covariance function is a nonnegative definite function.
Def: A random process is said to be Gaussian if for any n and time instances t1 ��
�
�
 � tn, X

�
t1 � ��
�
�
 � X � tn � is jointly

Gaussian.


