Appendix A

Probability, Random Variables and
Random Processes

In this appendix basic concepts from probability, random processes and signal theory are reviewed.

1. Probability and Random Variables

Probability Space (Q, F,P)
Q is the sample space or set of all possible outcomes.
F is a collection of events which are subsets of Q (algebra, field)
Aec F,Be F=AUBe7;
Qe¥7F,
AcF=>AcT
P is a function from ¥ — [0, 1] which satisfies
i) 0<PA) <1, Ae¥
i) P(Q)=1
i) TANB=0 thenP(AUB)=P(A)+P(B) A,Be ¥
A random variable X (w) is a function from Q to R

X: Q>R

that satisfies
{weQ:X(w)<x}eF ¥xeR

The distribution function Fx (x) of a random variable is defined as
Fx (X) = P{X(w) <x} =P{w e Q: X(w) <x}
Properties of distribution functions
(i) P{a< X(w) <b} =Fx(b) —Fx(a)
(i) Fx(x) is continuous at x iff P{X(w) =x} =0

(iii) |i£an(y) =Fx(x) right continuous
yx
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(iv) JimFx(x) =1, lim Fx(x) =0

If Fx (x) is continuous for all x then there exists a function fx (x) such that

= [ txdu

This function is called the density function. If a random variable has a density function we shall say the random
variable is continuous.
Properties of density functions

(i) P{X(w) eB} = [z fx(u)du BCR

(i) () = R (0 = S

If Fx(x) is piecewise constant with a countable number of discontinuities then X is said to be a discrete random
variable. For discrete random variables we will use their probability mass function

px (X) £ P{X = x}

Expectation of a Random Variable
The expectation of a continuous random variable is

[ee]

E[X] = / xFx (X)dx
The expectation of a discrete random variable is

EXl= 5 xpx()
X:px (X)#£0

If X1,X2,...,Xn are random variables the joint distribution F, (x4, ..., Xn) is defined as
Fn(Xj_,...,Xn) = P{Xl S Xl,...,Xn S Xn}
If these random variables are (jointly) continuous then their joint density f,(x1,...,Xn) is defined as

_ anFn(X]_,...,Xn)
T OX1...0%

fan(X1,-.-,Xn)
If these random variables are discrete then the joint probability mass function is
Pn(X1,-..,Xn) =P{X1 =X1,...,Xn =Xn}
A complex random variable is a function from Q to C (4 is the set of complex numbers)
X:Q-=C
such that {OX <x,,0X <xi} € F ¥X,xi €R
X(w) =Re(X(w)) + j Im(X(w)).

Useful Bounds
1) Union Bound:
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2) Chebyshev Bound: Let mx = E[X] and 0% = E[(X —mx)?] then
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Oy
P{IX —mx| > 8} < =5
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/_m (x— my)2 fy (X)dx

[ = mo? (o
Ix—mx|>

& / F (X)dx
[x—mx|>8

= &P{|X —my| >3}
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3) Chernoff Bound:
P{X>u}<eME[™], s>0

Proof:
1, x>u
Let g(x):{ 0, x<u.
Sinces >0
g(x) <ev,
Thus
P{XZu}:/ f (X = / g(x) fx (x)dx
u —00
= E[g(X)]

E[es(X—u)] —g—Su E[esx]_

IN

Example: Let X1,...,Xn be random variables. Let Hp and H; be two events. Let po(X1,---,Xn) be the conditional
density function of X,..., Xy given Hg and p1(x1,...,Xn) be the conditional density function of X, ..., X, given
H;. Find a bound on

Pe = {pl(xla"'ax ) p (X17 L) n)|H0}
pl(Xl,- 7Xn)
= P >1|H
ookt %) 2N [Ho
— p{n(™ Xl’ ) >0 |Ho}
po(X
p1(X)
LetY =In

Po(X)

Pe=P{Y >0|Ho] < E[e%|Ho]
/R exp [sln 238] Po(x)dx

A random variable is Gaussian if the density function is

Px() = ——exp{ 55 ()}

where 1 is the mean and o2 is the variance. The characteristic function of a random variable X is defined as
@x (s) = E[e5X]. For a Gaussian random variable the characteristic function is

2
o (s) = eﬁzo_‘Hls



1-4 APPENDIX A. PROBABILITY, RANDOM VARIABLES AND RANDOM PROCESSES

Def: A function g : RN — R is said to be concave (convex N) if for any x; € R",x, e R"and 0 < 8 < 1
0g(x1) + (1 - 0)g(Xp) < 9(Ox; + (1 - O)x)

where the vector addition is component-wise addition.
A function g : R" — R is said to be convex (convex U) if

0g(x1) + (1 - 6)g(Xz) = 9(Ox1 + (1 - O)xy)
Jensen’sInequality: If f(x) is a concave (convex N) function mapping R" — R then
E[f(X)] < f(E[X]).
If f(x) is a convex (convex U) function mapping R" — R then
E[f(X)] > f(E[X]).
Proof for discreterandom variables: (By induction) Let X take on values x4, X,, with nonzero probability
E[f(X)] = p(x1)f(x1)+p(x2) f(x2)

< F(p(xe)X1+ p(X2)X2)
= f(E[X])

where the first inequality is due to the definition of convexity.
Assume if X is discrete taking values

X1,---,Xp_q then p(x) =1
n i; 1

n-1 n—1
pix)f(x) < f<zlp(li)f(xi)>

Now let X take values Xq,X,...,X,

n n-1
EFO] = 3 p(xi)f(xi)=_;p(xi)f(xi)+p(xn)f(xn)
Let a = n_lp(xj)
=1
E1f00) = a3 P8 fx) + () (k)
"o P(X)

IA

n—-1
f (; P(X;)Xi + p(xn)xn)
= f (_ip(xﬂ&)

Let X1,...,Xn be a random vector. The covariance matrix of X1,..., X, is defined to be
Kl,j_ K1,2 ... Kin

]

Knl Knn



where
Ki,j = E[(Xi — ki) (Xj — 1))
and
Hi = E[Xi]
Def: A nx nmatrix is said to be nonnegative definite if for any vector (as,...,an)

n n

le aikijaj >0 and real
o=

ie.,
aKxa' >0and real.

(positive definite if strict inequality holds).
Claim: The covariance matrix is always nonnegative definite.

Proof:
n on
aikija’j
i=1]=1
n n
= aE[(Xi — i) (Xj — pj)7]aj
i=1)=1
n n
- E ai(Xi — mi)as (Xj — uj)*
_i;J=l| i AN ]
. n
= E|TaXi—u Y ai(X —H)*]
-i; i\Ai i ;1 i\ ]

Let X1,...,Xn be a real random vector. The characteristic function of X1, X, ... X, is defined as

n
Wy, xa(V1,---,Vn) =E [eXp <J ZlViXi>] ;
i=

Def: The random vector X, ..., Xy is said to be jointly Gaussian if the characteristic function of X4,..., X, is
T 1 ;
Wra,o X (V1;- - Vn) = €XP{IV P — 5 v KV}

where v = (vy,...,Vp), W = (Us,...,Un) and K is a real symmetric nonnegative definite n x n matrix. If K is
positive definite then the joint density of Xq,..., Xy is

p(X) = (21)~Y/2(detK)~2exp{—1/2(x — )KL (x — ) }.

Fact: Let X be a random n vector. Then X is jointly Gaussian iff X can be expressed as WY + g where g =
(U1,---,Mn) € R",W is and n x n matrix and Y1, ...,Y, are independent mean zero Gaussian random variables (the
matrix W can be taken to be orthogonal, i.e. the rows of W are orthogonal).

Ky =WKyWT.

Now let X be a jointly Gaussian random vector (of length n) with mean p covariance matrix K. Let F bean by n
matrix. Consider the random variable
Y = XFXT
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We would like to be able to determine the density function of this random variable. Instead, we will determine the
characteristic function of this random variable. The characteristic function is

Wy(v) = Elexp(jvY)]
exp{jvp’ (F~* = 2jvK)~y}
det(l — 2jvKF) ‘

For example, let n = 1, then K = 62 and

_exp{jv?F/(1—2jva?F)}

#r (V) (1—2jvoF)

Inverting this yields the Rician distributed random variable. For v = — js, F = 1 the characteristic function becomes

2/(1 — 2652
E[exp(sY )] = E[exp(sX?)] = exp{s(pl 1(25022)80 )}‘

provided that Re[s] < 1/202.

2. Random Processes

Def: A random process {X(t);t € T} is an indexed collection of random variables (i.e. for eacht € T, the index
set, X(t) is a random variable).
Def: The covariance function of a random process {X(t);t € T } is defined as

K(s,t) = E[(X(s) —u(s)) (X (t) — u(t))]

where u(t) = E[X(t)].
Def: A function K(s,t) : R x R — R is said to be nonnegative definite if for any n > 1 and time instants ty,...,t,
and any function a(t)

iia(ti)K(ti,tJ—)a*(tJ—) >0 (and is real)
i=1)=

(positive definite if strict equality holds). Equivalently [ [a(t)K(t,s)a*(s)dtds > 0 and is real.

Claim: The covariance function is a nonnegative definite function.

Def: A random process is said to be Gaussian if for any n and time instances ty, ..., ty, X(t1),-..,X(ty) is jointly
Gaussian.



