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Lecture Notes 3: Error Probability for M Signals

Goals

1. Exact analysis of M-ary orthogonal signals in AWGN channels.

2. Gallager bound for arbitrary signals, arbitrary channel.

3. Random Coding Bound.
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Error Probability

Problem: Determine the error probability in deciding which of M signals was transmitted

over an arbitrary channel with some transition probability

p � r0 �� � � � rN� 1 � si transmitted 	 � i
 0 � 1 �� � � � M� 1�

Writing down an expression for the error probability in terms of an N-dimensional integral is

straightforward. However, evaluating the integrals involved in the expression in all but a few

special cases is very difficult or impossible if N is fairly large (e.g. N � 4).
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Summary of Bounds

For the special case of orthogonal signals the error probability can be expressed as a single

integral. Because of the difficulty of evaluating the error probability for general signal sets,

bounds are needed to determine the performance. Different bounds have different complexity

of evaluation. This first bound we derive is known as the Gallager bound. We apply this

bound to the case of orthogonal signals (for which the true answer is already known). The

Gallager bound has the property that when the number of signals become large the bound

becomes tight. However, the bound is fairly difficult to evaluate for many signal sets. A

special case of the Gallager bound is the Union-Bhattacharayya bound. This is simpler than

the Gallager bound to evaluate but also is looser than the Gallager bound. The last bound

considered is the union bound. This bound is tighter than the Union-Bhattacharayya bound

and the Gallager bound for sufficiently high signal-to-noise ratios.
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Random Coding Bound

Finally we consider a simple random coding bound on the ensemble of all signal sets using

the Union-Bhattacharayya bound.
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Error Probability for M Signals

The general signal set we consider has the form

si � t 	 
 N� 1

∑
j� 0

si � jϕ j � t 	 � i
 0 � 1 �� � � � M� 1

The number of othonormal basis functions is less than the number of signals (N � M). The

optimum receiver does a correlation with the N orthonormal waveforms to form the decision

variables.
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r � t 	

ϕ0 � t 	
�

ϕ1 � t 	
�

ϕN� 1 � t 	
�

� r � t 	 ϕ0 � t 	 dt

� r � t 	 ϕ1 � t 	 dt

� r � t 	 ϕN� 1 � t 	 dt

r0

r1

rN� 1

Find si with

smallest

� � r� si � � 2

Figure 9: Optimum Receiver in Additive White Gaussian Noise
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r j
 �

T

0
r � t 	 ϕ j � t 	 dt � j
 0 � 1 �� � � � N� 1�

The decision regions are for equaly likely signals given by

Ri
∆
 � r : pi � r 	 � p j � r 	 �� j �
 i 	

The error probability is then determined by

Pe � i 
 P � M� 1




j� 0 � j �� i

R j � Hi 	 �

For all but a few small dimensional signals or signals with special structures (such as

orthogonal signal sets) the exact error probability is very difficult to calculate.
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Error Probability for Orthogonal Signals

Represent the M signals in terms of M orthogonal function ϕi � t 	 as follows

s0 � t 	 
 � Eϕ0 � t 	

s1 � t 	 
 � Eϕ1 � t 	� �
� �

� �

sM� 1 � t 	 
 � EϕM� 1 � t 	 �

The optimal receiver finds the largest value of � r � t 	 � s j � t 	 	 for j
 0 �� � � � M� 1. Equivalently

the optimum receiver determines the largest value of r j
 � r � t 	 � s j � t 	 	
 � E .
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Statistics of r j

To determine the error probability we need to determine the statistics of r j. Assume signal si

is transmitted. Then

r j
∆


�

T

0
r � t 	 ϕ j � t 	 dt

E � r j � Hi � 
 E � �

T

0
r � t 	 ϕ j � t 	 dt � Hi �



�

T

0
E � r � t 	 � Hi � ϕ j � t 	 dt



�

T

0
E � si � t 	 � n � t 	 � ϕ j � t 	 dt



�

T

0

� Eϕi � t 	 ϕ j � t 	 dt


 � Eδi � j�
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Variance of r j

The variance of r j is determined as follows. Given Hi

r j� E � r j � Hi � 

�

T

0
n � t 	 ϕ j � t 	 dt

E � � r j� E � r j � Hi � 	 2 � Hi � 

�

T

0 �

T

0
E � n � t 	 n � s 	 � ϕ j � t 	 ϕ j � s 	 dtds



�

T

0 �

T

0
K � t � s 	 ϕ j � t 	 ϕ j � s 	 dtds



�

T

0 �

T

0

N0

2
δ � t� s 	 ϕ j � t 	 ϕ j � s 	 dtds



�

T

0

N0

2
ϕ j � t 	 ϕ j � t 	 dt


 N0

2

�

Furthermore, each of these random variables is Gaussian (and independent).
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Error Probability

P � error 	 
 1� P � correct 	

P � correct 	 
 M� 1

∑
i� 0

P � Hi � Hi 	 πi

Pc � i
∆
 P � Hi � Hi 	 
 P � ri � r j � � j �
 i � Hi 	
 E � P � ri � r j � � j �
 i � Hi � ri 	 �


 E �

M� 1

∏
j� 0 � j �� i

P � ri � r j � Hi � ri 	 �


 E �

M� 1

∏
j� 0 � j �� i

Φ � ri

� N0
 2 	 �



�

∞

� ∞

1

� πN0
exp �� 1

N0

� ri� � E 	 2

	 ΦM� 1 � ri

� N0
 2 	 dri�
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� Φ � x 	 
 �

x� ∞
1

� 2π e� u2 � 2du � . Now let u
 ri

� N0 � 2
. Then

Pe � i
 1� Pc � i 

�

∞

� ∞

1

� πN0�

N0

2
exp �� ��

N0

2
u� � E 	 2


 N0 	 � 1� ΦM� 1 � u 	 � du



�

∞

� ∞

1

� 2π
exp �� � u�

�

2E
N0

	 2


 2 	 � 1� ΦM� 1 � u 	 � du


 � M� 1 	 �

∞

� ∞

1

� 2π
Φ � u�

�

2E
N0

	 ΦM� 2 � u 	 e

� u2 � 2du

where the last step follows from using an integration by parts approach. Later on we will find

an upper bound on the above that is more insightful. It is possible to determine (using

L’Hospital’s rule) the limiting behavior of the error probability as M 	 ∞.

In general if we have M decision variables for an M-ary hypothesis testing problem that are

conditionally independent given the true hypothesis and there is a density (distribution) of the

decision variable for the true statistic denoted f1 � x 	 (F1 � x 	 ) and a density and distribution

function for the other decision variables ( f2 � x 	 � F2 � x 	 	 then the probability of correct is

Pc

�

∞
� ∞

f1 � x 	 FM� 1
2 � x 	 dx
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The probability of error is

Pe 
 1�
�

∞

� ∞
f1 � x 	 FM� 1

2 � x 	 dx

 � M� 1 	 �

∞

� ∞
F1 � x 	 FM� 2

2 � x 	 f2 � x 	 dx

The last formula is many times easier to compute numerically than the first because the former

is the difference between two numbers that are very close (for small error probabilities).
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Gallager Bound

Now we derive an upper bound on the error probability for M signals received in some form

of noise. Let r be an N-dimensional noise vector.

Ri
∆
 � r : pi � r 	 � p j � r 	 �� j �
 i 	

Ri
∆
 � r : pi � r 	� p j � r 	 � for some j �
 i 	

Pc � i
∆
 P � Hi � Hi 	

Pe � i
∆
 P � Hi � Hi 	 
 P � Ri � Hi 	 �

Now

Ri
∆
 � r :

p j � r 	

pi � r 	 � 1 � for some j �
 i 	 �

For λ � 0 let

�

Ri
∆
 � r : ∑

j �� i�

p j � r 	

pi � r 	�

λ

� 1 	 �
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Gallager Bound (cont.)

Claim: Then

�

Ri� Ri. Proof: If r � Ri then
p j � r 	

pi � r 	 � 1 for some j �
 i. Thus for some j �
 i,

�

p j � r 	

pi � r 	�

λ

� 1 which implies that

∑
j �� i�

p j � r 	

pi � r 	�

λ

� 1

and thus r �
�

Ri. Thus we have shown that

�

Ri� Ri. Now we use this to upper bound the error
probability.

Pe � i 
 P � Ri � Hi 	� P � �

Ri � Hi 	 

�

�

Ri
pi � r 	 dr



� RM

I �
�

Ri � pi � r 	 dr

where

I �
�

Ri �
 �
�

	

1 � r �
�

Ri

0 � r ��
�

Ri�
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For r �
�

Ri and ρ � 0 we have




∑
j �� i�

p j � r 	

pi � r 	�

λ

�

ρ

� 1�

For r ��
�

Ri and ρ � 0 we have




∑
j �� i�

p j � r 	

pi � r 	�

λ

�

ρ

� 0�

Thus

I �
�

Ri ��




∑
j �� i�

p j � r 	

pi � r 	�

λ

�

ρ�

Applying this bound to the expression for the error probability we obtain

Pe � i � � RN




∑
j �� i�

p j � r 	

pi � r 	�

λ

�

ρ

pi � r 	 dr



� RN � pi � r 	 � 1� λρ




∑
j �� i

� p j � r 	 � λ

�

ρ

dr

for ρ � 0 and λ � 0. If we let λ
 1
1 � ρ (this is the value that minimizes the bound, see
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Gallager problem 5.6) the resulting bound is known as the Gallager bound.

Pe � i� � RN � pi � r 	 �

1
1 � ρ




∑
j �� i

� p j � r 	 �

1
1 � ρ

�

ρ

dr�

If we let ρ
 1 we obtain what is known as the Bhattacharayya bound.

Pe � i � � RN � pi � r 	 �

1
2




∑
j �� i

� p j � r 	 �

1
2

�

dr

 ∑

j �� i � RM � pi � r 	 p j � r 	 dr�

The average error probability is then written as

Pe
 M

∑
i� 1

πiPe � i�
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Example of Gallager bound for M-ary orthogonal signals in AWGN.

pi � r 	 
 1

� πN0
e

� � ri� � E � 2 � � N0 ∏
j �� i

1

� πN0
e

� r2
j � N0

Pe � i � �

∞

� ∞

� � �
�

∞

� ∞ �

1

� πN0
e

� � ri� � E � 2 � N0 ∏
j �� i

1

� πN0
e

� r2
j � N0

�

1
1 � ρ

�
�

	

∑
j �� i �

1

� πN0
e

� � r j� � E � 2 � N0 ∏
k �� j

1

� πN0
e

� r2
k � N0

�

1
1 � ρ �

�
�

ρ

dr



�

∞

� ∞

� � �
�

∞

� ∞ � 


M� 1

∏
j� 0

1

� πN0
e

� r2
j � N0

�

e2 � Eri � N0 e

� E � N0

�

1
1 � ρ

�
�

	

∑
j �� i � 


M� 1

∏
k� 0

1

� πN0
e

� r2
k � N0

�

e2 � Er j � N0e

� E � N0

�

1
1 � ρ �

�
�

ρ

dr
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�

∞

� ∞

� � �
�

∞

� ∞ � 


M� 1

∏
j� 0

1

� πN0
e

� r2
j � N0

�

e

� E � N0

�

�

exp �

2 � Eri� 1 � ρ 	 N0

	
�	

∑
j �� i

exp �

2 � Er j� 1 � ρ 	 N0

	



ρ

dr�

Let

g � z 	 
 exp ��

2E
N0

z
1 � ρ 	

where zi
 ri
 � N0
 2. Then

Pe � i � �

∞

� ∞

� � �
�

∞

� ∞

M� 1

∏
j� 0

e

� z2
j � 2

� 2π
e

� E � N0g � zi 	
�

∑
j �� i

g � z j 	
�

ρ

dz


 e

� E � N0E � g � zi 	 � E

�

∑
j �� i

g � z j 	
�

ρ�

Now it is easy to show (by completing the square) that

E � g � z 	 � 

�

∞

� ∞

e� z2 � 2

� 2π
exp ��

2E
N0

z
1 � ρ 	 dz
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 exp

�

E
N0 � 1 � ρ 	 2 �

�

Let f � x 	 
 xρ where 0� ρ� 1. Then f � x 	 is a concave function and thus by Jensen’s
inequality we have that

E � f � X 	 �� f � E � X � 	 �

Thus

E


 �

∑
j �� i

g � z j 	
�

ρ

�
�




E

�

∑
j �� i

g � z j 	
� �

ρ






∑
j �� i

E � g � z j 	 �
�

ρ


 � M� 1 	 ρ � E � g � z j 	 � 	 ρ�

Thus

Pe � i � � M� 1 	 ρe

� E � N0 � E � g � z 	 � 	 1 � ρ

 � M� 1 	 ρ exp �� E

N0

� � 1 � ρ 	 E
N0 � 1 � ρ 	 2 	

� exp �� E
N0 �

ρ
1 � ρ � � ρ lnM 	 �
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Now we would like to minimize the bound over the parameter ρ keeping in mind that the

bound is only valid for 0� ρ� 1. Let a
 E
N0

and b
 lnM and

f � ρ 	 
 � a
ρ

1 � ρ � ρb�

Then

f� � ρ 	 
 0 � ρ

�

a
b

� 1�

Since 0� ρ� 1 the minimum occurs at an interior point of the interval � 0 � 1 � if

1
 4 �

lnM
E
N0

� 1

in which case the bound becomes

Pe � i� exp

	
�

��

E
N0

� � lnM

�

2



�

If lnM
 � E
N0 	 � 1
 4 then ρmin
 1 in which case the upper bound becomes

Pe � i� exp � lnM� E
2N0 	 . If lnM

E
N0

� 1 then ρmin
 0 in which case the upper bound becomes
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Pe � i� 1� In summary the Gallager bound for M orthogonal signals in white Gaussian noise is

Pe � i�

����
� ���

	

1 � E
N0

� lnM

exp

�
�

� �

E
N0

� � lnM �

2

� � lnM� E
N0� 4lnM

exp �� � E
2N0

� lnM 	 	 � E
N0 � 4lnM�

Normally a communication engineer is more concerned with the energy transmitted per bit
rather than the energy transmitted per signal, E. If we let Eb be the energy transmitted per bit
then these are related as follows

Eb
 E
log2 M

�

Thus the bound on the error probability can be expressed in terms of the energy transmitted
per bit as

Pe � i�

�����
� ����

	

1 � Eb
N0� ln2

exp2 �
� log2 M � �

Eb
N0

� � ln2 �

2

� � ln2�

Eb
N0� 4ln2

exp2 �
� log2 M �

Eb
2N0

� ln2 �� � Eb
N0 � 4ln2

where exp2 � x 	 denotes 2x. Note that as M 	 ∞, Pe 	 0 if Eb
N0

� ln2 = -1.59dB. Below we plot
the exact error probability and the Gallager bound for M orthogonal signals for M
 8 � 64 � 512.
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Figure 10: Comparison of Gallager Bound and exact error probability for orthogonal signals. In each

group the upper signal is the bound and the lower signal is the exact error probability
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Bit error probability

So far we have examined the symbol error probability for orthogonal signals. Usually the

number of such signals is a power of 2, e.g. 4, 8, 16, 32, .... If so then each transmission of a

signal is carrying log2 M bits of information. In this case a communication engineer is usually

interested in the bit error probability as opposed to the symbol error probability. Let d � si � s j 	

be the (Euclidean) distance between si and s j, i.e

d2 � si � s j 	 ∆

�

∞

� ∞

� si � t 	� s j � t 	 	 2dt
 ∞

∑
l� 1

� si � l� s j � l � 2�

Now consider any signal set for which the distance between every pair of signals is the same.

Orthogonal signal sets with equal energy satisfy this condition. Let k
 log2 M. If si is

transmitted there are M� 1 other signals to which an error can be made. The number of

signals which cause an error of i bits out of the k is �

k
i� . Since all signals are the same distance

from si the conditional probability of a symbol error causing i bits to be in error is

�

k
i�� M� 1 	 �
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So the average number of bit error given a symbol error is

k

∑
i� 1

i

�

k
i � 
 � M� 1 	 
 k2k� 1

M� 1

�

So the probability of bit error given symbol error is

1
k

k2k� 1

M� 1


 2k� 1

2k� 1

�

So

Pb � i
 2k� 1

2k� 1
Pe � i

and this is true for any equidistant, equienergy signal set.
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Union Bound

Assume

πi
 1
M � 0� i� M� 1�

Let

Ri 
 � r : pi � r 	 � p j � r 	 for all j �
 i 	 �

Ri 
 � r : pi � r 	� p j � r 	 for some j �
 i 	 �


 M� 1




j� 0 � j �� i

� r : pi � r 	� p j � r 	 	 �

Ri j 
 � r : pi � r 	� p j � r 	 	 �

Then

Pe � i 
 P � r � Ri � Hi 	
 P � r � 


j �� i

Ri j � Hi 	

� ∑
j �� i

P � Ri j � Hi 	
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where

P � Ri j � Hi 	 
 P

�

pi � r 	

p j � r 	 � 1 � Hi

�

This is the union bound.

We now consider the bound for an arbitrary signal set in additive white Gaussian noise.

Let

si � t 	 
 N� 1

∑
l� 0

silϕl � t 	 � 0� i� M� 1�

For additive white Gaussian noise

pi � r 	 
 N� 1

∏
l� 0

� exp �� 1
N0 � rl� sil 	 2 	

� πN0

	

pi � r 	

p j � r 	 
 N� 1

∏
l� 0

exp �� 1
N0

� � rl� sil 	 2� � rl� s jl 	 2 � 	


 exp

�

2
N0

� r � si

� s j 	 �

E j� Ei

N0 �
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where � r � si

� s j 	 
 ∑N� 1
l� 0 rl � sil� s jl 	 and Ek
 ∑N� 1

l� 0 s2
kl for 0� k� M� 1� Thus

P � Ri j � Hi 	 
 P

�

2
N0

� r � si

� s j 	� Ei� E j

N0

� Hi

�
�

To do this calculation we need to calculate the statistics of the random variable � r� si� s j 	 . The
mean and variance are calculated as follows.

E � � r � si

� s j 	 � Hi � 
 E � � n � si � si

� s j �
 Ei� � si � s j 	 �

Var � � r � si

� s j 	 � Hi � 
 Var � � n � si � si� s j 	 �


 N0

2 � si

� s j �

2�

Also � r� si

� s j 	 is a Gaussian random variable. Thus

P

� � r � si

� s j 	� Ei� E j

2 �

 Φ �

�

Ei� E j
2

� � Ei� � si � s j 	 	

�

N0
2 � si

� s j �

�
�
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 Q � Ei� 2 � si � s j 	 � E j

� 2N0 � si

� s j �

	


 Q � � si

� s j �

� 2N0

	 �

Thus the union bound on the error probability is given as

Pe � i� ∑
j �� i

Q � � s j

� si �

� 2N0

	 �
Note that � si

� s j �

2
 d2
E � si � s j 	 , i.e. the square of the Euclidean distance.
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Example: Hamming Code

The Hamming code has the following set of codewords.

� 0 � 0 � 0 � 0 � 0 � 0 � 0 	 � 1 � 1 � 1 � 1 � 1 � 1 � 1 	

� 1 � 0 � 0 � 0 � 1 � 0 � 1 	 � 0 � 1 � 0 � 0 � 1 � 1 � 1 	

� 1 � 1 � 0 � 0 � 0 � 1 � 0 	 � 1 � 0 � 1 � 0 � 0 � 1 � 1 	

� 0 � 1 � 1 � 0 � 0 � 0 � 1 	 � 1 � 1 � 0 � 1 � 0 � 0 � 1 	

� 1 � 0 � 1 � 1 � 0 � 0 � 0 	 � 1 � 1 � 1 � 0 � 1 � 0 � 0 	

� 0 � 1 � 0 � 1 � 1 � 0 � 0 	 � 0 � 1 � 1 � 1 � 0 � 1 � 0 	

� 0 � 0 � 1 � 0 � 1 � 1 � 0 	 � 0 � 0 � 1 � 1 � 1 � 0 � 1 	

� 0 � 0 � 0 � 1 � 0 � 1 � 1 	 � 1 � 0 � 0 � 1 � 1 � 1 � 0 	
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These are mapped to signals using the mapping

0 	 � � E

1 	 � � E

The 16 signals are

� E � 1 � 1 � 1 � 1 � 1 � 1 � 1 	 � E �� 1 �� 1 �� 1 �� 1 �� 1 �� 1 �� 1 	

� E �� 1 � 1 � 1 � 1 �� 1 � 1 �� 1 	 � E � 1 �� 1 � 1 � 1 �� 1 �� 1 �� 1 	

� E �� 1 �� 1 � 1 � 1 � 1 �� 1 � 1 	 � E �� 1 � 1 �� 1 � 1 � 1 �� 1 �� 1 	

� E � 1 �� 1 �� 1 � 1 � 1 � 1 �� 1 	 � E �� 1 �� 1 � 1 �� 1 � 1 � 1 �� 1 	

� E �� 1 � 1 �� 1 �� 1 � 1 � 1 � 1 	 � E �� 1 �� 1 �� 1 � 1 �� 1 � 1 � 1 	

� E � 1 �� 1 � 1 �� 1 �� 1 � 1 � 1 	 � E � 1 �� 1 �� 1 �� 1 � 1 �� 1 � 1 	

� E � 1 � 1 �� 1 � 1 �� 1 �� 1 � 1 	 � E � 1 � 1 �� 1 �� 1 �� 1 � 1 �� 1 	

� E � 1 � 1 � 1 �� 1 � 1 �� 1 �� 1 	 � E �� 1 � 1 � 1 �� 1 �� 1 �� 1 � 1 	
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Let c0 �� � � � c15 be the 16 binary codewords with code symbols being either 0 or 1. Let s0 �� � � � s15

be the 16 signals with coefficients being either� � E or � � E.
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Note that d2
E � si � s j 	 
 4EdH � ci � c j 	 where dE � si � s j 	 is the Euclidean distance between signal si

and s j and dH � ci � c j 	 is the Hamming distance between codeword ci and c j. Notice also that

the signals are geometrically uniform. That is, the number of signals at a Hamming distance

4El from s0 is the same as the number of signals at Hamming distance 4El from any other

codeword.

d2
E � s0 � si 	 Ai

3 � 4E 7

4 � 4E 7

7 � 4E 1

Thus the union bound on the codeword error probability for the Hamming code with BPSK

modulation (which yields a 16-ary signal set in 7 dimensions) is

Pe� 7Q ��

12E
2N0

	 � 7Q ��

16E
2N0

	 � 1Q ��
28E
2N0

	
For the Hamming code the energy per dimension E is related to the energy per information bit
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Eb by

E
 4
7

Eb

Thus the error probabilty is bounded by

Pe� 7Q �
�

2Eb � 4
 7 	 3
N0

	 � 7Q �
�

2Eb � 4
 7 	 4
N0

	 � 1Q �
�

2Eb � 4
 7 	 7
N0
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Bit error probability for Hamming Code

In the Hamming code the shown above, the first four bits represent the information

transmitted. From the code we can calculate the the number Ad � m of codewords at a distance l

with a m information bits that are one.

d m Al � m
3 1 3

3 2 3

3 3 1

4 1 1

4 2 3

4 3 3

7 4 1
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The bit error probability is then union-bounded by

Pb �

1
4

7

∑
d� 3

4

∑
m� 1

mAd � mQ


 �

2Ebrd
N0 �


 1
4

7

∑
d� 3

Q


 �

2Ebrd
N0 �

4

∑
m� 1

mAd � m


 1
4

7

∑
d� 3

BdQ


 �

2Ebrd
N0 �


 1
4 �

12Q


 �

2Ebr3
N0 �

� 16Q


 �

2Ebr4
N0 �

� 4Q


�

2Ebr7
N0 � �


 3Q


 �

2Ebr3
N0 �

� 4Q


�

2Ebr4
N0 �

� Q


 �

2Ebr7
N0 �

where

Bd
 4

∑
m� 1

mAd � m

and r
 4
 7 is the rate of the code.
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Union-Bhattacharyya Bound

We now use the following to derive the Union-Bhattacharyya bound. This is an alternate way

of obtaining this bound. We could have started with the Union-Bhattacharyya bound derived

from the Gallager bound, but we would get the same answer.

Fact: Q � x 	� 1
2 e� x2 � 2� e� x2 � 2 � x � 0. (To prove this let X1 and X2 be independent Gaussian

random variables mean 0 variance 1. Then show

Q2 � x 	 
 P � X1 � x � X2 � x 	� 1
4 P � X2

1 � X2
2 � � 2 x 	 . Use the fact the X2

1 � X2
2 has Rayleigh

density; see page 29 of Proakis)

Using this fact leads to the bound

Pe � i� ∑
j �� i

exp

	
� � si

� s j �

2

4N0 

�

This is the Union Bhattacharyya bound for an additive white Gaussian noise channel.
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Random Coding

Now consider 2NM communication systems corresponding to all possible signals where

si j
 � � E

� si �

2
 NE 0� i� M� 1

Consider the average error probability, averaged over all possible selections of signal sets

For example: Let N
 3 � M
 2 � there are 23 � 2
 26
 64 possible sets of 2 signals with

each signal a linear combination of three orthogonal signals with the coefficients required to

be one of two values.
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Set number 1 s0 � t 	 
 � � E ϕ1 � t 	� � E ϕ2 � t 	� � E ϕ3 � t 	

s1 � t 	 
 � � E ϕ1 � t 	� � E ϕ2 � t 	� � E ϕ3 � t 	

Set number 2 s0 � t 	 
 � � E ϕ1 � t 	� � E ϕ2 � t 	� � E ϕ3 � t 	

s1 � t 	 
 � � E ϕ1 � t 	� � E ϕ2 � t 	 � � E ϕ3 � t 	

Set number 3 s0 � t 	 
 � � E ϕ1 � t 	� � E ϕ2 � t 	 � � E ϕ3 � t 	

s1 � t 	 
 � � E ϕ1 � t 	� � E ϕ2 � t 	� � E ϕ3 � t 	

Set number 4 s0 � t 	 
 � � E ϕ1 � t 	� � E ϕ2 � t 	 � � E ϕ3 � t 	

s1 � t 	 
 � � E ϕ1 � t 	� � E ϕ2 � t 	 � � E ϕ3 � t 	

Set number 5 s0 � t 	 
 � � E ϕ1 � t 	� � E ϕ2 � t 	� � E ϕ3 � t 	

s1 � t 	 
 � � E ϕ1 � t 	 � � E ϕ2 � t 	� � E ϕ3 � t 	

...
...

Set number 64 s0 � t 	 
 � � E ϕ1 � t 	 � � E ϕ2 � t 	 � � E ϕ3 � t 	

s1 � t 	 
 � � E ϕ1 � t 	 � � E ϕ2 � t 	 � � E ϕ3 � t 	
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Let Pe � i � k 	 be the error probability of signal set k given Hi. Then

Pe � i
 1
2NM

2NM

∑
k� 1

Pe � i � k 	

and

Pe
 1
M

M

∑
i� 1

Pe � i

and

Pe � k 	 
 1
M

M

∑
i� 1

Pe � i � k 	 �

If Pe� α then at least one of the of the 2NM signals sets must have Pe � k 	� α (otherwise

Pe � k 	 � α for all k � Pe � α; contradiction). In other words there exists a signal set with

Pe� α. This is known as the random coding argument. Let si � j � 0� i� M� 1 � 1� j� N be

independent identically distributed random variables with

P � si � j
 � � E 	 
 P � si � j
 � � E 	 
 1
2 and Pe
 E � Pe � s 	 � where the expectation is with respect

to the random variables s.

Pe � i
 E � Pe � i � s 	 �� ∑
j �� i

E

�

exp

�
� � si� s j �

2

4N0 � �
�
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Let Xi j
 � si� s j �

2
 ∑N
l� 1 � sil� s jl 	 2. Then

P � Xi j
 4Em 	 
 P � si and s j differ in m places out of N 	
 � N
m 	 2

� N

since P � sil
 s jl 	 
 P � sil �
 s jl 	 
 1
2 .

So

E � exp

�
� � si� s j �

2

4N0 � �
 E � e

� Xi j � 4N0 �

E � e

� Xi j � 4N0 � 
 N

∑
m� 0 �

N
m �

2

� Ne

� m4E � 4N0


 2

� N
N

∑
m� 0 �

N
m � � e� E � N0 	 m


 2

� N � 1 � e

� E � N0 	 N


 exp2 �� N � 1� log2 � 1 � e

� E � N0 	 � �

Let R0
 1� log2 � 1 � e� E � N0 	 then
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Pe � i� ∑
j �� i

2

� NR0
 � M� 1 	 2

� NR0� M2

� NR0
 2

� N � R0� R �

where R
 log2 M
N is the number of bits transmitted per dimension and E is the signal energy

per dimension. We have shown that there exist a signal set for which the average value of the
error probability for the i� th signal is small. Thus we have shown that as N goes to ∞ the
error probability given si was transmitted goes to zero if the rate is less than the cutoff rate R0.
This however does not imply that there exist a code s0 �� � � � sM� 1 such that Pe � 0 �� � � � Pe � M� 1 are
simultaneously small. It is possible that Pe � i is small for some code for which Pe � j is large. We
now show that we can simultaneously make each of the error probabilities small
simultaneously. First choose a code with M
 � 2 	 2RN codewords for which the average error
probability is less than say εN
 2 for large N. If more than 2NR of these codewords has
Pe � i � εN then the average error probability would be greater than εN
 2, a contradiction. Thus
at least M
 2
 2NR of the codewords must have Pe � i� εN . So delete the codewords that have
Pe � i � εN (less than half). We obtain a code with (at least) 2NR codewords with Pe � i 	 0 as
n 	 ∞ for R � R0.

Thus we have proved the following.

Theorem: There exist a signal set with M signals in N dimensions with Pe� 2� N � R0� R �

� � Pe 	 0 as N 	 ∞ provided R � R0 	 .

III-43

�
�

�
�

Note: E is the energy per dimension. Each signal then has energy NE and is transmitting

log2 M bits of information so that Eb
 NE
log2 M


 E
 R is the energy per bit of information.
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Figure 11: Error Probabilities Based on Cutoff Rate for Binary Input-
Continuous Output Channel for Rate 1/2 codes
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Figure 12: Error Probabilities Based on Cutoff Rate for Binary Input-
Continuous Output Channel for Rate 1/8 codes
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Figure 13: Error Probabilities Based on Cutoff Rate for Binary Input-
Continuous Output Channel for Rate 3/4 codes
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From the theorem, reliable communication (Pe 	 0) is possible provided R � R0� 1, i.e.

1� log2 � 1 � exp �� EbR
 N0 	 	 � R

1� R � log2 � 1 � e

� EbR � N0 	

21� R � 1 � e

� EbR � N0 � e

� EbR � N0 � 21� R� 1

� EbR
 N0 � ln � 21� R� 1 	 � Eb

N0

�� ln � 21� R� 1 	

R

For

R 	 0 � ln � 21� R� 1 	

R

	 2ln2 � Pe 	 0 if Eb
 N0 � 2ln2

Note: M orthogonal signals have Pe 	 0 if Eb
 N0 � ln2. The rate of orthogonal signals is

R
 log2 M
N


 log2 M
M

	 0 as M 	 ∞

The theorem guarantees existence of signals with log2 M
N


 R � 0 and Pe 	 0 as M 	 ∞.
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Figure 14: Cutoff Rate for Binary Input-Continuous Output Channel
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Example of Gallager bound for M-ary signals in AWGN.

Now we evaluate the Gallager bound for an arbitrary signal set in additive white Gaussian
noise channel. As usual assume the signal set transmitted has the form

si � t 	 
 N� 1

∑
j� 0

µi � jφ j � t 	 � i
 0 � 1 �� � � � M� 1

The optimal receiver does a correlation with each of the orthonormal functions to produce the
decision statistic r0 �� � � � rN� 1. The conditional density function of ri given signal si � t 	

transmitted is given by

pi � r 	 
 N

∏
k� 1

1

� πN0
e

� � rk� µi

�

k � 2 � N0

If we substitute this into the general form of the Gallager bound we obtain

Pe � i � �

∞

� ∞

� � �
�

∞

� ∞ �

N

∏
k� 1

1

� πN0
e

� � rk� µi

�

k � 2 � N0

�

1
1 � ρ

�
�

	

∑
j �� i �

N

∏
k� 1

1

� πN0
e

� � rk� µ j

�

k � 2 � N0

�

1
1 � ρ �

�
�

ρ

dr
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�

∞

� ∞

� � �
�

∞

� ∞ � 


N

∏
k� 1

1

� πN0
e

� � r2
k

� 2rkµi

�

k � µ2
i

�

k � � N0 � 1 � ρ �
� �

�
�

	

∑
j �� i �

N

∏
k� 1

e

� � r2
k

� 2rkµ j

�

k � µ2
j

�

k � � N0

�

1
1 � ρ �

�
�

ρ

dr



�

∞

� ∞

� � �
�

∞

� ∞

N

∏
k� 1

1

� πN0
exp �� � r2

k

� 2rkµi � k � µ2
i � k 	

N0 � 1 � ρ 	 � � rk 	 2ρ
N0 � 1 � ρ 	 	

	

∑
j �� i

N

∏
k� 1

exp �� �� 2rkµ j � k � µ2
j � k 	

N0 � 1 � ρ 	 	



ρ

dr


 exp �� � � µi � � 2ρ
N0 � 1 � ρ 	 2 	 �

∞

� ∞

� � �
�

∞

� ∞

N

∏
k� 1

1

� πN0
exp �� 1

N0

� rk� µi � k
1 � ρ 	 2

	

	

∑
j �� i

exp �� � � µ j � � 2
N0 � 1 � ρ 	 	

N

∏
k� 1

exp �

2rkµ j � k
N0 � 1 � ρ 	 	




ρ

dr

� exp �� � � µi � � 2ρ
N0 � 1 � ρ 	 2 	

	

∑
j �� i

exp �� � � µ j � � 2
N0 � 1 � ρ 	 	
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∞

� ∞

� � �
�

∞

� ∞ 


N

∏
k� 1

1

� πN0
exp �� 1

N0

� rk� µi � k
1 � ρ 	 2

	
�

exp �

2rkµ j � k
N0 � 1 � ρ 	 	 dr




ρ


 exp �� � � µi � � 2ρ
N0 � 1 � ρ 	 2 	

	

∑
j �� i

exp �� � � µ j � � 2
N0 � 1 � ρ 	 	 exp �� 1

N0�

� � µi � � 2� 1 � ρ 	 2

� � � µi � µ j � � 2� 1 � ρ 	 2 �
	




ρ






∑
j �� i

exp

�
� 1

N0�

d2
E � µi � µ j 	� 1 � ρ 	 2

� � 1� ρ 	 � � µ j � � 2� 1 � ρ 	 2 � � �

ρ

When the signals are all orthogonal to each other then d2
E


 2E for i �
 j and � � µ j � � 2
 E and
the bound becomes

Pe � i �




∑
j �� i

exp

�
� 1

N0�

2E

� 1 � ρ 	 2

� � 1� ρ 	 E

� 1 � ρ 	 2� � �

ρ


 � M� 1 	 ρ exp

�
� Eρ

N0 � 1 � ρ 	 �

This is identical to the previous expression.

Now we consider a couple of different signal sets. The first signal set has 16 signals in seven
dimensions. The energy in each dimension is E so the total energy transmitted is 7E. The
energy transmitted per information bit is Eb
 7E
 4 The geometry of the signal set is such
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that for any signal there are seven other signals at Euclidean distance 12E, seven other signals

at Euclidean distance 16E and one other signal at distance 28E. All signals have energy 7E.

(This is called the Hamming code). The fact that the signal set is geometrically uniform is due

to the linearity of the code. We plot the Gallager bound for ρ
 0� 1 � 0� 2 �� � � � 1� 0. The

Union-Bhattacharyya bound is the Gallger bound with ρ
 1� 0. The second signal set has 256

signals in 16 dimensions with 112 signals at distance 24E, 16 signals at distance 32E, 112

signals at distance 40E and 15 signals at distance 64E. In this case Eb
 2E.

As can be seen from the figures the union bound is the tightest bound except at very low

signal-to-noise ratios where the Gallager bound stays below 1. At reasonable signal-to-noise

ratios the optimum ρ in the Gallager bound is 1 and thus it reduces to the

Union-Bhattacharyya bound.
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Figure 15: Comparison of Gallager Bound, Union Bound and Union Bhat-
tacharyya Bound for the Hamming Code with BPSK Modulation
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Figure 16: Comparison of Gallager Bound, Union Bound and Union Bhat-
tacharyya Bound for the Nordstrom-Robinson code with BPSK Modulation
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