Lecture Notes5: Noncoherent Receivers'

o Derive optimum receiver for arbitary signals in Gaussian noise with a random phase.

Goals

e Deterine performance of two signals in white Gaussian noise.

e Deterine performance of M-orthogonal signals in white Gaussian noise.
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/and j = v/—1. Assuming the noise is also narrow band we can express the noise as
n(t) = nc(t) cosuxt — ns(t) sinoct.
Then the lowpass representation of the received signal becomes
F(t) = u(t)el% +2(t)

where

z(t) = nc(t) + jns(t).
Now assume that z(t) is a Gaussian process with covariance function K(s,t) which has
eigenfunctions ¢;(t) and eigenvalues A;. Then we can express the received lowpass signal as

0

%(Uk,lejek +21)01(t)

= éom)l(t)

Um|==jfuk0)¢fﬂ)dt
2= [z et

ft) =

where
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Assume additive stationary Gaussian noise and that sy (t) for 0 < k < M — 1 has the form

sk(t) = ak(t) cos(uxt +Bk(t)), k=0,1,2,..<M-1

| System I\/IodeII

with 1
/ﬁmM=5/ﬁmM=E
where a(t) and By(t) are lowpass waveforms with respect to wc. When si(t) is transmitted
the received waveform has the form
r(t) = ax(t) cos(wet + i (t) + 6x) +n(t)

where 6 is a random phase. If 6, = 0 with probability 1 then we have the usual coherent
reception situation already discussed. We will for this section assume that B is uniformly
distributed on the interval [0, 211 and that the receiver does not know what 6y is.

We can use the representation of bandpass signals and noise in deriving the optimal receiver.
r(t) = Re[uy(t)el%+I%t] 4 n(t)

where

Uk (t) = a(t) cosPr(t) + jax(t) sin Bk (t)

/
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and z; is a complex Gaussian random variable with mean zero and with

E[Re(z|)2] = A
E[Im(z|)2} = A
E[Re(z)Im(zj)] = 0.

We can now calculate the probability density of f = (1, ..., fy) conditioned on the value of 6.
Let fi = uxe/®% +z then

N 1 1 .. ]
pi(Fi[6k) = 7o P {72—)\'|r| —elfyy \2}

. 1 1 N |F|fejekuk||2
{[¢] ———— €X —= _
Pr(F]6k) L, 2, P{ 2; N

1 N|ﬁF+WH2ﬁej%%Jﬁdwa}

1
s 2 p{ 2 ;1 A
N 1 N || 4 ue 2 — 2Re(Fre 19wz )
(Zml)lexp{— ’ :
||1 2 |z
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A2+ Jur)? | N Re(fiug)cosy — 1
ll:l(ZTr)u) exp{ 5 L; iy }4—'21 Y

N 2+ 2 N (f"u* )
B(ZW)\.) exp{ 5 L; W} +( > IT:(' cos(9k+w)>}.

1=1

The joint density given signal k transmitted is then

5 5 2m
pk(rla"-7rN)_/
0=
om 9 N

i[> + [ui
= (2r\)) —_
= oZT[l-! ) exp{ 2 Lzl Al
N 1N ‘I’||2 ‘Uk||2 2 ]
(2T\) Lex [+ [t 1 / —ex
=[] p{ 22 N oo 21t P

< [P+ Jue

=[@m)™* 1
I=( 1) eXP{ 2% Y

~—Pk(F1, ..., Pn|Bk)d6

0 21T

N (Fug,)
I; Y Dcose}de

where

1
K 21 Jo=0

m(F.u;},)s@}

The joint density given signal k transmitted is then obtained by averaging with respect to 6.

cos(Bx + w)) } de
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/Similarly
N F|Ui| . N
! /r(t)qk(t)dt.
G M
Thus the optimal receiver computes the following likelihood ratios

NeolF(0) = fim ((0) = exp(—3 [ (00t} (| [ 7Oz

and chooses k for which Ay o is maximum.

Special Case: White Gaussian Noise

In this case the intergal equation is easily solved:

iuk(t)

() = No

so that
NeolF(0) =expl— [Pt (0| 7w ).

For equi-energy signals this reduces to choosing k that maximizes

S o (N%\ / f(t)U’k‘(t)dt\)
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is the modified Bessel function of order 0. Now let us calculate the likelihood ratio between
hypothesis Hy and the hypothesis that no signal was present.
Fu
}'0(\2{\‘ 1 k'\)

|_|P=1(2T9\|)_1exp{ SN, IT? +‘Ukl|

_ pk(Fl,...,FN) _
A(N) = po(F1,-..,Fn) N Leyn{_L<N _[TP
0L Mia(2m)texp{—3 5L, S5}
1N g N Fug,
= exps—z S =1 .
{ ZI; A }0<|Zl M
Now
N ukI kI
fim 5 =5 = [ woosic
where

B kI
aK(®) = fim, 21 N

is the solution of the integral equation

9= [Kistatat
-
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/and since lp(x) is an increasing function of x the optimal receiver chooses k to maximize

|/ U (t)dt | = /f(t)u;(t)dt)2+(|m/f(t)u;(t)dt)z.

Now note that
r(t) = Re [F(t)e)**]

and consider the following integral

/ F(t)ay (t) cos(axt + By(t))dt = / Re[F(t)e ! |Re[uy (t)e ! dt.
Since (can you show this) for any two complex numbers a and b

Re[a]Re[b] = %Re[ab*] + %Re[ab]

the above integral becomes
) (uk( t)ejzw‘:t)dt.

[ radeos(at+ B0t = 3 [ReFO)Wi )+ 5 [ Re(r

That the second term is zero is due to the fact that both ¥ and uy are lowpass processes. Thus

K /Re

/r(t)ak(t)cos(wct-i—[ik ))dt = /
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Similarly
/r(t)ak(t)sin(wct—l— Be(t))dt = %/Im(F(t)(ufz(t))dt.
Thus an equivalent form of the optimal receiver computes the following for each k
(/r(t)ak(t)cos(wct+Bk(t))dt)2+ (/r(t)ak(t)sin(wct+Bk(t))dt)z

and decides that signal k was transmitted if k maximizes the above expression.

N

/ Performancein AWGNI

Consider a binary communication system with noncoherent reception. Assume the two
transmitted signals are

sk(t) = ak(t) cos(mxt + Bk(t)), k=1,2
with
% /So(t)Sl(t)dt =pPo1=pP

Let Hy denote the event that signal s; is transmitted and Hy the event that s, is transmitted.
The received signal differs from the transmitted signal in that there is a random phase term
included and because of the noise. If s; is transmitted the received signal then is

r(t) = az(t) cos(wet + B1(t) +61) +n(t)
where n(t) is a white Gaussian noise process. If s, is transmitted the received signal then is
r(t) = ap(t) cos(oct + Ba(t) + 62) +n(t).

We would like to compute the error probability of the optimal receiver. The optimal receiver

Qrocesses the received signal by correlating with two signals and then sums the squares. That/
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Receiver Block Diagram'

ag(t) cos(axt + Bo(t))
é [Oa}—{ O F—
ao(t)5|n(uict+[30(t)) Yo
"o O—{r0af—{ 7} X5s | Find s; with
—‘amfl(t) cosiooct +Bm-1(t)) : largest
am—1(t) sin(wet + Bm-1(t))
O——0H,

Figure 24 Optimum Receiver in Additive White Gaussian Noise

is the receiver first computes

Yo 2 / F(t)ax (t) cos(ext + By(t))dt

and
Xis 2 / F(t)ay (t) sin(et + Be(t))dt
Then
X = X2+ Xs.

The probability of error given signal s, is transmitted is then
P{error [H1} = P{Xy > X1|H1}

To calculate the error probability we need to know the density of Xy. Itis easy to see that Xy ¢
and Xy s are a Gaussian random variables with mean

1
E[Xk.c|Hm,Bm] = Epk’m cos 6

1 .
E [Xk,c [Hm, Om] = 2 Px,m SiNBm

N

The receiver decides signal 2 was transmitted if X, > X; and otherwise decides s; transmitted.
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and variance

1
Var[Xk,C ‘ Hm7 Gm] = Z NoE

where E is the energy of the transmitted signal. The density of Xy given Hy, can then be
calculated in a straightforward manner as

Pm (%) = ieXp{_(HZJFXk)}k) (@), x>0

202 202
where
A
W=
A 1
He = zpk,mcosek
A 1 .
Ps = Epk,msmek
2 a1
= ZNGE
o Z 0

Involved calculation then yields

Plertor [Hi} = P{Xo > Xu|Hi) = Q(a,b) ~ 5 exp{(a +b%)/2} Io(ab)

N
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Bit Error Probability of Nonorthogonal SignaJsI

V-15

where
2 = /o= /1=1pR)
b = /o @+ y/1- 1o
and

00 2
Qab)= [ exp(~(G +1)}io(2ra)ix

and is called Marcum’s Q function.

N /
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6
E4N, (dB)

Figure 25: Performance of Nonorthogonal Signals with Noncoherent Demod-

ulation
%
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Error Probability for M-orthogonal Signals:

Noncoherent reception in AWGN

Preliminaries: First we derive the density for the sum of the squares of two Gaussian random
variables. Let

with X¢, Xs independent. Let p? = p2 + pZ and
Y = X2+ X2.
Then

P{Y <y} =

// %eXp{_%[(XC_UC)Z-F(XS—US)Z}}dxcdxs

x@+x2<y

] s
Xe+x3<y o
Ny /
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1
p {—g[xﬁ +X§ — 2(XcHe + Xshs) + “2} } dxcdxs

tang =

X
= -17s cosQp =
¢ = tan % ¢ e

sin =
¢ VX6 +x2

He . —Hs
sy = ———— Siny= ——=
VHE+1E VHE 1
B = M+ /x¢+x
Xele+Xsls = /M2 + 12 /X2 +x2 [cos(@+Y)]

Ctan-1 (%
@=tan <Xc)
—1( —Hs
=tan ! =
Y ( He )

r r? 42 ur
P{y <y} = ey O exp{— 5oz (10 (F> dr
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X2 4+x2 =20 /X2 +x2

- / / 1 expd -1
B 02 P\ T 202
Xe+xe<y

cos(Q+y) + 1

—tan-1X —tan—1 (=
where @=tan™" ¢ and y = tan (—5)

}dxcdxS
He
2 opr

2T r uz
/rzm /<p=0 22 P {‘[27,2 = g2 0s(0+Y) + 2—02}} drde

r —r? 2502 1 [2T pr
- L g-wj20° — Ll
/rgﬂ = exp{ 567 }e e /(p:O exp{02 cos(p+ y)}d(pdr

o(%%)

XcHe +Xsls = Bcos(@+y)
= [ [cos@cosy—singsiny]

N

/Let u=r2then0<r< /Y is equivalent to u <'y. Also du = 2rdr.
1 u+ p? iU
< _— — V-
P{Y <y} /usy 752 exp{ 202 } lo < o du
_ 1 y+ 2 Ly
W) = 202 P { 202 } lo ( o?

A change of variables makes for a cleaner expression: LetW =Y /(20?). Then
fw (W) = 202 fy (20°w)

iy (w) = exp {—(w+T)} o (m)

where I = p2/(202). (If the receiver does this normalization then it must know the power
density of the noise). Now let Z = /Y. Then

Piz<zp = P{W<zf—P{r<z}

F@) = R(Z)
f2(2) = f(A)(2)

z 2412 pz
- gexp{— 202 }IO(?>
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Error Probability'

=
o
|

NoE
E dijcos@+nc~N (Eéi,—coscpi, %)
. - NoE
Xjs = Egjsing+n,~N (E(Si,—sm(pi,%)
i = 02,...,M—1
202 LetZj = | /Xf + X7 . Then we need to determine the probability that Zo which corresponds

to nonzero mean random variables is less than Z;,Zj, ..., Zy—1 which correspond to zero mean
random variables.

Pe,i P{Zj < Z;,j#i]s;jtransmitted}

EP{Z; <Z,]j#1i]|Zi,sitrans}]

E[rl P{Zj < Z; | si trans, Z; }|
J#I

[ PPz <zy* d

N AN /
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Doing a change of variables (v = %, dv = ‘f—;‘) we obtain ,
_ 1 wp M Hw;
U . 2/9.2 _ = e PZ/ZUZ—/_IE 202 | <4|> dw;
P{Zj = Zi} - /u<z ? e du = /\)<22/202 e vdv (I + 1) 02 0 I+1 o? I
= 1_e %/ Letp= \/% Then
Pi = /°° Zi 178_25/202 M-1 gz o 2 /262 (2 /902 w2+ .
ol 0 P@)l } I / p(zi)e—lz%/zgzdzi gH /207l [20 Wi 7(7?7) Iy (%) dw;
_ 2 2
_ 0 - M-1 PN M=1 7|zi2/252 - 0 |+l O O
= pzi)| > (-1) A dz
0 =0 =1
2
M-1 M-1 © 12 /262 _ W
= |Zo (-1 ( | ) /0 p(z)e "% /?% dz exp{“zzg“z} eXp\ o7
- (+1 = 1+1
00 2 2 ® 7. —(zi2+u2) Wzi 12 ) IIJZ 1
/0 p(zi)e Izf /20 dzi = /0 CTIZ e 22 | (?;) o1z /20 dz; eXp{_72(| D)2 } et
= e*“z/zoz/o % e~ (1+1)7}/20° lo (%) dz; Substituting this into the expression for the probability of correct, we obtain
12
Do another change of variables, (w; = v/I + 1 z;, dw; = v/I + 1 dz;) we get b M_l(—l)' <M _ 1) exp {z(,lﬁ}
Hwi ) dw; =2 | (1+1)

. —122/20% 4, _  a—W?/20? /w Wi —w?/(20?) (
zj)e 1/ %dz; = e e I
K /o P(z) ' 0 02/T+1 "\Vitio2

VI+1 /
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where
w_E _E
202_2¥_N0
Thus
M—1 (71)I(M|—1) | E
Pei = 1+|Zl 31 exp{—(|+l)N—0}
M—1 (_1)I+1(Mfl) | E
Pei = 1—Pi= ~ = 17 _—
el o ,Zl 1 eXp{ i 1No}
lM—l

Pe = M ;l Pe,i = Pe,i

M signals = log, M bits
The limiting behavior of the error probability for M-ary orthogonal signals with noncoherent
demodulation is the same as the limiting performance of coherent demodulation. If M = 2¥

1 M
Pep = Empe,i Ep =E/log, M(R)

N /

4 )

[Error Probability for M orthogonal signals'

1
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Figure 26: Bit error probability of M-ary orthogonal modulation in an additive
thite Gaussian noise channel with noncoherent demodulation /
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1
M=2 Py =Py =5 e F/20
It can be shown that the asymptotic behavior of M orthogonal signals on a additive Gaussian
noise channel with noncoherent reception is the same as with coherent reception. That is for
Ep/No < In2 the error probability is 1 while for Ep/Ng > In2 the error probability is 0.

\ /
/

Error Estimatesfor Repetition Codes with Noncoherent RecepIionI

Consider transmitting one of two codewords of length L using binary frequency shift keying
(orthogonal) and noncoherent reception. The optimum receiver would compute the
log-likelihood ratio and compare to zero (for equally likely codewords) to determine which of
the two codewords was transmitted. Assume that the first codeword is the all zero vector
(0,0,...,0) of length L and the other codeword is the all one vector (1,1,...,1) of length L. If the
two codewords agreed in some positions then we would not need to process the received
signal over the interval of time where they agreed since no information can be gained about
which signal was transmitted from the received signal in that interval.

The transmitted signal would be

So(t) = Li:\/Z_Pcos(o)ot +80,)pr(t—1IT)
1=

N /
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e

si(t) = Li:\/Z_Pcos(wlt +01)pr(t—IT)
|=i

where 6; are independent identically distributed random variables with uniform distribution
unknown to the receiver. The received signal is

r(t) = {

The receiver processes the signals using noncoherent matched filters; that is the received
signal is multiplied by exp jwyt then passed through a filter with impulse response pr (t),
sampled and then the magnitude is formed. Denote by Yq the output of the noncoherent
matched filter

so(t) +n(t)
si(t) +n(t)

Ho true
Hj true

IT)}ds|?

Yo = \/
Y1|—\/

s)pr(s—IT)exp{juwo(s—

and

N

s)pr(s—IT)exp{ jor (s —1T)}ds[?

/
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.

he optimum receiver is thus

HlL

z loglo(

which is quite complex in implementation. It would be useful to have suboptimum receivers
which are easier to implement but have nearly optimum performance. Before we suggest
some suboptimal receivers is would be useful to get estimates of the performance of the
optimum receiver. The error probability (given Hy say) is easy to write down but hard to
evaluate except for L small. It is

W W

L
Z loglo(

P = /y 1[R1] p(y]Ho)dy

where I[R1] is the region where the log-likelihood ratio is positive. This is a 2L dimensional
integral. The Chernoff bound to the error probability can be expressed as

P. <D

where

D= /y V/PYTHo) py[Hr)dy.

~
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The statistics of Yo, Y1, were calculated in the previous section. Because of orthogonality of
the received signals and that the noise is white the joint statistics of
Y = (Yoz1,-.-,Yo,L,Y1,1,---, Y1,L) factor (conditioned on either of the two hypotheses) as

L
P(Y0.1, s YOL, V1,15 -, Y11y |HK) = ﬂ p(Yo,1[Hk) p(

The log-likelihood ratio is then

g PUH) o o HpOLIH)
A=t p(ylHo) Iogﬂp(YO,l|HO)p(Y1,I|HO)
B .;Iog P(Yo,1[Ho)p(y1,11Ho)

L
IzllOg{p(YD,l [H1) p(y1,i1H1)} —log{p(yo,1|Ho) p(y1,1Ho)}

Substituting in the appropriate density functions yields

leog[lo ]—Iog[lo( ‘/W)]
V-30
/For the additive white Gaussian channel \
b = {/ o5+ S M

[ [ et w2 lowﬁmw} :

and I' = E/Np. This is much more computationally attractive than the exact expression. An
asymptotic form for low signal-to-noise ratios is not to difficult to compute.

r\2
D~r~1-— <§> [ small.

1 .r
D=2yp(l-p), p=3ze~

which for low signal-to-noise ratios becomes

r\2

Dx~1-(—= " small.
(22)

Qhus for low signal-to-noise ratios hard decisions cost v/2=1.5dB.

For hard decisions
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/Now let us consider some suboptimal receivers. First note that 11/ = 2/No. So the argument\
to the Bessel function will be small if the noise power is large (low signal-to-noise ratio) and
will be large if the noise power is small (high signal-to-noise ratio). Also note that (see
Abramowitz and Stegun Handbook of Mathematical Functions)

2

lo(x) = 1-|—XI7 x small
X2
loglp(x) =~ T x small
X
lo(x) =~ T x large

Using the approximation for log lp in the optimum decision rule we get

L Hy L 2
; U y1| Eo l;(u Yo
H>1 L
I;YU o I;yo,l

So for small signal-to-noise ratios the optimum receiver is the square-law combining receiver.

KNOW consider when the argument to the Bessel function is large. The optimum decision rule /

V-33

the sum of the squares of 2L random variables. Let \

1 2 2
Wo = 202 I;XC,O,I + XS0,

and similarly for Wi. Then the density of W is given by

Wo (L=1)/2

fwy (Wo[Ho) = (?0) exp{—(Wo+T)}Hi-1(v/4wol) w>0
(L-1)

fWO(WO|H1) = hexP{_WO} w>0

and similarly for Wy.

Pe = 1—P{Wo>Wi|Ho}
-1 —/OW fiy (Wo [Ho)P{Wi < wo[Ho }dwo
00 L*le
= 1= [ fupwolHo)[1 - Y Teedwg
P — re r/2)' (L=

_eXP{__} ; il(L+i- z J_|)|2J+L 1
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/then becomes \
L
Z —log /2 A1y /0% — ( \/r)-i—log,/Znu\/W/cZ 0

Letwi| = yi,|/(202) then the decision rule is

H

L >
;1(1 /ATwy 1) —log /21 /4Twy | — (\/4Two) +log 4/ 211,/4T o | FTOO

Note that the average value of W given signal present is I + 1 while the average value of W
given no signal is 1. For very large I" the terms (/4Iw) dominates the terms of the form
log v/ 2mv/4w and thus the optimum decision rule is

L My
I;(\/"T-,l) Ho gi( o)

Thus the decision rule for very high signal-to-noise ratio is to add the square-roots of the
noncoherent matched filter outputs.

It is of interest to analyze the performance of these suboptimal receivers. The receiver for very
KIOW signal-to-noise ratios is (relatively) easy to analyze. First let us normalize the density for/

V-34

4 )

For L = 1 the above becomes
1
Pe = Ee r/Z

where I = E /Ng. The Chernoff bound can also be calculated for square-law combining.
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\ Primer on sums of squares of Gaussian random varlablesI Cos(@-+) + 12 }dxcdxs
First we derive the density for the sum of the squares of two Gaussian random variables. Let 1x _1(—u
where @=tan e and y=tan (u_cs)
Xe ~ N(i,0?)
X N(ps, 02 = / /2TT e —[i—gcos( + )+“—2] drd
s~ N(us,0%) T ey Jomo 2m07 Pl 207 ~ 2 0TV F 5 ¢
with X, Xs independent. Let p2 = p2 + p2 and 2 o
o e = / = p{iz}efuz/zc2 i/ exp{u—; cos((p+y)}d<pdr
Y = X02+X52_ r<yy O 20 210 Jp=0 o
Then o)
1 1
P{Y <y} = // 702 eXp {_H [(Xc - Uc)z +(Xs — Hs)z} } dxcdxs XcMe+Xshs = PBcos(@+y)
R-H2<y = P [cos@cosy—singsiny]
1 1 = X
= // 5 eXp 4 — o [%Z + XZ — 2(Xchc + Xss) -+ HP] ¢ dXcdXs tang = 3
210 20" _ _1 Xs COS(p — Xc
K+xe<y ¢ = tan Xc . v X§+X§
_ EESDON N PP e e = Tme
B // 2102 exp{ 202 | T XK He ; —Hs
cosy = ————— siny=

K X2 +x2<y / K V12 VHE+u2
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4 N

w (W) = 202 fy (20%w)
— 202 /x2 1 x2
B = I+ /¢4 fi (W) = exp {— (w+ ) }o (VAT W)
XcHo+XsHs = (/2 + 12 /X2 +XZ [cos(¢+Y)]
o=tan! (ﬁ) where ' = 1?/(202). (If the receiver does this normalization then it must know the power
Xe density of the noise). Now let Z = /Y. Then
—tan-L (M
y=tan (uc) Piz<z} = P{W<zf=P{r<#}
. R@ = R@)
r r r
P{Y <y} =/ — exp{f L }Io (u_2> dr f2(2) = #()(22)
r<yy O 20 o 242 uz
= — expq— | =
Letu=r?then0 <r <,/ isequivalentto u <y. Also du = 2rdr. o? p{ 202 } 0 (02>
1 2
2 =0 = fy(y)==—e
Py <y = [ o el L (M) " "= 502
u<y 202 202 o2 f2(2) z 9712/202
2(2) = —
f; (y) = i exp _y+u2 | M o?
Y 202 202 0\ o2 Using the fact that a density must integrate to one we can derive an useful integral.
. - w 22
A change of variables makes for a cleaner expression: LetW =Y /(202). Then / r _r2/252 —ar?y _ 0B
o exp{—r-/20°}exp{—ar-}lo(rp)dr 14 20% exp{1+202a}

\ AN
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/Generalization:

0% i=12,..L
2y i=1,2,..,L

Xei ~ N(He,i,
XS,i ~ N (“S,i 3 (&)

with Xcj, Xsj independent. Let A = yi_; p2; +pi2; and

Y :ixgﬁxz
Then )
1 A L-1)/2 A
w0 = ggzoel= (Yo (1) ()
Ry =1-Q, (f o )
where
L-1
Qu(a,b) = Q(a,b) +exp{(a’ +b*)/2} 2 )¥I(ab)
and
Q(a,b) = exp{—(a®+h?)/2} Z )€l (ab)

N

/
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/and with different variances o1 and g,. Assume that they are independent. We wish to
determine the probability that Z; > Z,.

P{Zi<Z)) = /ZOP{Zlgzz}fzz(zz)dzz
-

/Zj:o F2,(22) f2,(22)dz2
/z; {1 exp{f—}z
ot oo

22\/_

(z5 / 201

} sz (Zz)de

5 22+/\

osAL-1)/2 exp{— Hia( o3 )dzz
L1 2 g2
= 1-
,zo( 02)'I' el (202>}/ 202 05}
-+ /A
A 1)
L-1 1

A 00
75 exp{— (@>}/Z 0e“"zzzz“’Z'IL71(\/z)dz
2)7 o=

\_ = 1 2 oA T

~
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/For/\=0

WY = el () () o
F) = 1-enl- (23 o ()
LetZ = /Y then
f2(2) = (L—l)/zexp{ <22:2A>}|L 1(22’/2/_\)
F() = 1—@(@%)
For A = 0 we obtain
2 2
f2(2) mexp{—@}
R@ - 1- exp{—f}zbM

KConsider two random variables Z; and Z, where Z; has distribution given above with A1 = 0/
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/

where
R
207 205
Yy = VA/GS

The integral may be evaluated as (see Lindsey, Watson)

- /4
e (17

© —a?22 L2l
/Z=Oe aszs, |L,l(yZ)dZ 2La2(L+|)

Thus

o 1 A [yt 2
I; AT T exp{— (2—0%) }72LGVZL(L+|) oV?/(4a?)
L (14+L—1) [/ (40?)
k;o ( -k ) k!
L1

1
= 2, oyt 0z 2P

P{Zl > Zz}

AN IV e
205 2Lg2(L+1)
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Performance as a function of L I

Add curves for various L
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A
2(0? +03)

L-1 1 yl_—l

2(0? + 03) } Zj 202)'02/\('-*1)/2 2L2(L+)

k' <I+L 1>[y2/ (4a?)

P{Zl > Zz}

exp{—

k!

N

_ o 2%y |_O1 03 'z(H'L*l) Y2/ (40®)]¢
0% 403 ,Zo o?+03] &\ 1-k k!
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Frequency Shift Keying (FSK)I

Frequency shift keying communicates information by transmitting different frequencies. It
can be demodulated noncoherently (by measuring the received energy at the different
frequencies). It performance is worse than coherently demodulated signals but may be
simpler.

b(t) s(t) r(t)

— VCO

Figure 27: FSK ModulX8r

b(t) z by pr(t—IT), b e{+1,-1}

|=—o

~
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st) = V2P 5 cos(2m(fe+b(t)Af)t+6)pr(t—IT)
1=
where Af is half the difference between the two transmitted frequencies and 6 is an unknown
(to the receiver) phase. We let fg = f —Af and f; = f +Af. When b; = +1 then a signal at
frequency f; is transmitted. When b; = —1 then a signal at frequency fy is transmitted. The
two frequencies fo and f; are separated far enough to make the two signals orthogonal.
(Minimum shift keying has the minimum separation in order to make the signals orthogonal).

N /
4 )

The receiver decides signal —1 was transmitted if [Y_1| > |Y1| and otherwise decides signal 1.
The random variables at the output of the low pass filters are

Xe1(iT) = VEB8(bi_1,1)c0s(6) +nc1
Xs1(iT) = VEB3(bi_1,1)sin(8) +ns1
Xe-1(iT) = VEB8(bi_1,—1)cos(8) +ne1
Xs—1(iT) = VEB3(bi_1,—1)sin(8)+ns 1

where 3(a,b) = 1 if a= b and is zero otherwise. In the absence of noise (ny; = 0) it is easy to
see that when bj_; = +1 that Y; = +/E and Y_; = 0. The error probability of binary FSK is

1 ¢
Pep = e Fo/2No,
eb 2

) |

Noncoherent Demodulator

=iT

i

LPF
Xc,—l

2/T cos(2m( fo — Af)t)

t=iT
L [

t=iT
LPF ]

t=iT
LPF ]

2/Tsin(2r(fc +Af)t)

IY_q[?
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Density

E=9.0

ND/ 2=1.0

fy,(

y|+1)

0.4

(14

0.2

N

N

0.0

Figure 29: Output Densities For Noncoherent Receivers.
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Density

0.20

0.10
0.05
P
e,+1
0.00
-8 6 4 -2 0 2 4 6

Figure 30: Density for Y1 — Y_1 given +1 Transmitted.

Differential Phase Shift Keying (DPSK) I

b(t) Differential a(t) s(t)
g Encoder
V2P cos (21t + 6) n(t)
Modulator
b(t) = i by pr(t—IT), b e{+1,-1}.
|=7DO
alt) = i a pr(t—IT), ae{+1,-1}.

|=—oc0
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6 8 10 12 14
E,/N, (dB)

Figure 31: Error Probability of FSK with Noncoherent Detection.

N

/

Differential Encoder is such that

by
by

For example

I ... =2
by -1

l=a=a_1

—1=a =—-a-1.

-10 1 2 3

11 -1 1 -1
11 -1 -1 1

V/2Pa(t) cos(2mf.t + 6).
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DPSK Demodulator

2/T cos(2mfct)

LPF
rﬂ >0dechi_1=+1
<0dechi_;=-1

LPF

2/T sin(2mtfct)

X(iT) = VEai_1c080+ng;.
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N

12 14
E,/N, (dB)

Figure 32: Error Probability for Differential Phase Shift Keying

/
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Xs(iT) = VEai_15inB+n;.

The random variables n¢j and ns; are independent identically distributed Gaussian random
variables with mean 0 and variance No/2. Thus

Z;
z =

Xe(IT)Xe((i — 1)T) +Xs(iT)Xs((i — 1)T)
RelW (iT)W*((i —1)T)]

where W (iT) = X¢(iT) — jXs(iT). The error probability for DPSK is
1
Pep = zefE/No-

Thus differential phase shift keying is 3dB better than FSK with noncoherent detection.
However, errors tend to occur in pairs.

N

/
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Error Probability'

To derive the above expression for DPSK consider the low pas filter with impulse response
h(t) = pr(t). The output of the lowpass filters can be expressed as

Xe(t) = /lZcoswcTh(t —1r(ndrt

X(iT) = /jOZCOS(x)CTpT(inT)I’(T)dT

iT o
= /( : 2cosmcr{ Z \/ﬁmcos(o)cr+6)pT(r—IT)+n(t) dt
i—1)T

|=—00

iT

i V2P2aj_1CoSuTCOS(W T+ 0)dT+ N

ne,i is Gaussian random variable, mean 0 variance No/2. Assuming w.T = 2m
Xe(iT) = V2Pa; 1T cos8 +n;i

Similarly

Xs(iT) = V2Paj_1T sinB+nc;

N

~
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s )

Zi =X (iT)Xe((i = 1)T) + X (iIT)Xs (1 — 1)T)
Note that if we write W (iT) = Xc(iT) — jXs(iT) that Z = Re[W (iT )W*((i — 1)T)]. Itis clear
that this represents the phase difference between two consecutive symbols.
Let
Xe(iT) + X ((i=1)T)

U, = >
Xs(iT)+Xs((i—1)T)

U, = 5

U - Xc(lT)—ch((l—l)T)

v — Xs(iT)—X;((i—l)T)

Zi=U?+U37 — (U5 +U7)

Assume bj_; = +1 so that aj_; = aj_» then

Pe,O

- "

P{Z < 0] ai_1 = ai—2}
= P{U?+UZ <UZ+UZ}

2

N(p1,0°) /

4 )

E Xe(iT)Xs(JT)] E[Xc(iT)E[Xs(jT)] since independent

EUU;] — (E[Xc(iT)HEZ[Xc((i*l)T)]) <E[Xs(iT)}+E2[Xs((i*1)T)]>

E[U1]E[U2] = Ug,U, independent

Similarly (U1,Us) independent (Uz,Us) independent (Us,U,) independent (U, Us)
independent Uz, Uy ) independent

Thus UZ 4+ U2 is independent of UZ +UZ. From the results derived for noncoherent FSK it is
easy to show that

1
P{UZ4UZ <UZ+U7} = 5erE/NO.

Thus differential phase shift keying is 3dB better than FSK with noncoherent detection.
However, errors tend to occur in pairs.

N /

E[U1Uy]

Uz ~ N(pz,0%)

g = %\/ﬁ(aiflT c0s0+aj_»T cosB)
= %\/ﬁ(ai,l-l—aifz)T cos@
1 .
b = E\/ﬁ(ai,ﬁapz)T sin®
o? = %[NoT + NoT]
1
= zNoT
Us ~ N(u3,0%) Uz~ N(s,0?)
H3 = 01 Ha = 07

E

xc<iT)+xc<<i—1>T)} [xs<iT>+xs<<ifl)T>
2 2

FE XTI +XeIT)X((i = D)T)
FX((I = D)T)X(IT) + X (i — 1) T)Xs (i —1)T)]

|
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