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Lecture Notes 5: Noncoherent Receivers

Goals

� Derive optimum receiver for arbitary signals in Gaussian noise with a random phase.

� Deterine performance of two signals in white Gaussian noise.

� Deterine performance of M-orthogonal signals in white Gaussian noise.
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System Model

Assume additive stationary Gaussian noise and that sk � t � for 0 � k � M� 1 has the form

sk � t �
	 ak � t � cos � ωct � βk � t � �� k	 0� 1� 2�
 
 
 � M� 1

with

� s2
k � t � dt	 1

2 � a2
k � t � dt	 E

where ak � t � and βk � t � are lowpass waveforms with respect to ωc. When sk � t � is transmitted
the received waveform has the form

r � t �
	 ak � t � cos � ωct � βk � t � � θk � � n � t �

where θk is a random phase. If θk	 0 with probability 1 then we have the usual coherent
reception situation already discussed. We will for this section assume that θk is uniformly
distributed on the interval � 0� 2π � and that the receiver does not know what θk is.

We can use the representation of bandpass signals and noise in deriving the optimal receiver.

r � t �
	 Re � uk � t � e jθk� jωct � � n � t �

where
uk � t �
	 ak � t � cosβk � t � � jak � t � sinβk � t �
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and j	 �� 1. Assuming the noise is also narrow band we can express the noise as

n � t �
	 nc � t � cosωct� ns � t � sinωct


Then the lowpass representation of the received signal becomes

r̃ � t �
	 uk � t � e jθk � z � t �

where

z � t �
	 nc � t � � jns � t �


Now assume that z � t � is a Gaussian process with covariance function K � s� t � which has
eigenfunctions ϕl � t � and eigenvalues λl . Then we can express the received lowpass signal as

r̃ � t � 	 ∞

∑
l� 0

� uk � le jθk � zl � ϕl � t �

	 ∞

∑
l� 0

r̃lϕl � t �

where

uk � l	 � uk � t � ϕ� l � t � dt

zl	 � z � t � ϕ� l � t � dt
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and zl is a complex Gaussian random variable with mean zero and with

E � Re � zl � 2 � 	 λl

E � Im � zl � 2 � 	 λl

E � Re � zl � Im � zl � � 	 0


We can now calculate the probability density of r̃	 � r̃1�
 
 
 � r̃N � conditioned on the value of θk.

Let r̃l	 uk � le jθk � zl then

pk � r̃l �θk �
	 1
2πλl

exp ��

1
2λl

� r̃l� e jθkuk � l � 2 �

pk � r̃ � θk � 	 1

∏N
l� 1 2πλl

exp ��

1
2

N

∑
l� 1

� r̃l� e jθk uk � l � 2
λl �

	 1

∏N
l� 1 2πλl

exp ��
1
2

N

∑
l� 1

� r̃l � 2 � � uk � l � 2� r̃le

� jθku� k � l� r̃� l e jθk uk � l
λl �

	 N

∏
l� 1

� 2πλl �� 1 exp ��
1
2

N

∑
l� 1

� r̃l � 2 � � uk � l � 2� 2Re � r̃le

� jθk u� k � l �

λl �
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	 N

∏
l� 1

� 2πλl �� 1 exp ��

1
2

�

N

∑
l� 1

� r̃l � 2 � � uk � l � 2
λl �

� N

∑
l� 1

Re � r̃lu� k � l � cosθk� Im � r̃lu� k � l � sinθk

λl �

	 N

∏
l� 1

� 2πλl �� 1 exp ��

1
2

�

N

∑
l� 1

� r̃l � 2 � � uk � l � 2
λl �

�
�

�
�

�
�

�

N

∑
l� 1

� r̃lu� k � l �

λl

�
�

�
�

�

cos � θk � ψ �
� � 


The joint density given signal k transmitted is then obtained by averaging with respect to θk.
The joint density given signal k transmitted is then

pk � r̃1�
 
 
 � r̃N �
	 �

2π

θ� 0

1
2π

pk � r̃1�
 
 
 � r̃N � θk � dθk

	 �

2π

θ� 0

1
2π

N

∏
l� 1

� 2πλl �� 1 exp ��
1
2

�
N

∑
l� 1

� r̃l � 2 � � uk � l � 2
λl �

�
�

�
�

�
�

�

N

∑
l� 1

� r̃lu� k � l �

λl

�
�

�
�

�

cos � θk � ψ �
� � dθ

	 N

∏
l� 1

� 2πλl �� 1 exp ��

1
2

N

∑
l� 1

� r̃l � 2 � � uk � l � 2
λl � �

2π

θ� 0

1
2π

exp � �
�

�
�

�
�

N

∑
l� 1

� r̃lu� k � l �

λl

�
�

�
�

� �

cosθ � dθ

	 N

∏
l� 1

� 2πλl �� 1 exp ��

1
2

N

∑
l� 1

� r̃l � 2 � � uk � l � 2
λl � I0

�
�

�
�

�
�

N

∑
l� 1

� r̃lu� k � l �

λl

�
�

�
�

� �

where

I0 � x � ∆	 1
2π �

2π

θ� 0
exp � xcosθ � dθ
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is the modified Bessel function of order 0. Now let us calculate the likelihood ratio between

hypothesis Hk and the hypothesis that no signal was present.

Λk � N �
	 pk � r̃1�
 
 
 � r̃N �

p0 � r̃1�
 
 
 � r̃N � 	 ∏N
l� 1 � 2πλl �� 1 exp �� 1

2 ∑N
l� 1

� r̃l � 2� � uk � l � 2
λl � I0 	 � ∑N

l� 1
r̃ku
 k � l
λl � �

∏N
l� 1 � 2πλl �� 1 exp �� 1

2 ∑N
l� 1

� r̃l � 2
λl �

	 exp ��

1
2

N

∑
l� 0

uk � lu� k � l
λl � I0

�
�

�
�

�
�

N

∑
l� 1

r̃lu� k � l
λl

�
�

�
�

� �



Now

lim
N � ∞

N

∑
l� 1

uk � lu� k � l
λl

	 � uk � t � q� k � t � dt

where

qk � t �
	 lim
N � ∞

N

∑
l� 1

uk � l
λl

ϕl � t �

is the solution of the integral equation

uk � s �
	 � K � s� t � qk � t � dt
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Similarly
N

∑
l� 1

r̃lu� k � l
λl

	 � r̃ � t � q� k � t � dt


Thus the optimal receiver computes the following likelihood ratios

Λk � 0 � r̃ � t � �
	 lim
N � ∞ � r � t � �	 exp �� 1

2 � uk � t � q� k � t � dt � I0



� � r̃ � t � q� k � t � dt �

�

and chooses k for which Λk � 0 is maximum.

Special Case: White Gaussian Noise

In this case the intergal equation is easily solved:

qk � t �
	 2
N0

uk � t �

so that

Λk � 0 � r̃ � t � �
	 exp �� 1
N0 � � uk � t � � 2dt � I0




2
N0

� � r̃ � t � u� k � t � dt �
�




For equi-energy signals this reduces to choosing k that maximizes

I0




2
N0

� � r̃ � t � u� k � t � dt �
�
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and since I0 � x � is an increasing function of x the optimal receiver chooses k to maximize

� � r̃ � t � u� k � t � dt � 2	 � Re � r̃ � t � u� k � t � dt � 2 � � Im � r̃ � t � u� k � t � dt � 2


Now note that

r � t �
	 Re � r̃ � t � e jωct

�

and consider the following integral

� r � t � ak � t � cos � ωct � βk � t � � dt	 � Re � r̃ � t � e jωct � Re � uk � t � e jωct � dt


Since (can you show this) for any two complex numbers a and b

Re � a � Re � b �	 1
2

Re � ab� � � 1
2

Re � ab �

the above integral becomes

� r � t � ak � t � cos � ωct � βk � t � � dt	 1
2 � Re � r̃ � t � � u� k � t � � dt � 1

2 � Re � r̃ � t � � uk � t � e j2ωct � dt


That the second term is zero is due to the fact that both r̃ and uk are lowpass processes. Thus

� r � t � ak � t � cos � ωct � βk � t � � dt	 1
2 � Re � r̃ � t � � u� k � t � � dt


V-8



�
�

�
�

Similarly

� r � t � ak � t � sin � ωct � βk � t � � dt	 1
2 � Im � r̃ � t � � u� k � t � � dt


Thus an equivalent form of the optimal receiver computes the following for each k

� � r � t � ak � t � cos � ωct � βk � t � � dt � 2 � � � r � t � ak � t � sin � ωct � βk � t � � dt � 2

and decides that signal k was transmitted if k maximizes the above expression.
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Receiver Block Diagram

r � t �

a0 � t � cos � ωct � β0 � t � �

�

a0 � t � sin � ωct � β0 � t � �

�

aM� 1 � t � cos � ωct � βM� 1 � t � �

�

aM� 1 � t � sin � ωct � βM� 1 � t � �

�

� ��� � dt

� ��� � dt

� ��� � dt

� ��� � dt

� � 2

� � 2

� � 2

� � 2

�
�

X2
0 � c

X2
0 � s

X2
M� 1 � c

X2
M� 1 � s

Y0

YM� 1

Find si with

largest

Yi

Figure 24: Optimum Receiver in Additive White Gaussian Noise
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Performance in AWGN

Consider a binary communication system with noncoherent reception. Assume the two

transmitted signals are

sk � t �
	 ak � t � cos � ωct � βk � t � �� k	 1� 2

with
1

2E � s0 � t � s1 � t � dt	 ρ0 � 1	 ρ

Let H1 denote the event that signal s1 is transmitted and H2 the event that s2 is transmitted.

The received signal differs from the transmitted signal in that there is a random phase term

included and because of the noise. If s1 is transmitted the received signal then is

r � t �
	 a1 � t � cos � ωct � β1 � t � � θ1 � � n � t �

where n � t � is a white Gaussian noise process. If s2 is transmitted the received signal then is

r � t �
	 a2 � t � cos � ωct � β2 � t � � θ2 � � n � t �


We would like to compute the error probability of the optimal receiver. The optimal receiver

processes the received signal by correlating with two signals and then sums the squares. That
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is the receiver first computes

Xk � c ∆	 � r � t � ak � t � cos � ωct � βk � t � � dt

and

Xk � s ∆	 � r � t � ak � t � sin � ωct � βk � t � � dt

Then

Xk	 X2
k � c � X2

k � s


The receiver decides signal 2 was transmitted if X2 � X1 and otherwise decides s1 transmitted.

The probability of error given signal s2 is transmitted is then

P � error �H1 � 	 P � X2 � X1 �H1 �

To calculate the error probability we need to know the density of Xk. It is easy to see that Xk � c
and Xk � s are a Gaussian random variables with mean

E � Xk � c �Hm� θm �	 1
2

ρk � m cosθm

E � Xk � c �Hm� θm �	 1
2

ρk � m sinθm
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and variance

Var � Xk � c �Hm� θm �	 1
4

N0E

where E is the energy of the transmitted signal. The density of Xk given Hm can then be

calculated in a straightforward manner as

pm � xk � 	 1
2σ2 exp �� � µ2 � xk �

2σ2 � I0



� xkµ

σ2

�
� x � 0

where

µ
∆	 µ2

c � µ2
s

µc
∆	 1

2
ρk � m cosθk

µs
∆	 1

2
ρk � m sinθk

σ2 ∆	 1
4

N0E

Involved calculation then yields

P � error � H1 � 	 P � X2 � X1 � H1 � 	 Q � a� b �� 1
2

exp � � a2 � b2 �� 2 � I0 � ab �
V-13
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where

a 	
�

E
2N0

� 1� � 1� � ρ � 2 �

b 	
�

E
2N0

� 1 � � 1� � ρ � 2 �

and

Q � a� b �	 �

∞

b2 � 2
exp �� � a2

2

� x � � I0 � � 2xa � dx

and is called Marcum’s Q function.
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Bit Error Probability of Nonorthogonal Signals
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Figure 25: Performance of Nonorthogonal Signals with Noncoherent Demod-
ulation
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Error Probability for M-orthogonal Signals:

Noncoherent reception in AWGN

Preliminaries: First we derive the density for the sum of the squares of two Gaussian random

variables. Let

Xc � N � µc� σ2 �

Xs � N � µs� σ2 �

with Xc� Xs independent. Let µ2	 µ2
c � µ2

s and

Y	 X2
c � X2

s

Then

P � Y � y � 	 � � 1
2πσ2 exp ��

1
2σ2 � � xc� µc � 2 � � xs� µs � 2

� � dxcdxs

x2
c� x2

s� y

	 � � 1
2πσ2 exp ��

1
2σ2 � x2

c � x2
s

� 2 � xcµc � xsµs � � µ2 � � dxcdxs

x2
c� x2

s� y
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	 � � 1
2πσ2 exp ��

1
2σ2

�

x2
c � x2

s

� 2µ � x2
c � x2

s

x2
c� x2

s� y

cos � φ � γ � � µ2

� � dxcdxs

where φ	 tan� 1 xs
xc

and γ	 tan� 1

	
� µs

µc �

.

	 � r2� � y �

2π

φ� 0

r
2πσ2 exp �� � r2

2σ2

� µr
σ2 cos � φ � γ � � µ2

2σ2 � � drdφ

	 � r� � y

r
σ2 exp �

� r2

2σ2 � e

� µ2 � 2σ2 1
2π �

2π

φ� 0
exp �

µr
σ2 cos � φ � γ � � dφdr

� �� �

I0 	

µr
σ2 


xcµc � xsµs 	 βcos � φ � γ �	 β � cosφcosγ� sinφsinγ �
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φ 	 tan

� 1 xs

xc

tanφ 	 xs
xc

cosφ 	 xc� x2
c� x2

s

sinφ 	 xs� x2
0� x2

s

cosγ 	 µc

� µ2
c � µ2

s

sinγ	 � µs

� µ2
c � µ2

s

β 	
� µ2

c � µ2
s � x2

c � x2
s

xcµc � xsµs 	
� µ2

c � µ2
s � x2

c � x2
s � cos � φ � γ � �

φ	 tan

� 1




xs

xc �

γ	 tan

� 1



� µs

µc �

P � Y � y � 	 � r � � y

r
σ2 exp ��

r2 � µ2

2σ2 � I0 	

µr
σ2 �

dr
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Let u	 r2 then 0 � r � � y is equivalent to u � y. Also du	 2rdr.

P � Y � y � 	 � u� y

1
2σ2 exp ��

u � µ2

2σ2 � I0




µ � u
σ2

�

du

fY � y � 	 1
2σ2 exp ��

y � µ2

2σ2 � I0




µ � y

σ2

�

A change of variables makes for a cleaner expression: Let W	 Y� � 2σ2 � . Then
fW � w �
	 2σ2 fY � 2σ2w �

fW � w �
	 exp �� � w � Γ � � I0 	
� 4Γw

�

where Γ	 µ2� � 2σ2 � . (If the receiver does this normalization then it must know the power
density of the noise). Now let Z	 � Y . Then

P � Z � z � 	 P � � Y � z �
	 P 
 Y � z2

�

FZ � z � 	 FY � z2 �

fZ � z � 	 fY � z2 � � 2z �

	 z
σ2 exp ��

z2 � µ2

2σ2 � I0 	

µz
σ2 �
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µ	 0 � fY � y �
	 1
2σ2 e

� y � 2σ2

fZ � z �
	 z
σ2 e

� z2 � 2σ2
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Error Probability

Xjc 	 E δi j cosφi � nc � N




Eδi j cosφi� N0E
2 �

Xjs 	 Eδi j sinφi � n� � N




Eδi j sinφi� N0E
2 �

j 	 0� 2�
 
 
 � M� 1

Let Z j	 �

X2
jc � X2

js . Then we need to determine the probability that Z0 which corresponds

to nonzero mean random variables is less than Z1� Z2�
 
 
 � ZM� 1 which correspond to zero mean

random variables.

Pc � i 	 P � Z j � Zi� j �	 i � si transmitted �	 E � P � Z j� Zi� j �	 i � Zi� si trans � �	 E �∏
j �� i

P � Z j� Zi � si trans� Zi � �

	 � p � zi � � P � Z j � zi � � M� 1 dzi
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Doing a change of variables (ν	 u2

2σ2� dν	 udu
σ2 ) we obtain

P � Z j � zi � 	 � u� zi

u
σ2 e

� u2 � 2σ2
du	 � ν� z2

i � 2σ2
e

� νdν

	 1� e

� z2
i � 2σ2

Pc � i 	 �

∞

0
p � zi � � 1� e

� z2
i � 2σ2 � M� 1 dzi

	 �

∞

0
p � zi �

�

M� 1

∑
l� 0

�� 1 � l




M� 1
l �

e

� lz2
i � 2σ2

�

dzi

	 M� 1

∑
l� 0

�� 1 � l




M� 1
l � �

∞

0
p � zi � e� lz2

i � 2σ2
dzi

�

∞

0
p � zi � e� lz2

i � 2σ2
dzi 	 �

∞

0

zi

σ2 e

� � z2
i� µ2 �

2σ2 I0 	

µzi

σ2 �

e

� lz2
i � 2σ2

dzi

	 e

� µ2 � 2σ2 �

∞

0

zi

σ2 e

� � l� 1 	 z2
i � 2σ2

I0 	

µzi

σ2 �

dzi

Do another change of variables, (wi	 � l � 1 zi, dwi	 � l � 1 dzi) we get

�

∞

0
p � zi � e� lz2

i � 2σ2
dzi 	 e

� µ2 � 2σ2 �

∞

0

wi

σ2 � l � 1
e

� w2
i � � 2σ2 	 I0




µwi� l � 1 σ2 �

dwi� l � 1

V-23

�
�

�
�

	 e

� µ2 � 2σ2 1

� l � 1 � � wi

σ2 e

� w2
i

2σ2 I0




µwi� l � 1 σ2 �

dwi

Let µ̂	 µ

� l� 1


 Then

�

∞

0
p � zi � e� lz2

i � 2σ2
dzi 	 e� µ2 � 2σ2

eµ̂2 � 2σ2

l � 1 � wi

σ2 e

�



w2
i� µ̂2

2σ2 � I0




µ̂wi

σ2

�

dwi

� �� �� 1

	 exp �

µ̂2� µ2

2σ2 �� l � 1 � 	 exp �

µ2

l� 1

� µ2

2σ2 �

l � 1

	 exp ��

lµ2

2 � l � 1 � σ2 �

1
l � 1




Substituting this into the expression for the probability of correct, we obtain

Pc � i	 M� 1

∑
l� 0

�� 1 � l




M� 1
l �

exp �
� lµ2

2 � l� 1 	 σ2 �� l � 1 �
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where
µ2

2σ2

	 E2

2 N0E
2

	 E
N0




Thus

Pc � i 	 1 � M� 1

∑
l� 1

�� 1 � l

�

M� 1
l �

l � 1
exp ��

l

� l � 1 �

E
N0 �

Pe � i 	 1� Pc � i	 M� 1

∑
l� 1

�� 1 � l� 1

�

M� 1
l �

l � 1
exp ��

l
l � 1

E
N0 �

Pe	 1
M

M� 1

∑
i� 1

Pe � i	 Pe � i
M signals � log2 M bits

The limiting behavior of the error probability for M-ary orthogonal signals with noncoherent

demodulation is the same as the limiting performance of coherent demodulation. If M	 2k

Pe � b	 1
2

M
M� 1

Pe � i Eb	 E� log2 M � R �
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M	 2 Pe � b	 Pe � i	 1
2

e

� E � 2N0

It can be shown that the asymptotic behavior of M orthogonal signals on a additive Gaussian

noise channel with noncoherent reception is the same as with coherent reception. That is for

Eb� N0� ln2 the error probability is 1 while for Eb� N0 � ln2 the error probability is 0.
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Error Probability for M orthogonal signals

Ēb� N0 (dB)

Pb
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Figure 26: Bit error probability of M-ary orthogonal modulation in an additive
white Gaussian noise channel with noncoherent demodulation
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Error Estimates for Repetition Codes with Noncoherent Reception

Consider transmitting one of two codewords of length L using binary frequency shift keying

(orthogonal) and noncoherent reception. The optimum receiver would compute the

log-likelihood ratio and compare to zero (for equally likely codewords) to determine which of

the two codewords was transmitted. Assume that the first codeword is the all zero vector

(0,0,...,0) of length L and the other codeword is the all one vector (1,1,...,1) of length L. If the

two codewords agreed in some positions then we would not need to process the received

signal over the interval of time where they agreed since no information can be gained about

which signal was transmitted from the received signal in that interval.

The transmitted signal would be

s0 � t �
	 L� 1

∑
l� 0

� 2Pcos � ω0t � θ0 � l � pT � t� lT �
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or

s1 � t �
	 L� 1

∑
l� 0

� 2Pcos � ω1t � θ1 � l � pT � t� lT �

where θi � l are independent identically distributed random variables with uniform distribution

unknown to the receiver. The received signal is

r � t � 	 �
�

�

s0 � t � � n � t � H0 true

s1 � t � � n � t � H1 true

The receiver processes the signals using noncoherent matched filters; that is the received

signal is multiplied by exp jω0t then passed through a filter with impulse response pT � t � ,
sampled and then the magnitude is formed. Denote by Y0 � l the output of the noncoherent
matched filter

Y0 � l	 � �

∞

� ∞
r � s � pT � s� lT � exp � jω0 � s� lT � � ds � 2

and

Y1 � l	 � �

∞

� ∞
r � s � pT � s� lT � exp � jω1 � s� lT � � ds � 2
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The statistics of Y0 � l� Y1 � l were calculated in the previous section. Because of orthogonality of

the received signals and that the noise is white the joint statistics of

Y	 � Y0 � 1�
 
 
 � Y0 � L� Y1 � 1�
 
 
 � Y1 � L � factor (conditioned on either of the two hypotheses) as

p � y0 � 1�
 
 
 � y0 � L� y1 � 1�
 
 
 � y1 � L� � Hk �
	 L

∏
l� 1

p � y0 � l �Hk � p � y1 � l � Hk � k	 0� 1


The log-likelihood ratio is then

Λ	 log
p � y �H1 �

p � y �H0 � 	 log
L

∏
l� 1

p � y0 � l � H1 � p � y1 � l � H1 �

p � y0 � l � H0 � p � y1 � l � H0 �

	 L

∑
l� 1

log
p � y0 � l � H1 � p � y1 � l � H1 �

p � y0 � l � H0 � p � y1 � l � H0 �

	 L

∑
l� 1

log � p � y0 � l � H1 � p � y1 � l � H1 � �� log � p � y0 � l � H0 � p � y1 � l � H0 � �

Substituting in the appropriate density functions yields

Λ 	 L

∑
l� 1

log � I0 � µ � y1 � l
σ2 � �� log � I0 � µ � y0 � l

σ2 � �
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The optimum receiver is thus

L

∑
l� 1

log � I0 � µ � y1 � l
σ2 � �

H1

�
�

H0

L

∑
l� 1

log � I0 � µ � y0 � l
σ2 � �

which is quite complex in implementation. It would be useful to have suboptimum receivers

which are easier to implement but have nearly optimum performance. Before we suggest

some suboptimal receivers is would be useful to get estimates of the performance of the

optimum receiver. The error probability (given H0 say) is easy to write down but hard to

evaluate except for L small. It is

Pe	 � y
I � R1 � p � y � H0 � dy

where I � R1 � is the region where the log-likelihood ratio is positive. This is a 2L dimensional

integral. The Chernoff bound to the error probability can be expressed as

Pe � DL

where

D	 � y

� p � y � H0 � p � y � H1 � dy
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For the additive white Gaussian channel

D 	
� �

∞

0

1
2σ2 exp �� 1

2 � y
σ2 � µ2

σ2 � � �

I0 � µ � y

σ2 � dy

�

2

	
� �

∞

0
exp �� � w � Γ� 2 � � � I0 � � 4Γw � dw

�

2

and Γ	 E� N0. This is much more computationally attractive than the exact expression. An
asymptotic form for low signal-to-noise ratios is not to difficult to compute.

D � 1�



Γ
2 �

2

Γ small


For hard decisions

D	 2 � p � 1� p �� p	 1
2

e

� Γ
2

which for low signal-to-noise ratios becomes

D � 1�



Γ
2 � 2 �

2

Γ small


Thus for low signal-to-noise ratios hard decisions cost � 2=1.5dB.
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Now let us consider some suboptimal receivers. First note that µ� σ2	 2� N0. So the argument

to the Bessel function will be small if the noise power is large (low signal-to-noise ratio) and

will be large if the noise power is small (high signal-to-noise ratio). Also note that (see

Abramowitz and Stegun Handbook of Mathematical Functions)

I0 � x � � 1 � x2

4� x small

log I0 � x � �

x2

4� x small

I0 � x � �

ex

� 2πx

� x large

Using the approximation for log I0 in the optimum decision rule we get

L

∑
l� 1

� µ2y1 � l
4σ4 �

H1

�
�

H0

L

∑
l� 1

� µ2y0 � l
4σ4 �

L

∑
l� 1

y1 � l
H1

�
�

H0

L

∑
l� 1

y0 � l
So for small signal-to-noise ratios the optimum receiver is the square-law combining receiver.

Now consider when the argument to the Bessel function is large. The optimum decision rule
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then becomes

L

∑
l� 1

� µ � y1 � l
2σ2 �� log � 2πµ � y1 � l� σ2� � µ � y0 � l

2σ2 � � log � 2πµ � y0 � l� σ2

H1

�
�

H0

0

Let wi � l	 yi � l� � 2σ2 � then the decision rule is

L

∑
l� 1

� � 4Γw1 � l �� log � 2π � 4Γw1 � l� � � 4Γw0 � l � � log � 2π � 4Γw0 � l
H1

�
�

H0

0

Note that the average value of W given signal present is Γ � 1 while the average value of W
given no signal is 1. For very large Γ the terms � � 4Γw � dominates the terms of the form

log � 2π � 4Γw and thus the optimum decision rule is

L

∑
l� 1

� � w1 � l �

H1

�
�

H0

L

∑
l� 1

� � w0 � l �

Thus the decision rule for very high signal-to-noise ratio is to add the square-roots of the
noncoherent matched filter outputs.

It is of interest to analyze the performance of these suboptimal receivers. The receiver for very
low signal-to-noise ratios is (relatively) easy to analyze. First let us normalize the density for
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the sum of the squares of 2L random variables. Let

W0	 1
2σ2

L

∑
l� 1

X2
c � 0 � l � X2

s � 0 � l
and similarly for W1. Then the density of W is given by

fW0 � w0 � H0 � 	
	

w0

Γ �
� L� 1 	 � 2

exp �� � w0 � Γ � � IL� 1 � � 4w0Γ � w � 0

fW0 � w0 � H1 � 	 w � L� 1 	

0� L� 1 � ! exp �� w0 � w � 0

and similarly for W1.

Pe 	 1� P � W0 � W1 � H0 �

	 1� �

∞

0
fW0 � w0 � H0 � P � W1� w0 �H0 � dw0

	 1� �

∞

0
fW0 � w0 � H0 � � 1� L� 1

∑
m� 0

wm
0

m!
e

� w0 � dw0

Pe 	 1
2

exp �� Γ
2 �

L� 1

∑
i� 0

� Γ� 2 � i

i! � L � i� 1 � !
L� 1

∑
j� i

� j � L� 1 � !� j� i � !2 j� L� 1
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For L	 1 the above becomes

Pe	 1
2

e

� Γ � 2

where Γ	 E� N0. The Chernoff bound can also be calculated for square-law combining.
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Primer on sums of squares of Gaussian random variables

First we derive the density for the sum of the squares of two Gaussian random variables. Let

Xc � N � µc� σ2 �

Xs � N � µs� σ2 �

with Xc� Xs independent. Let µ2	 µ2
c � µ2

s and

Y	 X2
c � X2

s


Then

P � Y � y � 	 � � 1
2πσ2 exp ��

1
2σ2 � � xc� µc � 2 � � xs� µs � 2

� � dxcdxs

x2
c� x2

s� y

	 � � 1
2πσ2 exp ��

1
2σ2 � x2

c � x2
s

� 2 � xcµc � xsµs � � µ2 � � dxcdxs

x2
c� x2

s� y

	 � � 1
2πσ2 exp ��

1
2σ2

�

x2
c � x2

s

� 2µ � x2
c � x2

s

x2
c� x2

s� y
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cos � φ � γ � � µ2

� � dxcdxs

where φ	 tan� 1 xs
xc

and γ	 tan� 1

	
� µs

µc �

.

	 � r2� � y �

2π

φ� 0

r
2πσ2 exp �� � r2

2σ2

� µr
σ2 cos � φ � γ � � µ2

2σ2 � � drdφ

	 � r� � y

r
σ2 exp �

� r2

2σ2 � e

� µ2 � 2σ2 1
2π �

2π

φ� 0
exp �

µr
σ2 cos � φ � γ � � dφdr

� �� �

I0 	

µr
σ2 


xcµc � xsµs 	 βcos � φ � γ �	 β � cosφcosγ� sinφsinγ �

φ 	 tan

� 1 xs

xc

tanφ 	 xs
xc

cosφ 	 xc� x2
c� x2

s

sinφ 	 xs� x2
0� x2

s

cosγ 	 µc

� µ2
c � µ2

s

sinγ	 � µs

� µ2
c � µ2

s
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β 	
� µ2

c � µ2
s � x2

c � x2
s

xcµc � xsµs 	
� µ2

c � µ2
s � x2

c � x2
s � cos � φ � γ � �

φ	 tan

� 1




xs

xc �

γ	 tan

� 1



� µs

µc �

P � Y � y � 	 � r � � y

r
σ2 exp ��

r2 � µ2

2σ2 � I0 	

µr
σ2 �

dr

Let u	 r2 then 0 � r � � y is equivalent to u � y. Also du	 2rdr.

P � Y � y � 	 � u� y

1
2σ2 exp ��

u � µ2

2σ2 � I0




µ � u
σ2

�

du

fY � y � 	 1
2σ2 exp ��

y � µ2

2σ2 � I0




µ � y

σ2

�

A change of variables makes for a cleaner expression: Let W	 Y� � 2σ2 � . Then
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fW � w �
	 2σ2 fY � 2σ2w �

fW � w �
	 exp �� � w � Γ � � I0 	
� 4Γw

�

where Γ	 µ2� � 2σ2 � . (If the receiver does this normalization then it must know the power
density of the noise). Now let Z	 � Y . Then

P � Z � z � 	 P � � Y � z �
	 P 
 Y � z2

�

FZ � z � 	 FY � z2 �

fZ � z � 	 fY � z2 � � 2z �

	 z
σ2 exp ��

z2 � µ2

2σ2 � I0 	

µz
σ2 �

µ	 0 � fY � y �
	 1
2σ2 e

� y � 2σ2

fZ � z �
	 z
σ2 e

� z2 � 2σ2

Using the fact that a density must integrate to one we can derive an useful integral.

�

∞

0

r
σ2 exp �� r2

� 2σ2

� exp �� αr2

� I0 � rβ � dr	 1
1 � 2σ2α

exp �

σ2β2

1 � 2σ2α �
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Generalization:

Xc � i � N � µc � i� σ2 � i	 1� 2�
 
 
 � L

Xs � i � N � µs � i� σ2 � i	 1� 2�
 
 
 � L

with Xc � i� Xs � i independent. Let Λ	 ∑L
i� 1 µ2

c � i � µ2
s � i and

Y	 L

∑
i� 1

X2
c � i � X2

s � i


Then

fY � y �
	 1
2σ2 exp ��




y � Λ
2σ2

�
� 	

y
Λ �

� L� 1 	 � 2
IL� 1 � � yΛ

σ2 �

FY � y �
	 1� QL

�
� Λ

σ � � y

σ

�

where

QL � a� b �
	 Q � a� b � � exp � � a2 � b2 �� 2 �

L� 1

∑
k� 1

� ba � kIk � ab �

and

Q � a� b �
	 exp �� � a2 � b2 �� 2 �

∞

∑
k� 1

� b
a � kIk � ab �
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For Λ	 0

fY � y � 	 1
2σ2 exp ��

	

y
2σ2 � � 	

y
2σ2 �

� L� 1 	 1

� L� 1 � !
FY � y � 	 1� exp ��

	

y
2σ2 � �

L� 1

∑
k� 0

1
k! 	

y
2σ2 �

k

Let Z	 � Y then

fZ � z � 	 zL

σ2Λ � L� 1 	 � 2
exp ��




z2 � Λ
2σ2

�
� IL� 1 � z � Λ

σ2 �

FZ � z � 	 1� QL

�
� Λ

σ � z
σ

�

For Λ	 0 we obtain

fZ � z � 	 z2L� 1

2L� 1σ2L � L� 1 � ! exp �� z2

2σ2 �

FZ � z � 	 1� exp �� z2

2σ2 �

L� 1

∑
l� 0

� z2� � 2σ2 � � l

l!

Consider two random variables Z1 and Z2 where Z1 has distribution given above with Λ1	 0
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and with different variances σ1 and σ2. Assume that they are independent. We wish to
determine the probability that Z1 � Z2.

P � Z1� Z2 � 	 �

∞

z2� 0
P � Z1 � z2 � fZ2 � z2 � dz2

	 �

∞

z2� 0
FZ1 � z2 � fZ2 � z2 � dz2

	 �

∞

z2� 0 �

1� exp �� z2
2

2σ2
1

�

L� 1

∑
l� 0

� z2
2� � 2σ2

1 � � l

l!

�

fZ2 � z2 � dz2

	 �

∞

z2� 0 �

1� exp �� z2
2

2σ2
1

�

L� 1

∑
l� 0

� z2
2� � 2σ2

1 � � l

l!

�

zL
2

σ2
2Λ � L� 1 	 � 2

exp �� z2
2 � Λ
2σ2

2

� IL� 1 � z2 � Λ
σ2

2

� dz2

	 1� L� 1

∑
l� 0

1

� 2σ2
1 � l l!

exp ��



Λ
2σ2

2 �
� �

∞

z� 0
exp �� z2

2σ2
1

� z2

2σ2
2

�

zL� 2l

σ2
2Λ � L� 1 	 � 2

IL� 1 � z � Λ
σ2

2

� dz

	 1� L� 1

∑
l� 0

1

� 2σ2
1 � l l!σ2

2Λ � L� 1 	 � 2
exp ��




Λ
2σ2

2 �
� �

∞

z� 0
e

� α2z2
zL� 2l IL� 1 � γz � dz
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where

α2 	 1

2σ2
1

� 1

2σ2
2

γ 	 � Λ� σ2
2

The integral may be evaluated as (see Lindsey, Watson)

�
∞

z� 0
e

� α2z2
zL� 2l IL� 1 � γz � dz	 l!γL� 1

2Lα2 � L� l 	 eγ2 � � 4α2 	

l

∑
k� 0 


l � L� 1
l� k �

� γ2� � 4α2 � � k
k!

Thus

P � Z1 � Z2 � 	 L� 1

∑
l� 0

1

� 2σ2
1 � l l!σ2

2Λ � L� 1 	 � 2
exp ��




Λ
2σ2

2 �
�

l!γL� 1

2Lα2 � L� l 	 eγ2 � � 4α2 	

l

∑
k� 0 


l � L� 1
l� k �

� γ2� � 4α2 � � k
k!

	 L� 1

∑
l� 0

1

� 2σ2
1 � lσ2

2Λ � L� 1 	 � 2
exp ��




Λ
2σ2

2 �
�

l!γL� 1

2Lα2 � L� l 	 eγ2 � � 4α2 	
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l

∑
k� 0 


l � L� 1
l� k �

� γ2� � 4α2 � � k
k!

	 L� 1

∑
l� 0

1

� 2σ2
1 � lσ2

2Λ � L� 1 	 � 2
exp � γ2

� � 4α2 �� Λ
2σ2

2

�

γL� 1

2Lα2 � L� l 	

l

∑
k� 0 


l � L� 1
l� k �

� γ2� � 4α2 � � k
k!

α2 	 σ2
1 � σ2

2

2σ2
1σ2

2

γ2

� � 4α2 � 	 � Λ� σ4
2 � 2σ2

1σ2
2

σ2
1 � σ2

2
	 Λσ2

1

2σ2
2 � σ2

1 � σ2
2 �

γ2

� � 4α2 �� Λ
2σ2

2

	 � Λ� σ4
2 � 2σ2

1σ2
2

σ2
1 � σ2

2
� Λ

2σ2
2

	 Λ
2σ2

2 �

σ2
1

σ2
1 � σ2

2

� 1
�
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	 Λ
2 � σ2

1 � σ2
2 �

P � Z1 � Z2 � 	 exp �� Λ
2 � σ2

1 � σ2
2 � �

L� 1

∑
l� 0

1

� 2σ2
1 � lσ2

2Λ � L� 1 	 � 2

γL� 1

2Lα2 � L� l 	

l

∑
k� 0 


l � L� 1
l� k �

� γ2� � 4α2 � � k
k!

	 e

� Λ
2 � σ2

1� σ2
2 �

�

σ2
1

σ2
1 � σ2

2 �

L L� 1

∑
l� 0 �

σ2
2

σ2
1 � σ2

2 �

l l

∑
k� 0 


l � L� 1
l� k �

� γ2� � 4α2 � � k
k!

	 e

� Λ
2 � σ2

1� σ2
2 �

�

σ2
1

σ2
1 � σ2

2 �

L L� 1

∑
l� 0 �

σ2
2

σ2
1 � σ2

2 �

l l

∑
k� 0 


l � L� 1
l� k �

1
k! �

Λσ2
1

2σ2
2 � σ2

1 � σ2
2 � �

k
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Performance as a function of L

Add curves for various L
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Frequency Shift Keying (FSK)

Frequency shift keying communicates information by transmitting different frequencies. It

can be demodulated noncoherently (by measuring the received energy at the different

frequencies). It performance is worse than coherently demodulated signals but may be

simpler.

�b � t �

VCO
s � t � � ����

n � t �
�

�r � t �

Figure 27: FSK Modulator

b � t � 	 ∞

∑
l� � ∞

bl pT � t� lT �� bl� � � 1�� 1 �

V-48



�
�

�
�

s � t � 	 � 2P
∞

∑
l� � ∞

cos � 2π � fc � b � t � ∆ f � t � θ � pT � t� lT �

where ∆ f is half the difference between the two transmitted frequencies and θ is an unknown

(to the receiver) phase. We let f0	 f� ∆ f and f1	 f � ∆ f . When bi	 � 1 then a signal at

frequency f1 is transmitted. When bi	 � 1 then a signal at frequency f0 is transmitted. The

two frequencies f0 and f1 are separated far enough to make the two signals orthogonal.

(Minimum shift keying has the minimum separation in order to make the signals orthogonal).
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Noncoherent Demodulator

r � t �
�

�
�����

�����
� �� �

� �� � �
�

� 2� T cos � 2π � fc� ∆ f � t �

� 2� T sin � 2π � fc� ∆ f � t �

�
�

LPF

LPF

�
�
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t	 iT

�
�

Xs �� 1

Xc �� 1

� � 2

� � 2

�
	 ������ +

�Y� 1 � 2

�
�

�����
�����

� �� �
� �� � �

�
� 2� T cos � 2π � fc � ∆ f � t �
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�
�

LPF
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�
�
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�
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Xc � 1

� � 2

� � 2

�
	 ������ +

�Y1 � 2

Figure 28: Noncoherent Demodulator
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The receiver decides signal� 1 was transmitted if �Y� 1 � � �Y1 � and otherwise decides signal 1.

The random variables at the output of the low pass filters are

Xc � 1 � iT � 	 � Eδ � bi� 1� 1 � cos � θ � � ηc � 1
Xs � 1 � iT � 	 � Eδ � bi� 1� 1 � sin � θ � � ηs � 1

Xc �� 1 � iT � 	 � Eδ � bi� 1�� 1 � cos � θ � � ηc �� 1

Xs �� 1 � iT � 	 � Eδ � bi� 1�� 1 � sin � θ � � ηs �� 1

where δ � a� b �
	 1 if a	 b and is zero otherwise. In the absence of noise (ηx � i	 0) it is easy to

see that when bi� 1	 � 1 that Y1	 � E and Y� 1	 0. The error probability of binary FSK is

Pe � b	 1
2

e

� Eb � 2N0
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Figure 29: Output Densities For Noncoherent Receivers.
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Figure 30: Density for Y1� Y� 1 given +1 Transmitted.
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Figure 31: Error Probability of FSK with Noncoherent Detection.
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Differential Phase Shift Keying (DPSK)

�b � t � Differential

Encoder

a � t � � ���� � �� � �

� 2Pcos � 2π fct � θ �

�s � t �
� ���

n � t �
�

�r � t �

Modulator

b � t � 	 ∞

∑
l� � ∞

bl pT � t� lT �� bl� � � 1�� 1 �


a � t � 	 ∞

∑
l� � ∞

al pT � t� lT �� al� � � 1�� 1 �
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Differential Encoder is such that

bl 	 1 � al	 al� 1

bl 	 � 1 � al	 � al� 1


For example

l 
 
 
 � 2� 1 0 1 2 3 
 
 


bl � 1 1 1� 1 1� 1

al � 1 1 1 1� 1� 1 1

s � t � 	 � 2Pa � t � cos � 2π fct � θ �
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DPSK Demodulator

r � t �
�

�
����� � �� �

����� � �� �
�

	
� 2� T cos � 2π fct �

� 2� T sin � 2π fct �
�

�

LPF

LPF
	 ���

	 ���

�
�

�
�

t	 iT Xs � iT �

t	 iT Xc � iT �
Delay

T

Delay

T

	
	

����� � �� �
����� � �� �

�
	

� �� �

Zi � � 0 dec bi� 1	 � 1

� 0 dec bi� 1	 � 1

Xc � iT �
	 � Eai� 1 cosθ � ηc � i
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Xs � iT �
	 � Eai� 1 sinθ � ηs � i


The random variables ηc � i and ηs � i are independent identically distributed Gaussian random

variables with mean 0 and variance N0� 2. Thus

Zi 	 Xc � iT � Xc � � i� 1 � T � � Xs � iT � Xs � � i� 1 � T �

Zi 	 Re �W � iT � W� � � i� 1 � T � �

where W � iT �
	 Xc � iT �� jXs � iT � . The error probability for DPSK is

Pe � b	 1
2

e

� E � N0


Thus differential phase shift keying is 3dB better than FSK with noncoherent detection.

However, errors tend to occur in pairs.
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Figure 32: Error Probability for Differential Phase Shift Keying
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Error Probability

To derive the above expression for DPSK consider the low pas filter with impulse response

h � t �
	 pT � t � . The output of the lowpass filters can be expressed as

Xc � t � 	 �

∞

� ∞
2cosωcτh � t� τ � r � τ � dτ

Xc � iT � 	 �

∞

� ∞
2cosωcτpT � iT� τ � r � τ � dτ

	 �

iT

� i� 1 	 T
2cosωcτ

�

∞

∑
l� � ∞

� 2Pal cos � ωcτ � θ � pT � τ� lT � � n � τ �
�

dτ

	 �
iT

� i� 1 	 T

� 2P2ai� 1 cosωcτcos � ωcτ � θ � dτ � ηc � i
nc � i is Gaussian random variable, mean 0 variance N0� 2. Assuming ωcT	 2πn

Xc � iT � 	 � 2Pai� 1T cosθ � ηc � i
Similarly

Xs � iT �
	 � 2Pai� 1T sinθ � nc � i
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Thus

Zi	 Xc � iT � Xc � � i� 1 � T � � Xs � iT � Xs � � i� 1 � T �

Note that if we write W � iT �
	 Xc � iT �� jXs � iT � that Zi	 Re �W � iT � W� � � i� 1 � T � � . It is clear
that this represents the phase difference between two consecutive symbols.

Let

U1 	 Xc � iT � � Xc � � i� 1 � T �

2

U2 	 Xs � iT � � Xs � � i� 1 � T �

2

U3 	 Xc � iT �� Xc � � i� 1 � T �

2

U4 	 Xs � iT �� Xs � � i� 1 � T �

2

Zi	 U2
1 � U2

2

� � U2
3 � U2

4 �
Assume bi� 1	 � 1 so that ai� 1	 ai� 2 then

Pe � 0 	 P � Z� 0 � ai� 1	 ai� 2 �	 P 
 U2
1 � U2

2 � U2
3 � U2

4 �

U1 � N � µ1� σ2 �

V-61

�
�

�
�

U2 � N � µ2� σ2 �

µ1 	 1
2

� 2P � ai� 1T cosθ � ai� 2T cosθ �

	 1
2

� 2P � ai� 1 � ai� 2 � T cosθ

µ2 	 1
2

� 2P � ai� 1 � ai� 2 � T sinθ

σ2 	 1
4 � N0T � N0T �

	 1
2

N0T

U3 � N � µ3� σ2 � U4 � N � µ4� σ2 �

µ3 	 0� µ4	 0�

E �U1U2 � 	 E

�

Xc � iT � � Xc � � i� 1 � T �

2 � �

Xs � iT � � Xs � � i� 1 � T �

2 �

	 1
4

E � Xc � iT � Xs � iT � � Xc � iT � Xs � � i� 1 � T �

� Xc � � i� 1 � T � Xs � iT � � Xc � � i� 1 � T � Xs � � i� 1 � T � �
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E � Xc � iT � Xs � jT � � 	 E � Xc � iT � � E � Xs � jT � � since independent

E �U1U2 � 	



E � Xc � iT � � � E � Xc � � i� 1 � T � �

2 � 


E � Xs � iT � � � E � Xs � � i� 1 � T � �

2 �	 E �U1 � E �U2 � � U1� U2 independent

Similarly � U1� U3 � independent � U2� U3 � independent � U3� U4 � independent � U1� U4 �

independent U2� U4 � independent

Thus U2
1 � U2

2 is independent of U2
3 � U2

4 . From the results derived for noncoherent FSK it is

easy to show that

P � U2
1 � U2

2 � U2
3 � U2

4 � 	 1
2

e

� E � N0


Thus differential phase shift keying is 3dB better than FSK with noncoherent detection.

However, errors tend to occur in pairs.
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