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1. 3D Ultrasound Beamforming
2. Intel Xeon Phi

3. POSIX Threads ( Tutorial )

PA 1 Logistics



3D Ultrasound Beamforming



Portable Medical Imaging Devices

* Medical imaging moving towards portability
— MEDICS (X-Ray CT) [pasika ‘10]
— Handheld 2D Ultrasound (rulter ‘09]

* Not just a matter of convenience
— Improved patient health Gunnarsson ‘00, weinreb ‘o8]
— Access in developing countries ‘

* Why ultrasound? 3 2
— Low transmit power [Nelson 10]

— No dangers or side-effects



Ultrasound: Transmit and Receive
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Ultrasound: Transmit and Receive
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Ultrasound: Transmit and Receive
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Ultrasound: Transmit and Receive
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Ultrasound: Transmit and Receive
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Ultrasound: Transmit and Receive
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Ultrasound: Transmit and Receive
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Ultrasound: Transmit and Receive
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Ultrasound: Transmit and Receive
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Ultrasound: Transmit and Receive
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Each transducer stores array of raw receive data
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Ultrasound: Image Reconstruction
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Image reconstructed from data based on round trip delay
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Ultrasound: Image Reconstruction
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Images from each transducer combined to produce full frame
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Delay Index Calculation

* |terate through all image points for each transducer and calculate
delay index T,
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* Often done with lookup tables (LUTs) instead
* 50 GB LUT required for target 3D system
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Intel Xeon Phi Coprocessors and the MIC Architecture
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Intex Xeon Processors and the MIC Architecture

Multi-core Intel Xeon processor

e C/C++/Fortran; OpenMP/MPI
® Standard Linux OS

(*)]
o Upto 768 GB of DDR3 RAM
o = 12 cores/socket =3 GHz

e 2-way hyper-threading
256-bit AVX vectors
]

Many-core Intel Xeon Phi coprocessor

e C/C++/Fortran; OpenMP/MPI

® Special Linux pOS distribution

~ 6-16 GB cached GDDRS5 RAM

o D/-61coresat=1GHz

e 4-way hyper-threading
512-bit IMCI vectors
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-
Xeon Phi Programming Models

® Native coprocessor applications
o Compile with -mmic
o Run with micnativeloadex or scp+ssh
o The way to go for MPI applications without offload
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|
Native Execution

Example (“Hello World” application)

#include <stdio.h>

#include <unistd.h>

int main() {
printf("Hello world! I have %1d logical cores.\n",
sysconf (_SC_NPROCESSORS_ONLN ));

}

Example (compile and run on host)
user@host’, icc -o hello hello.c
user@host’, ./hello

Hello world! I have 32 logical cores.
user@host
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|
Native Execution

Compile and run the same code on the coprocessor in native mode:

Example (compile and run on coprocessor)

user@hosty, icc -o hello.mic hello.c -mmic
user@host), micnativeloadex hello.mic -t 300 -d O
Hello world! I have 240 logical cores.
user@host’ _

@ Use -mmic to produce executable for MIC architecture
@ Use micnativeloadex to run the executable on the coprocessor
o Native MPI applications work the same way (need Intel MPI library)
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POSIX Threads ( Tutorial )



https://www.eecs.umich.edu/courses/eecs570/discussions/w20/pthreads.html

SIMD Operations
SIMD — Single Instruction Multiple Data

Scalar Loop SIMD Loop
1 |[for (i = 0; i < n; i++) 1 |for (1 =0; i < n; i += 4)
2 A[i] = A[i] + BI[il; 2 Ali: (i+4)] = A[i:(i+4)] + B[i:(i+4)];

Each SIMD addition operator acts on 4 numbers at a time.
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Bonus

software.intel.com/sites/landingpage/IntrinsicsGuide/



https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Instruction Sets in Intel Architectures

Instruction Year and Intel Processor Vector Packed Data Types
Set registers
MMX 1997, Pentium 64-bit 8-, 16- and 32-bit integers
SSE 1999, Pentium III 128-bit 32-bit single precision FP
SSE2 2001, Pentium 4 128-bit 8 to 64-bit integers; SP & DP FP
SSE3-SSE4.2 2004 - 2009 128-bit (additional instructions)
AVX 2011, Sandy Bridge 256-bit single and double precision FP
AVX2 2013, Haswell 256-bit integers, additional instructions
IMCI 2012, Knights Corner 512-bit 32- and 64-bit integers;

single & double precision FP
AVX-512 (future) Knights Landing 512-bit 32- and 64-bit integers;

single & double precision FP

MIC Developer Boot Camp Rev. 12 Vectorization (Single Instruction Multiple Data, SIMD, Parallelism) © Colfax International, 2013-2014



Explicit Vectorization: Compiler Intrinsics

SSE2 Intrinsics

for (int i=0; i<n; i+=4) {
__m128 Avec=_mm_load_ps(A+i);
__m128 Bvec=_mm_load_ps(B+i);
Avec=_mm_add_ps(Avec, Bvec);
_mm_store_ps(A+i, Avec);
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IMCI Intrinsics

for (int i=0; i<mn; i+=16) {
__m512 Avec=_mm512_load_ps(A+i);
__m512 Bvec=_mm512_load_ps(B+i) ;
Avec=_mm512_add_ps(Avec, Bvec);
_mm512_store_ps(A+i, Avec);

¥

o The arrays float A[n] and float B[n] are aligned
on a 16-byte (SSE2) and 64-byte IMCI) boundary

e n is a multiple of 4 for SSE and a multiple of 16 for IMCI

e Variables Avec and Bvec are

128 =4 x sizeof (float) bits in size for SSE2 and
512 =16 x sizeof (float) bits for the Intel Xeon Phi architecture




