EECS 570 Programming Assignment 1

Discussion

January 19 2024

Announcements

Project
 Search for Teammates!

m Piazza

* Fri 1/26: Discussion, Project Handout

PA1 DueFri2/9 11:59pon Canvas

1. 3D Ultrasound Beamforming
2. Intel Xeon Phi

3. POSIX Threads (Tutorial)

PA 1 Logistics

3D Ultrasound Beamforming

Portable Medical Imaging Devices

* Medical imaging moving towards portability
— MEDICS (X-Ray CT) [pasika ‘10]
— Handheld 2D Ultrasound (rulter ‘09]

* Not just a matter of convenience
— Improved patient health Gunnarsson ‘00, weinreb ‘o8]
— Access in developing countries ‘

* Why ultrasound? 3 2
— Low transmit power [Nelson 10]

— No dangers or side-effects

Ultrasound: Transmit and Receive

T

Receive Raw
Channel Data

Receive Focal
Transducer Points

LR [

T Transmit

Transducer

Ultrasound: Transmit and Receive

Ultrasound: Transmit and Receive

Ultrasound: Transmit and Receive

Ultrasound: Transmit and Receive

N\
BREEECEEE

Ultrasound: Transmit and Receive

Ultrasound: Transmit and Receive

Ultrasound: Transmit and Receive

10

Ultrasound: Transmit and Receive

11

Ultrasound: Transmit and Receive

LR]]

12

Ultrasound: Transmit and Receive

LR]]

13

Ultrasound: Transmit and Receive

LR]]

Ultrasound: Transmit and Receive

LR []

15

Ultrasound: Transmit and Receive

LR [|]]

Each transducer stores array of raw receive data

16

Ultrasound: Image Reconstruction

LR Il 1L

Image reconstructed from data based on round trip delay

17

Ultrasound: Image Reconstruction

L]

Images from each transducer combined to produce full frame

18

Delay Index Calculation

* |terate through all image points for each transducer and calculate
delay index T,

Image
Space Point f
P 2 2 .
6 7, =22(R, + /R + X? ~2R X,sin6
\///11 C p p P
Ry //
X; //
LT T T THHHAT]

* Often done with lookup tables (LUTs) instead
* 50 GB LUT required for target 3D system

\

intel inside”

Xeon Phi’

-
Intel Xeon Phi Coprocessors and the MIC Architecture

S

7

AN
Intel® Xeon® /ﬁm
Processor \® ‘Piex

Channel| -+ | Channel

>= 8GB GDDRS5 memory

Intex Xeon Processors and the MIC Architecture

Multi-core Intel Xeon processor

e C/C++/Fortran; OpenMP/MPI
® Standard Linux OS

(*)]
o Upto 768 GB of DDR3 RAM
o = 12 cores/socket =3 GHz

e 2-way hyper-threading
256-bit AVX vectors
]

Many-core Intel Xeon Phi coprocessor

e C/C++/Fortran; OpenMP/MPI

® Special Linux pOS distribution

~ 6-16 GB cached GDDRS5 RAM

o D/-61coresat=1GHz

e 4-way hyper-threading
512-bit IMCI vectors

2/6

-
Xeon Phi Programming Models

® Native coprocessor applications
o Compile with -mmic
o Run with micnativeloadex or scp+ssh
o The way to go for MPI applications without offload

3/6

|
Native Execution

Example (“Hello World” application)

#include <stdio.h>

#include <unistd.h>

int main() {
printf("Hello world! I have %1d logical cores.\n",
sysconf (_SC_NPROCESSORS_ONLN));

}

Example (compile and run on host)
user@host’, icc -o hello hello.c
user@host’, ./hello

Hello world! I have 32 logical cores.
user@host

5/6

|
Native Execution

Compile and run the same code on the coprocessor in native mode:

Example (compile and run on coprocessor)

user@hosty, icc -o hello.mic hello.c -mmic
user@host), micnativeloadex hello.mic -t 300 -d O
Hello world! I have 240 logical cores.
user@host’ _

@ Use -mmic to produce executable for MIC architecture
@ Use micnativeloadex to run the executable on the coprocessor
o Native MPI applications work the same way (need Intel MPI library)

6/6

POSIX Threads (Tutorial)

https://www.eecs.umich.edu/courses/eecs570/discussions/w20/pthreads.html

SIMD Operations
SIMD — Single Instruction Multiple Data

Scalar Loop SIMD Loop
1 |[for (i = 0; i < n; i++) 1 |for (1 =0; i < n; i += 4)
2 A[i] = A[i] + BI[il; 2 Ali: (i+4)] = A[i:(i+4)] + B[i:(i+4)];

Each SIMD addition operator acts on 4 numbers at a time.

2
<
O

Instruction Pool

T o
c c

-

1=
(=
=)
[
o
o+
Q
Q)
=

(Data Pool]

o

Bonus

software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Instruction Sets in Intel Architectures

Instruction Year and Intel Processor Vector Packed Data Types
Set registers
MMX 1997, Pentium 64-bit 8-, 16- and 32-bit integers
SSE 1999, Pentium III 128-bit 32-bit single precision FP
SSE2 2001, Pentium 4 128-bit 8 to 64-bit integers; SP & DP FP
SSE3-SSE4.2 2004 - 2009 128-bit (additional instructions)
AVX 2011, Sandy Bridge 256-bit single and double precision FP
AVX2 2013, Haswell 256-bit integers, additional instructions
IMCI 2012, Knights Corner 512-bit 32- and 64-bit integers;

single & double precision FP
AVX-512 (future) Knights Landing 512-bit 32- and 64-bit integers;

single & double precision FP

MIC Developer Boot Camp Rev. 12 Vectorization (Single Instruction Multiple Data, SIMD, Parallelism) © Colfax International, 2013-2014

Explicit Vectorization: Compiler Intrinsics

SSE2 Intrinsics

for (int i=0; i<n; i+=4) {
__m128 Avec=_mm_load_ps(A+i);
__m128 Bvec=_mm_load_ps(B+i);
Avec=_mm_add_ps(Avec, Bvec);
_mm_store_ps(A+i, Avec);

I

D s W N

D s W N

IMCI Intrinsics

for (int i=0; i<mn; i+=16) {
__m512 Avec=_mm512_load_ps(A+i);
__m512 Bvec=_mm512_load_ps(B+i) ;
Avec=_mm512_add_ps(Avec, Bvec);
_mm512_store_ps(A+i, Avec);

¥

o The arrays float A[n] and float B[n] are aligned
on a 16-byte (SSE2) and 64-byte IMCI) boundary

e n is a multiple of 4 for SSE and a multiple of 16 for IMCI

e Variables Avec and Bvec are

128 =4 x sizeof (float) bits in size for SSE2 and
512 =16 x sizeof (float) bits for the Intel Xeon Phi architecture

