
EECS 570 Programming Assignment 1

University of Michigan

January 14, 2022

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 1 / 40

Announcements

Sign up for final project groups ASAP

https://docs.google.com/spreadsheets/d/

1NDgrDKN5uI5Ve9K8IGd1Gg6222hzBDksut93-9NT0tY/edit?usp=

sharing

A team must have an identity!

Project proposal due Monday 1/31

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 2 / 40

https://docs.google.com/spreadsheets/d/1NDgrDKN5uI5Ve9K8IGd1Gg6222hzBDksut93-9NT0tY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NDgrDKN5uI5Ve9K8IGd1Gg6222hzBDksut93-9NT0tY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NDgrDKN5uI5Ve9K8IGd1Gg6222hzBDksut93-9NT0tY/edit?usp=sharing

Overview

1 Medical Imaging using Ultrasound
Introduction
Transmission and Reception

2 Intel MIC Architecture
Architectural Overview
Programming the MIC

3 Introduction to POSIX Threads
Thread Creation and Joining
Synchronization Primitives

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 3 / 40

Medical Imaging using Ultrasound Introduction

Portable Medical Imaging Devices

Medical imaging moving towards portability

MEDICS (X-Ray CT) [Dasika ’10]
Handheld 2D Ultrasound [Fuller ’09]

Not just a matter of convenience

Improved patient health [Gunnarsson ’00, Weinreb ’08]
Access in developing countries

Why ultrasound?

Low transmit power [Nelson ’10]
No danger or side-effects

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 4 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 5 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 6 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 7 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 8 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 9 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 10 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 11 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 12 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 13 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 14 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 15 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 16 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 17 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

Each transducer stores an array of raw received data

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 18 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

Image reconstructed from data based on round-trip delay

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 19 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

Images from each transducer combined to produce the full frame

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 20 / 40

Medical Imaging using Ultrasound Transmission and Reception

Delay Index Calculation

Iterate through all image points for each transducer and calculate
delay index τP

τP = fs
c (Rp +

√
R2
P + X 2

i − 2RPXi sin θ)

Often done with lookup tables (LUTs) instead

50 GB LUT required for target 3D system

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 21 / 40

Intel MIC Architecture Architectural Overview

Intel Xeon Phi Coprocessors and the MIC Architecture

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 22 / 40

Intel MIC Architecture Architectural Overview

Intex Xeon Processors and the MIC Architecture

Multi-core Intel Xeon processor

C/C++/Fortran; OpenMP/MPI

Standard Linux OS

Up to 768 GB of DDR3 RAM

≥ 12 cores/socket ≈ 3 GHz

2-way hyper-threading

256-bit AVX vectors

Many-core Intel Xeon Phi coprocessor

C/C++/Fortran; OpenMP/MPI

Special Linux µOS distribution

6-16 GB cached GDDR5 RAM

57-61 cores at ≈ 1 GHz

4-way hyper-threading

512-bit IMCI vectors

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 23 / 40

Intel MIC Architecture Programming the MIC

Xeon Phi Programming Models

Native coprocessor applications

Compile with -mmic

Run with micnativeloadex or scp+ssh
The way to go for MPI applications without offload

Explicit offload

Functions, global variables require attribute ((target(mic)))

Initiate offload, data marshalling with #pragma offload

Only bitwise-copyable data can be shared

Clusters and multiple coprocessors

#pragma offload target(mic:i)

Use threads to offload to multiple coprocessors
Run native MPI applications

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 24 / 40

Intel MIC Architecture Programming the MIC

Xeon Phi Programming Models

Native coprocessor applications

Compile with -mmic

Run with micnativeloadex or scp+ssh
The way to go for MPI applications without offload

Explicit offload

Functions, global variables require attribute ((target(mic)))

Initiate offload, data marshalling with #pragma offload

Only bitwise-copyable data can be shared

Clusters and multiple coprocessors

#pragma offload target(mic:i)

Use threads to offload to multiple coprocessors
Run native MPI applications

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 25 / 40

Intel MIC Architecture Programming the MIC

Native Execution

Example (“Hello World” application)

#include <stdio.h>

#include <unistd.h>

int main() {

printf("Hello world! I have %ld logical cores.\n",

sysconf(_SC_NPROCESSORS_ONLN));

}

Example (compile and run on host)

user@host% icc -o hello hello.c

user@host% ./hello

Hello world! I have 32 logical cores.

user@host% _

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 26 / 40

Intel MIC Architecture Programming the MIC

Native Execution

Compile and run the same code on the coprocessor in native mode:

Example (compile and run on coprocessor)

user@host% icc -o hello.mic hello.c -mmic

user@host% micnativeloadex hello.mic -t 300 -d 0

Hello world! I have 240 logical cores.

user@host% _

Use -mmic to produce executable for MIC architecture

Use micnativeloadex to run the executable on the coprocessor

Native MPI applications work the same way (need Intel MPI library)

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 27 / 40

Introduction to POSIX Threads

Introduction to POSIX Threads

What is a thread?

Independently executing stream of instructions
Schedulable unit of execution for the operating system

Pthreads - the POSIX threading interface

Provides system calls to create and synchronize threads
Communication happens strictly through shared memory

Specifically, using pointers to shared data

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 28 / 40

Introduction to POSIX Threads

Introduction to POSIX Threads

What is a thread?

Independently executing stream of instructions
Schedulable unit of execution for the operating system

Pthreads - the POSIX threading interface

Provides system calls to create and synchronize threads
Communication happens strictly through shared memory

Specifically, using pointers to shared data

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 28 / 40

Introduction to POSIX Threads

Introduction to POSIX Threads

What is a thread?

Independently executing stream of instructions
Schedulable unit of execution for the operating system

Pthreads - the POSIX threading interface

Provides system calls to create and synchronize threads
Communication happens strictly through shared memory

Specifically, using pointers to shared data

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 28 / 40

Introduction to POSIX Threads Thread Creation and Joining

Creating Threads

Pthread create function signature

int pthread_create(pthread_t*, const pthread_attr_t*,

void* (*)(void*), void*);

Example

errcode = pthread_create(&thread_obj, &thread_attr,

&thread_func, &func_arg);

thread obj is the thread object or handle (used to halt, etc.)
thread attr specifies various attributes

Default values obtained by passing a NULL pointer

thread func is a pointer to the function to be run (takes and returns
void*)
func arg is a pointer to an argument that is passed to thread func

when it starts
errorcode is be set to non-zero if pthread create() fails

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 29 / 40

Introduction to POSIX Threads Thread Creation and Joining

Creating Threads

Pthread create function signature

int pthread_create(pthread_t*, const pthread_attr_t*,

void* (*)(void*), void*);

Example

errcode = pthread_create(&thread_obj, &thread_attr,

&thread_func, &func_arg);

thread obj is the thread object or handle (used to halt, etc.)
thread attr specifies various attributes

Default values obtained by passing a NULL pointer

thread func is a pointer to the function to be run (takes and returns
void*)
func arg is a pointer to an argument that is passed to thread func

when it starts
errorcode is be set to non-zero if pthread create() fails

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 29 / 40

Introduction to POSIX Threads Thread Creation and Joining

Shared Data and Threads

Objects allocated on the heap may be shared (by passing pointers)
Variables on the stack are private; passing pointers to those between
threads can lead to problems
How to pass multiple arguments to a thread?

One way: create a “thread data” struct
Pass a pointer to the struct object to each thread

Example

typedef struct _thread_data_t{

int thread_id, value;

char* message;

} thread_data_t;

...

thread_data_t td;

/* initialize elements of thread_data_t object */

pthread_create(&thread_obj, NULL, thread_func, &td);

...

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 30 / 40

Introduction to POSIX Threads Thread Creation and Joining

Joining Threads

Pthread join function signature

int pthread_join(pthread_t thread_obj,

void** retval);

Example

errcode = pthread_join(thread_obj, NULL);

The function waits for the thread object thread obj to terminate
If retval is not NULL, then pthread join() copies the exit status
errcode is set to non-zero if pthread join() fails

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 31 / 40

Introduction to POSIX Threads Thread Creation and Joining

Joining Threads

Pthread join function signature

int pthread_join(pthread_t thread_obj,

void** retval);

Example

errcode = pthread_join(thread_obj, NULL);

The function waits for the thread object thread obj to terminate
If retval is not NULL, then pthread join() copies the exit status
errcode is set to non-zero if pthread join() fails

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 31 / 40

Introduction to POSIX Threads Thread Creation and Joining

Multithreaded “Hello World”

Example (“Hello World” application)

void* func(void* arg) {

printf("Hello World!\n");

return NULL;

}

int main() {

pthread_t threads[2]; int i;

for(i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL, func, NULL);

}

for(i = 0; i < 2; ++i) {

pthread_join(threads[i], NULL);

}

}

Compile using gcc -pthread
University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 32 / 40

Introduction to POSIX Threads Synchronization Primitives

Demo

Let’s run a “Hello World” program through the Phi!

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 33 / 40

Introduction to POSIX Threads Synchronization Primitives

Synchronization Primitives I - Mutexes

Mutual exclusion (mutex), a.k.a. locks

Threads working mostly independently may
need to access shared data

mutex *m = alloc_and_init();

acquire(m);

/* modify shared data */

release(m);

e.g. Producer-consumer model
Coke machine example: single person refills coke (producer), multiple
people buy coke (consumer)

Is there any problem with holding multiple mutexes?

Multiple mutexes may be held, but may lead to deadlock

Thread A
lock(a) 1

lock(b) 3

Thread B
lock(b) 2

lock(a) 4

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 34 / 40

Introduction to POSIX Threads Synchronization Primitives

Synchronization Primitives I - Mutexes

Mutual exclusion (mutex), a.k.a. locks

Threads working mostly independently may
need to access shared data

mutex *m = alloc_and_init();

acquire(m);

/* modify shared data */

release(m);

e.g. Producer-consumer model
Coke machine example: single person refills coke (producer), multiple
people buy coke (consumer)

Is there any problem with holding multiple mutexes?

Multiple mutexes may be held, but may lead to deadlock

Thread A
lock(a) 1

lock(b) 3

Thread B
lock(b) 2

lock(a) 4

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 34 / 40

Introduction to POSIX Threads Synchronization Primitives

Synchronization Primitives I - Mutexes

Example (mutex creation)

#include <pthread.h>

pthread_mutex_t myMutex = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_init(&myMutex, NULL);

Example (mutex usage)

pthread_mutex_lock(&myMutex);

/* access critical data */

pthread_mutex_unlock(&myMutex);

Example (mutex deallocation)

pthread_mutex_destroy(&myMutex);

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 35 / 40

Introduction to POSIX Threads Synchronization Primitives

Synchronization Primitives II - Barriers

A barrier object allows global
synchronization between threads

Wait for all threads to reach a point in
computation
After that, launch all threads
simultaneously to continue execution

Common when running multiple copies
of the same function in parallel

Single Program Multiple Data
(SPMD) paradigm

Simple use of barriers: all threads
hit the same barrier

work_on_my_problem();

barrier_wait();

get_data_from_others();

barrier_wait();

More complicated: barriers
on branches (or loops)

if(thread_id % 2 == 0) {

work_on_problem_1();

barrier_wait();

} else { barrier_wait(); }

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 36 / 40

Introduction to POSIX Threads Synchronization Primitives

Synchronization Primitives II - Barriers

Example (static barrier initialization with 3 threads)

pthread_barrier_t barrier = PTHREAD_BARRIER_INITIALIZER(3);

Example (dynamic barrier initialization with 3 threads)

pthread_barrier_t myBarrier;

pthread_barrier_init(&myBarrier, NULL, 3);

Example (barrier usage)

pthread_barrier_wait(&myBarrier);

Example (barrier deallocation)

pthread_barrier_destroy(&myBarrier);

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 37 / 40

Introduction to POSIX Threads Synchronization Primitives

Pthreads Summary

Initialize every pthread object you use

e.g. pthread mutex t, pthread barrier t

Do not spawn threads for small jobs

Thread creation overhead is non-trivial
Too many threads can lead to performance degradation (Amdahl’s law)

Work through a tutorial!

https://computing.llnl.gov/tutorials/pthreads/

http://pages.cs.wisc.edu/~travitch/pthreads_primer.html

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 38 / 40

https://computing.llnl.gov/tutorials/pthreads/
http://pages.cs.wisc.edu/~travitch/pthreads_primer.html

Introduction to POSIX Threads Synchronization Primitives

Questions?

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 39 / 40

Introduction to POSIX Threads Synchronization Primitives

Programming Assignment I due 2/4 11:59 PM on Canvas

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 40 / 40

Vectorization (Single Instruction Multiple Data, SIMD,
Parallelism)

MIC Developer Boot Camp Rev. 12 Vectorization (Single Instruction Multiple Data, SIMD, Parallelism) © Colfax International, 2013–2014

SIMD Operations

SIMD — Single Instruction Multiple Data

Scalar Loop SIMD Loop

1 for (i = 0; i < n; i++)
2 A[i] = A[i] + B[i];

1 for (i = 0; i < n; i += 4)
2 A[i:(i+4)] = A[i:(i+4)] + B[i:(i+4)];

Each SIMD addition operator acts on 4 numbers at a time.

���������	�
�		�

��
�

�	

	�
PU

PU

PU

PU

����

��
��
	�

�
��
�

MIC Developer Boot Camp Rev. 12 Vectorization (Single Instruction Multiple Data, SIMD, Parallelism) © Colfax International, 2013–2014

Instruction Sets in Intel Architectures

Instruction
Set

Year and Intel Processor Vector
registers

Packed Data Types

MMX 1997, Pentium 64-bit 8-, 16- and 32-bit integers
SSE 1999, Pentium III 128-bit 32-bit single precision FP
SSE2 2001, Pentium 4 128-bit 8 to 64-bit integers; SP & DP FP
SSE3–SSE4.2 2004 – 2009 128-bit (additional instructions)
AVX 2011, Sandy Bridge 256-bit single and double precision FP
AVX2 2013, Haswell 256-bit integers, additional instructions
IMCI 2012, Knights Corner 512-bit 32- and 64-bit integers;

single & double precision FP
AVX-512 (future) Knights Landing 512-bit 32- and 64-bit integers;

single & double precision FP

MIC Developer Boot Camp Rev. 12 Vectorization (Single Instruction Multiple Data, SIMD, Parallelism) © Colfax International, 2013–2014

Explicit Vectorization: Compiler Intrinsics
SSE2 Intrinsics

1 for (int i=0; i<n; i+=4) {
2 __m128 Avec=_mm_load_ps(A+i);
3 __m128 Bvec=_mm_load_ps(B+i);
4 Avec=_mm_add_ps(Avec, Bvec);
5 _mm_store_ps(A+i, Avec);
6 }

IMCI Intrinsics
1 for (int i=0; i<n; i+=16) {
2 __m512 Avec=_mm512_load_ps(A+i);
3 __m512 Bvec=_mm512_load_ps(B+i);
4 Avec=_mm512_add_ps(Avec, Bvec);
5 _mm512_store_ps(A+i, Avec);
6 }

The arrays float A[n] and float B[n] are aligned
on a 16-byte (SSE2) and 64-byte (IMCI) boundary

n is a multiple of 4 for SSE and a multiple of 16 for IMCI

Variables Avec and Bvec are
128 = 4 £ sizeof(float) bits in size for SSE2 and
512 = 16 £ sizeof(float) bits for the Intel Xeon Phi architecture

MIC Developer Boot Camp Rev. 12 Vectorization (Single Instruction Multiple Data, SIMD, Parallelism) © Colfax International, 2013–2014

