EECS 570 Programming Assignment 1 J

University of Michigan

January 14, 2022

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 1/40

Announcements

@ Sign up for final project groups ASAP

e https://docs.google.com/spreadsheets/d/
1NDgrDKN5uI5Ve9K8IGd1Gg6222hzBDksut93-9NTOtY/editPusp=

sharing
o A team must have an identity!

@ Project proposal due Monday 1/31

2/40

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022

https://docs.google.com/spreadsheets/d/1NDgrDKN5uI5Ve9K8IGd1Gg6222hzBDksut93-9NT0tY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NDgrDKN5uI5Ve9K8IGd1Gg6222hzBDksut93-9NT0tY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1NDgrDKN5uI5Ve9K8IGd1Gg6222hzBDksut93-9NT0tY/edit?usp=sharing

Overview

@ Medical Imaging using Ultrasound
@ Introduction
@ Transmission and Reception

@ Intel MIC Architecture
@ Architectural Overview
@ Programming the MIC

© Introduction to POSIX Threads

@ Thread Creation and Joining
@ Synchronization Primitives

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 3/40

Medical Imaging using Ultrasound Introduction

Portable Medical Imaging Devices

@ Medical imaging moving towards portability

e MEDICS (X-Ray CT) [Dasika '10]
o Handheld 2D Ultrasound [Fuller '09]

@ Not just a matter of convenience

o Improved patient health [Gunnarsson '00, Weinreb '08]
o Access in developing countries

@ Why ultrasound?

o Low transmit power [Nelson '10]
o No danger or side-effects

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 4/40

Medical Imaging J Transmission and Reception

Ultrasound: Transmission and Reception

Imége Space

Receive Raw
Channel Data

Focal Points #

Transmit Transducer

R [[

Receive Transducer

EECS 570 Programming Assignment 1 January 14, 2022 5/40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

A
LR e]

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 6 /40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

\
LR e]

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 7/40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

LR e]

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 8/40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

LR e]

EECS 570 Programming Assignment 1 January 14, 2022 9/40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

LR e]

EECS 570 Programming Assignment 1 January 14, 2022 10 /40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

LR e]

EECS 570 Programming Assignment 1 January 14, 2022 11/40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

LR e]

EECS 570 Programming Assignment 1 January 14, 2022 12 /40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

LR e]

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 13 /40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

LR e]

EECS 570 Programming Assignment 1 January 14, 2022 14 /40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

LR e]

EECS 570 Programming Assignment 1 January 14, 2022 15 /40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

LR e]

EECS 570 Programming Assignment 1 January 14, 2022 16 / 40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

LR e]

EECS 570 Programming Assignment 1 January 14, 2022 17 /40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

LR]

Each transducer stores an array of raw received data

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 18 /40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

LR s]

Image reconstructed from data based on round-trip delay

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 19 /40

Medical Imaging using Ultrasound Transmission and Reception

Ultrasound: Transmission and Reception

HEEEN .

Images from each transducer combined to produce the full frame

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 20 /40

Medical Imaging using Ultrasound Transmission and Reception

Delay Index Calculation

@ lterate through all image points for each transducer and calculate
delay index 7p

Image
Space Point
o 7 7p = £(Ry + \/R3 + X2 — 2RpX; sin 0)
\/,’//
Ry /
CTTTT

@ Often done with lookup tables (LUTs) instead
@ 50 GB LUT required for target 3D system

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 21 /40

Aoll==) OYsD
Intel Xeon Phi Coprocessors and the MIC Architecture

Intel” Xeon® ""
Processor % (‘e

L System Memory

! GoDRS

Channel Channel

>= BGB GDDRS memory

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 22 /40

ISRV (ORI Architectural Overview

Intex Xeon Processors and the MIC Architecture

Many-core Intel Xeon Phi coprocessor

Multi-core Intel Xeon processor

e C/C++/Fortran; OpenMP/MPI e C/C++/Fortran; OpenMP /MPI
@ Standard Linux OS @ Special Linux pOS distribution
@ Up to 768 GB of DDR3 RAM @ 6-16 GB cached GDDR5 RAM
@ > 12 cores/socket ~ 3 GHz @ 57-61 cores at ~ 1 GHz

@ 2-way hyper-threading @ 4-way hyper-threading

@ 256-bit AVX vectors @ 512-bit IMCI vectors

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 23 /40

Programming the MIC
Xeon Phi Programming Models

o Native coprocessor applications
o Compile with -mmic
e Run with micnativeloadex or scp+ssh
e The way to go for MPI applications without offload

e Explicit offload

e Functions, global variables require __attribute__((target(mic)))
o Initiate offload, data marshalling with #pragma offload
e Only bitwise-copyable data can be shared

@ Clusters and multiple coprocessors

o #pragma offload target(mic:i)
e Use threads to offload to multiple coprocessors
e Run native MPI applications

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 24 /40

g R
Xeon Phi Programming Models

@ Native coprocessor applications
o Compile with -mmic
e Run with micnativeloadex or scp+ssh
e The way to go for MPI applications without offload

@ Explicit offload

e Functions, global variables require __attribute__((target(mic)))
e Initiate offload, data marshalling with #pragma offload
e Only bitwise-copyable data can be shared

@ Clusters and multiple coprocessors

e #pragma offload target(mic:i)
e Use threads to offload to multiple coprocessors
e Run native MPI applications

EECS 570 Programming Assignment 1 January 14, 2022 25 /40

Intel MIC Architecture Programming the MIC

Native Execution

Example (“Hello World" application)

#include <stdio.h>

#include <unistd.h>

int main() {
printf ("Hello world! I have %1d logical cores.\n",
sysconf (_SC_NPROCESSORS_ONLN));

Example (compile and run on host)

user@host’% icc -o hello hello.c
user@host’, ./hello

Hello world! I have 32 logical cores.
user@hostY

- y

EECS 570 Programming Assignment 1 January 14, 2022 26 /40

Intel MIC Architecture Programming the MIC

Native Execution

Compile and run the same code on the coprocessor in native mode:

Example (compile and run on coprocessor)

user@host’% icc -o hello.mic hello.c -mmic
user@host), micnativeloadex hello.mic -t 300 -d O
Hello world! I have 240 logical cores.
user@hostY

@ Use -mmic to produce executable for MIC architecture
@ Use micnativeloadex to run the executable on the coprocessor

e Native MPI applications work the same way (need Intel MPI library)

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 27 /40

Introduction to POSIX Threads

@ What is a thread?

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 28 /40

Introduction to POSIX Threads

@ What is a thread?

o Independently executing stream of instructions
e Schedulable unit of execution for the operating system

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022

28 /40

Introduction to POSIX Threads

@ What is a thread?

o Independently executing stream of instructions
e Schedulable unit of execution for the operating system

@ Pthreads - the POSIX threading interface

o Provides system calls to create and synchronize threads
o Communication happens strictly through shared memory

e Specifically, using pointers to shared data

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022

28 /40

s lE e
Creating Threads

@ Pthread create function signature

int pthread_create(pthread_t*, const pthread_attr_t*,
void* (*) (voidx*), voidx);

Example

errcode = pthread_create(&thread_obj, &thread_attr,
&thread_func, &func_arg);

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 29 /40

s lE e
Creating Threads

@ Pthread create function signature

int

Example

errcode

pthread_create(pthread_t*, const pthread_attr_t*,
void* (*) (voidx*), voidx);

= pthread_create(&thread_obj, &thread_attr,
&thread_func, &func_arg);

thread_obj is the thread object or handle (used to halt, etc.)
thread_attr specifies various attributes

o Default values obtained by passing a NULL pointer
thread_func is a pointer to the function to be run (takes and returns
void*)
func_arg is a pointer to an argument that is passed to thread func
when it starts
errorcode is be set to non-zero if pthread_create() fails

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 29 /40

Thread Creation and Joining
Shared Data and Threads

@ Objects allocated on the heap may be shared (by passing pointers)
@ Variables on the stack are private; passing pointers to those between
threads can lead to problems
@ How to pass multiple arguments to a thread?
e One way: create a “thread data” struct
e Pass a pointer to the struct object to each thread

Example
typedef struct _thread_data_t{
int thread_id, value;
char* message;
} thread_data_t;

thread_data_t td;
/* initialize elements of thread_data_t object */
pthread_create(&thread_obj, NULL, thread_func, &td);

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 30/40

Thread Creation and Joining
Joining Threads

@ Pthread join function signature

int pthread_join(pthread_t thread_obj,
void** retval);

Example

errcode = pthread_join(thread_obj, NULL);

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022

31/40

Thread Creation and Joining
Joining Threads

@ Pthread join function signature

int pthread_join(pthread_t thread_obj,
void** retval);

Example

errcode = pthread_join(thread_obj, NULL);

e The function waits for the thread object thread obj to terminate
o If retval is not NULL, then pthread_join() copies the exit status
e errcode is set to non-zero if pthread_join() fails

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 31/40

Thread Creation and Joining
Multithreaded “Hello World"

Example (“Hello World" application)

void* func(void* arg) {
printf ("Hello World!\n");
return NULL;
}
int main() {
pthread_t threads[2]; int i;
for(i = 0; i < 2; ++i) {
pthread_create(&threads[i], NULL, func, NULL);
}
for(i = 0; i < 2; ++i) {
pthread_join(threads[i], NULL);

@ Compile using gcc —pthread
EECS 570 Programming Assignment 1 January 14, 2022 32/40

([T SAIIRNOS VI NICE S Synchronization Primitives

Demo

Let's run a “Hello World" program through the Phi!

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 33 /40

([T SAIIRNOS VI NICE S Synchronization Primitives

Synchronization Primitives | - Mutexes

e Mutual exclusion (mutex), a.k.a. locks Process
e Threads working mostly independently may
need to access shared data
mutex *m = alloc_and_init();

acquire(m) ;
/* modify shared data */
release(m) ;
@ e.g. Producer-consumer model
o Coke machine example: single person refills coke (producer), multiple

people buy coke (consumer)

@ Is there any problem with holding multiple mutexes?

Thread #2'

:

‘Thread #1

Time

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 34 /40

([T SAIIRNOS VI NICE S Synchronization Primitives

Synchronization Primitives | - Mutexes

e Mutual exclusion (mutex), a.k.a. locks
e Threads working mostly independently may

need to access shared data
mutex *m = alloc_and_init();
acquire(m) ;
/* modify shared data */
release(m) ;

@ e.g. Producer-consumer model

Process

‘Thread #1

Thread #2'

:

Time

o Coke machine example: single person refills coke (producer), multiple

people buy coke (consumer)

@ Multiple mutexes may be held, but may lead to deadlock

Thread A Thread B

lock(a) @ lock(b) @
lock(b) @ lock(a) @

January 14, 2022

University of Michigan EECS 570 Programming Assignment 1

34 /40

[TN RCNHOS VU NICELE Synchronization Primitives

Synchronization Primitives | - Mutexes

Example (mutex creation)

#include <pthread.h>
pthread_mutex_t myMutex = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_init (&myMutex, NULL);

Example (mutex usage)

pthread_mutex_lock(&myMutex) ;
/* access critical data */
pthread_mutex_unlock (&myMutex) ;

Example (mutex deallocation)

pthread_mutex_destroy (&myMutex) ;

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 35 /40

([T SAIIRNOS VI NICE S Synchronization Primitives

Synchronization Primitives Il - Barriers
@ A barrier object allows global
synchronization between threads —_— R
e Wait for all threads to reach a point in —_— %
computation - ;
e After that, launch all threads Three threads arive at a barrie
simultaneously to continue execution
— B
@ Common when running multiple copies ;
of the same function in parallel - !
e Single Program Multiple Data '
(S P M D) pa ra d |gm One thread waits for two other threads to arrive at the barrier
@ Simple use of barriers: all threads e More complicated: barriers
hit the same barrier on branches (or loops)
work_on_my_problem() ; if(thread_id % 2 == 0) {
barrier_wait(); work_on_problem_1();
get_data_from_others(); barrier_wait();
barrier_wait(); } else { barrier_wait(); }

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 36 /40

[TN RCNHOS VU NICELE Synchronization Primitives

Synchronization Primitives Il - Barriers

Example (static barrier initialization with 3 threads)
pthread_barrier_t barrier = PTHREAD_BARRIER_INITIALIZER(3);

Example (dynamic barrier initialization with 3 threads)

pthread_barrier_t myBarrier;
pthread_barrier_init(&myBarrier, NULL, 3);

Example (barrier usage)

pthread_barrier_wait(&myBarrier);

Example (barrier deallocation)

pthread_barrier_destroy(&myBarrier);

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 37 /40

([T SAIIRNOS VI NICE S Synchronization Primitives

Pthreads Summary

o Initialize every pthread object you use
o e.g. pthread mutex_t, pthread barrier_t

@ Do not spawn threads for small jobs

o Thread creation overhead is non-trivial
o Too many threads can lead to performance degradation (Amdahl’s law)

@ Work through a tutorial!
e https://computing.llnl.gov/tutorials/pthreads/
e http://pages.cs.wisc.edu/~travitch/pthreads_primer.html

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 38/40

https://computing.llnl.gov/tutorials/pthreads/
http://pages.cs.wisc.edu/~travitch/pthreads_primer.html

([T SAIIRNOS VI NICE S Synchronization Primitives

Questions?

University of Michigan EECS 570 Programming Assignment 1 January 14, 2022 39 /40

Introduction to POSIX Th Synchronization Primitives

Programming Assignment | due 2/4 11:59 PM on Canvas
]
| |

—— -

EECS 570 Programming Assignment 1 January 14, 2022

40/ 40

Vectorization (Single Instruction Multiple Data, SIMD,
Parallelism)

MIC Developer Boot Camp Rev. 12 Vectorization (Single Instruction Multiple Data, SIMD, Parallelism) © Colfax International, 2013-2014

SIMD Operations
SIMD — Single Instruction Multiple Data |

Scalar Loop SIMD Loop

for (i
2 Ali]

—

0; i < nj; i++)

1|for (4 =0; 1 < n; i += 4)
A[i] + B[il;

2 Afi:(i+4)] = A[i:(i+4)] + Bl[i:(i+4)];

o

Each SIMD addition operator acts on 4 numbers at a time.

SIMD Instruction Pool

Data Pool
Vector Unit

MIC Developer Boot Camp Rev. 12

Vectorization (Single Instruction Multiple Data, SIMD, Parallelism)

© Colfax International, 2013-2014

Instruction Sets in Intel Architectures

Instruction Year and Intel Processor ~ Vector Packed Data Types
Set registers
MMX 1997, Pentium 64-bit 8-, 16- and 32-bit integers
SSE 1999, Pentium III 128-bit 32-bit single precision FP
SSE2 2001, Pentium 4 128-bit 8 to 64-bit integers; SP & DP FP
SSE3-SSE4.2 2004 - 2009 128-bit (additional instructions)
AVX 2011, Sandy Bridge 256-bit CD rle and double precision FP
AVX2 2013, Haswell 256-bit gers, additional instructions
IMCI 2012, Knights Corner 512-bit 32- and 64-bit integers;

single & double precision FP
AVX-512 (future) Knights Landing 512-bit 32- and 64-bit integers;

single & double precision FP

MIC Developer Boot Camp Rev. 12 Vectorization (Single Instruction Multiple Data, SIMD, Parallelism) © Colfax International, 2013-2014

Explicit Vectorization: Compiler Intrinsics
SSE2 Intrinsics IMCI Intrinsics

1 [for (int i=0; i<m; i+=4) { 1 |for (int i=0; i<mn; i+=16) {

2 __m128 Avec=_mm_load_ps(A+i); 2 __m512 Avec=_mm512_load_ps(A+i);
3 __m128 Bvec=_mm_load_ps(B+i); 3 __mb512 Bvec=_mm512_load_ps(B+i);
4 Avec=_mm_add_ps(Avec, Bvec); 4 Avec=_mm512_add_ps(Avec, Bvec);
5 _mm_store_ps(A+i, Avec); 5 _mm512_store_ps(A+i, Avec);

6 | 6|

o The arrays float A[n] and float B[n] are aligned
on a 16-byte (SSE2) and 64-byte (IMCI) boundary

¢ n is a multiple of 4 for SSE and a multiple of 16 for IMCI

e Variables Avec and Bvec are
128 =4 x sizeof (float) bits in size for SSE2 and
512 =16 x sizeof (float) bits for the Intel Xeon Phi architecture

MIC Developer Boot Camp Rev. 12 Vectorization (Single Instruction Multiple Data, SIMD, Parallelism) © Colfax International, 2013-2014

