
Murphi
Slide 1EECS 570

EECS 570

Designing Cache Coherence
Protocol using Murphi

Winter 2022

http://www.eecs.umich.edu/courses/eecs570/

Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin,
Narayanasamy, Nowatzyk, Reinhardt, Roth, Smith, Singh, and Wenisch.

Murphi
Slide 2EECS 570

Cache Coherence

• Why?
 In the presence of caches, orchestrate access to shared

memory in a multi-core system

• What?
 A load returns the most recent value written
 For a single memory location only

• How?
 Well, many many flavors!

Murphi
Slide 3EECS 570

Cache Coherence – How?

• Interconnection network
 Bus: Snoop-based protocols
 Point-to-point: Directory-based protocols

• Stable states?
 VI, MSI, MESI, MOSI, MOESI

• Optimizations employed – countless papers!!
 3-hop vs 4-hop
 Self-downgrade (M->S)
 Cruise missile invalidations, etc.

Murphi
Slide 4EECS 570

Basic Directory Operation: Read

Load A (miss)

Node #1 Directory Node #2

A: Shared, #1

42

Murphi
Slide 5EECS 570

Basic Directory Operation: Write

Load A (miss)

Node #1 Directory Node #2

A: Shared, #1

A: Mod., #2

42

4296

Load A (hit)

..oops

Store A (hit)

Murphi
Slide 6EECS 570

Basic Directory Operation: Write

Load A (miss)

Node #1 Directory Node #2

A: Shared, #1

A: Mod., #2

42

4296

Store A (hit)

Murphi
Slide 7EECS 570

Deadlock!

• Protocol deadlock
 Wait for a message that is never sent
 Solution: Design your state machine correctly

• Network deadlock
 Coherence messages hold resources in circular manner
 Solution: Dedicated virtual networks for different messages

Murphi
Slide 8EECS 570

Virtual Networks

• Solve network-dependent deadlocks
 Have separate VN for every message class

Murphi
Slide 9EECS 570

Assignment II: Objectives

• Learn to design a CC protocol
 Come up with a state transition diagram

• Learn a formal verification language (Murphi)

• Describe your CC protocol in Murphi and verify it

• Requirements
 Verify with at least 3 processors, 1 memory location
 Connected via an arbitrary interconnect

 Network can reorder messages arbitrarily
 Infinite buffers for this assignment
 Multiple lanes (as many as you decide you need)

❑ Virtual channels cost hardware area, so optimize on the
number of channels you create

• Directory-based memory unit (the directory is co-located
with the memory)

Murphi
Slide 10EECS 570

Assignment II: Grading

 Waypoint – 10%

 Correctness – 60%

 “Quality” of invariants & base protocol – 10%

 Will evaluate this by changing some cases and check if
invariants fail

 Optimization correctness – 10%

 Optimization difficulty – 10%

Murphi
Slide 11EECS 570

Murphi

• "Protocol Verification as a Hardware Design Aid," David L.
Dill, Andreas J. Drexler, Alan J. Hu and C. Han Yang, 1992

• Formal verification of finite state machines
 State space exploration – explores all reachable states
 Tracks queue of “to-be-explored” states
 Keeps giant table of all previously visited states
 Canonical representations & hashing make it efficient
 Exploits symmetry to canonicalize redundant states

Murphi
Slide 12EECS 570

Murphi Language

• Looks like Pascal… sorta

• User-defined data types & structures

• Rules indicate non-deterministic steps between states

• Invariants and asserts confirm protocol correctness

• Scalarsets and multisets data types capture symmetry

Murphi
Slide 13EECS 570

State Space Exploration

• Identify states.
 Both stable and

transient

• Actions:
 Identify actions
 Prerequisite for an

action to happen?
 What is the

outcome?

• Invariants:
 To ensure protocol correctness
 Example?

Murphi
Slide 14EECS 570

Murphi Examples

• Murphi Tutorial (Valid-Invalid Protocol):
 https://www.eecs.umich.edu/courses/eecs570/discussions/w22/murphi.html

• Pingpong.m
 A two-player ping-pong game

• Twostate.m
 A 4-hop, 2-state valid-invalid (VI) coherence protocol
 A good starting point for your project

Murphi
Slide 15EECS 570

How to Begin?

• Download eecs570_p2.tar.gz from the course website

• Can use CAEN, Bane or any other Linux system for this
assignment
 To compile the Murphi codebase

tar -xvf eecs570_p2.tar.gz

cd Murphi3.1/src

make mu

 To compile your Murphi code
cd Murphi3.1/eecs570_sample

./mu twostate.m

make twostate

./twostate

 Output
 No error found.
 State Space Explored: 259 states, 894 rules fired in 0.10s.

Murphi
Slide 16EECS 570

Important!

• Read the Murphi User Manual

Murphi3.1/doc/User.Manual

• Debugging can get nasty!
 The manual contains information on flags that will help with

debugging

Murphi
Slide 17EECS 570

Murphi-Misc.

• Start early
 An order of magnitude more difficult than the 1st assignment

• One change at a time
 Start simple, add incrementally
 Compile at each step
 Use version control if you please (don’t share code!)

• Memory
 You will soon run out of default memory allocated for Murphi
 Use: m<n>, n kilobytes while running executable

• This is Individual assignment; you are subject to Honor code
regulations

Murphi
Slide 18EECS 570

Designing a CC Protocol

• MSI Base Protocol

• Figure out different message types needed.

• Nack-free →More difficult

• Allow silent drop of clean data or maintain precise sharing?
 What are the implications?

• How many protocol lanes needed?

• Figure out all the transient states required for processors
and directory

• At least one optimization over your base protocol

Murphi
Slide 19EECS 570

3-Hop MSI Protocol

How you think it should look like

Murphi
Slide 20EECS 570

3-Hop MSI Protocol

How it really looks like

*My solution

Murphi
Slide 21EECS 570

MESI w/ Self Downgrade on 4 Procs

What you end up implementing

Murphi
Slide 22EECS 570

Example Solutions

• 3-hop MSI (NACK-free), 3 procs
 47744 states, 207008 rules fired in 4.42s.

• MSI + Self-Downgrade + Cruise Missile Invalidation, 4
procs
 4690993 states, 27254378 rules fired in 1594.70s.

Number of states explored will be different for your implementation

Murphi
Slide 23EECS 570

Optimizations (Easy to Hard)

 Self-downgrade (spontaneous M->S)
 MESI, directory may provide E in response to reads
 Migratory sharing optimization
 Add an owned state
 Cruise missile invalidations
 2-hop speculative requests
 Occupancy-free directory
 2 directories with directory migration / delegation
 SCI-style distributed sharer lists

Talk to Prof. Manerkar or the GSIs if you want to do something else!

Murphi
Slide 24EECS 570

Deliverables
• Waypoint report: <uniqname>.pdf (due on 3/18)

• Final submission (due on 4/8)

• When I say .zip , I mean .zip and NOT .tar or .7z or .rar
 Stick to file names (lowercase) and directory structure

• File descriptions
 msi.m : Baseline MSI, turn off optimization

 msi_opt.m : MSI protocol with optimization

 msi.out : Murphi output for baseline MSI

 msi_opt.out : Murphi output for MSI with optimization

 report.pdf : As per the assignment specification; as always, should
not exceed 2 pages excluding the protocol diagrams

<uniqname>.zip

msi.m msi_opt.m msi.out msi_opt.out report.pdf

Murphi
Slide 25EECS 570

Tip!

• Thoroughly go over the protocols described in

Sorin et al - A Primer on Memory Consistency and Cache
Coherence, Ch. 8

Murphi
Slide 26EECS 570

All the best!

