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Abstract 

This article discusses the current status of the Scalable 
Coherent Interface (SCI), IEEE standards project P1596. The 
SCI cache coherence protocol is scalable (up to 64K 
processors can be supported), effICient (memory is not involved 
in the common pairwise-sharing .updates), and robust (data 
can be reliably recovered by software after transmission 
errors). Scalability is achieved by having the memory directory 
identify only the first processor sharing a cache line; other 
processors sharing the same line are identified by entries in a 
distributed doubly linked list. 
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1 Introduction 

To simplify programming, multiprocessors have often assumed a shared-memory 
data-access model. When caches are used to improve the performance of these 
processors, cache-coherence protocols are needed to maintain the simple shared­
memory model assumed by software. Such coherence is achieved by exchanges of 
read or write transactions between processors or between processors and memory. 
In a traditional bus-based multiprocessor, coherence is enforced by broadcasting all 
or a subset of these transactions to other processors (Goodman 83). Such a protocol 
is usually called snooping or eavesdropping. 

This paper focuses on the directory-based cache coherence protocol being dermed 
for the Scalable Coherent Interface (SCI). SCI is an IEEE standards project (p1596), 
which began as a spin-off from the Futurebus standardization work (Sweazey 86). 
Brief presentations of preliminary results of the SCI cache coherence protocol 
design effort are given in (Sweazey 89) and (James 90). 

It became clear early in the SCI work that no bus-based connection scheme could 
handle the demands of the next generation of processor chips in multiprocessor 
configurations. The speed of buses is inadequate because of multidrop transmission 
line physics problems and because buses are inherently a bottleneck, i.e. they can be 
used by only one processor at a time. 

SCI solved these problems by using a large collection of point-to-pointlinks instead 
of a bus. Because links have better physical properties than buses, their signalling 
rates can be much higher (1000 MegaBytes/sec in the first version). Also, the bus 
bottleneck is avoided: distinct packets can be sent concurrently over different links 
within the system. 

However, new protocols were needed to provide the desired bus-like services 
without re-introducing the bus-related bottlenecks. For example, snooping cache 
coherence mechanisms depend on having all transactions serialized so that all 
participants can snoop, thus the coherence protocols developed for Futurebus cannot 
be used by SCI. 

A major effort was required to develop protocols to achieve these goals. Our design 
goals included scalability (up to 64K nodes), high performance (faster than 
eavesdrop or memory-directory based protocols), and robustness (recovery from an 
arbitrary number of transmission errors). 

For a long time SCI's success was in doubt because the feasibility of meeting such 
ambitious goals was not obvious. However, we have been pleasantly surprized; 
although SCI's distributed-list structure was mandated by the scalability goal, this 
distributed-list structure has been found to be efficient and robust as well. We know 
of no other cache-coherence protocol that addresses all these goals as 
comprehensively as SCI does. 

The rest of this paper is organized as follows: we first give a brief overview of 
directory-based cache coherence protocols and discuss the basic design of the SCI 
cache coherence protocol. We then describe its special properties, which include 
scalability, high performance, and robustness. 
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2 Previous Directory-Based Protocols 

Directory-based protocols use tags to identify the processors that are actively 
sharing the same cache line. For each coherently cached memory line, a directory 
identifies the set of caches that contain this line (called the sharing set), the state of 
the memory line, and the state of the cache lines. In central-directory schemes the 
directory is contained in one system memory; in distributed-directory schemes there 
may be multiple memory controllers, each of which has a directory for the addresses 
that it supports. We are primarily concerned with distributed-directory schemes, 
since the bottleneck of central-directory schemes limits their usefulness to a small 
number of processors. 

We use the terms central list and distributed list to differentiate between the 
coherence protocols that maintain the lists of sharing caches in memory and the 
coherence protocols that distribute the list among the sharing caches. 

One of the fIrst directory-based cache coherence protocols was suggested by Tang 
(Tang 76). Tang uses a central list to keep track of caches that cache lines. He also 
uses a "write-back" model, i.e. the data of a cache line is written back into memory 
only when needed. Store back is needed only when the cache line is dirty, the cache 
space is needed by another line, or the line is about to be shared by another cache. 
The amount of directory space used in this solution can become large (it is 
proportional to the number of used cache lines) and the central directory can 
become a performance bottleneck. 

In (Agarwal 88b) it is observed that there are two difficulties in making scalable 
central lists: broadcasts are sometimes required, and the memory can become a 
performance bottleneck. For example, Archibald and Baer (Archibald 84), proposed 
a central list which keeps the state of the memory lines but not the location of the 
sharing caches, thus requiring broadcasts in order to access the caches. The 
Aquarius project (Carlton 90) uses directories to selectively route transactions from 
one bus to a grid of buses. With their interconnect topology (a bus mesh) and 
selective routing, the Aquarius-project computer provides scalability by increasing 
the bandwidth when the number of processors increases. Other computers also use 
hierarchical cache organizations (Wilson 87). 

The cache protocol described by Censier and Feautrier (Censier 78) also uses the 
"write-back" model, but they call it "nonstore-through". They maintain a 
MODIFIED bit for each memory line, and a PRIVATE flag for each cache line. In 
addition there are as many PRESENT bits in each memory line as there are caches 
in the system. Such coherence protocols where the complete sharing set is stored 
with the memory line is called a "full-mapped directory" in (Chaiken 90). 

(Chaiken 90) also introduces the notion of a "limited directory." A limited directory 
can hold only a portion of the largest potential sharing set. The sharing-set size can 
be reduced by invalidating old cache copies when the set size would be exceeded 
(Agarwal 88b). In the DASH computer (Lenoski 89) the limited directory is used to 
hold multicast lists when the set size has been exceeded. 

In the Alewife computer (Agarwal 90) a limited directory is implemented in 
hardware, but a software based overflow mechanism is provided. This lets the 
directory overflow into RAM when the sharing set becomes large. 
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The last class of directories defined in (Chaiken 90) is called "chained directories." 
John Willis reports that variations of the chained directory protocol have been used 
in several research computers including Lawrence Livermore's S-l Mark III, 
Symbolic's Aurora and Philips Laboratory's Strand (Willis 88). In a linked list 
protocol the directory information for each memory line is distributed over all cache 
lines that cache this memory line. Hence such a directory is also called a 
"distributed directory". The Stanford Distributed-Directory protocol (Thapar 90) 
and the SCI protocol are of this class. 

The Stanford Distributed Directory uses a singly linked list to derme the sharing set. 
The main memory line contains a (head) pointer to the last cache to access this line. 
The cache line in that cache contains a pointer to the previous cache that accessed 
the line, etc. Insertions are done at the head of the list When one cache line wants to 
be deleted from the list it invalidates itself and the rest of the list. 

The SCI directory uses a doubly linked list to identify the sharing set, and the list 
entries are distributed among the sharing caches. The memory or directory 
bottleneck that is reported in (Agarwal 88b) is minimized by distributing many of 
the directory-update operations out to the caches themselves, and by simplifying the 
few memory directory operations that are left. For example, memory operations can 
always be performed immediately, independent of the processor-cache state. 

Sharing lists scale better when distributed, since the directory at the memory needs 
only be large enough to identify the cache at the head of the sharing list. 

3 The SCI Standard 

The SCI standard defines the physical and logical interface and interaction protocol 
for up to 64K nodes. A node is a processor (or a multiprocessor), a memory module, 
an I/O adapter or a combination of these, as shown in Figure 1. 

Memory 

I 
SCI-interface 

~ 
~ 

I 
SCI-interface 

Processor 

SCI-interface 

SCI-in erface 

Figure 1: Four possible SCI configurations. 

Note that a DMA adapter needs a cache with at least one line in order to participate 
in the coherence protocols. 
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Physical SCI memory addresses are 64 bits long; the most significant 16 bits are the 
node identification, while the remaining 48 bits are the physical address within the 
memory of the node. The coherent transactions are split into a request message and 
a response message. The request and response messages are called subactions. 

A subaction also contains command, data, and status fields. A 16-bit CRC is 
included to detect transmission errors reliably. Any damaged subactions are 
discarded when the damage is detected; timeouts are used to detect the loss of a 
request or response subaction. 

To simplify the coherence protocols, a standard coherence line-size of 64 bytes has 
been assumed. For this transfer size, the size of the subaction headers (16 bytes) is 
significantly less than the size of the data transfers (64 bytes). We expect to keep the 
same coherence line size as technological improvements increase the bandwidth of 
our links, since the ratio of the header size to the data size is independent of the link 
bandwidth for SCI. 

The SCI interface consists of an input link and an output link, operating at 
1 GByte/sec in initial implementations. For small systems neighboring input and 
output links may be directly connected, forming a ring. For larger systems these 
links could be dynamically connected by a switch, or a large number of small rings 
could be interconnected by bridging nodes. The SCI protocols were designed to 
support all these models transparently. 

4 SCI Sharing Lists 

4.1 Sharing List Structure 

There are three basic operations on the SCI list: The insertion of a new cache 
element, the deletion of an element, and the reduction to a single-entry list. The 
insertion operation is used when a new cache wants to get a readable copy of the 
line. The deletion operation is used when a cache needs a cache line for other uses 
(also called roll-out). The reduction operation is used when data is written, to 
remove all but one of the duplicate copies in the sharing set. The remaining copy is 
then private and can be modified. 

To facilitate these operations the SCI sharing set is identified as a doubly linked list. 
There is a pointer in memory to the frrst node in the sharing list and the other nodes 
in the list contain pointers to their predecessor and successor in the list (Figure 2). In 
memory each line that may be coherently cached contains (in addition to its data) 
some status information and a 16-bit node identifier which points to the frrst cache 
line (node) in the sharing list. In the caches each cache line contains (in addition to 
its status and data) two 16-bit node identifiers that are the backward and forward 
pointers to other nodes in the sharing list. 

The cache coherence protocol is built on the transaction mechanism described in the 
previous section. The directory is modified by requests sent from one cache line to 
another or from a cache line to memory. These requests contain the destination 
address (the node identification of another cache) as well as the 64-bit physical 
memory address. Given a memory line address, a sharing set is a set of nodes 
actively sharing that memory line address, as illustrated in Figure 2. 



224 

---

Memory 

Figure 2: An SCI sharing list. 

The status field of a cache line defines the meaning of the forward and backward 
pointers; if the line is not in a sharing list. the pointers are undefmed; at the head of 
a list. only the forward pointer is defined; at the middle of a list. both pointers are 
defmed; at the tail of a list only the backward pointer is defmed. The status field of a 
memory line defines whether a list exists. and whether the memory data is valid. 

The linked list data structure also makes SCI scalable in the sense that the size of 
the SCI directory is proportional to the total cache and memory sizes; aU (maximum 
64K) nodes can theoretically be members of one sharing set In Section 9 we will 
discuss optimizations that improve the efficiency of updating such large sharing 
sets. 

4.2 Sharing-List States 

As stated above. the status fields in cache lines and memory lines define not only 
the meaning of the pointers. but also the privileges and status of the data in cache or 
memory. In this section we describe these status values in more detail. The 
coherence protocols support the stable states shown in Table 1 (to simplify the 
descriptions. some optional states are not described). 

mem first (other) last Description 
home Uncached data 
fresh only_fresh One fresh copy 

head3resh tail_valid Two fresh copies 
head_fresh mid_valid tail_valid More fresh copies 

gone only_dirty One dirty copy 
head_dirty tail_valid Two dirty copies 
head_dirty mid_valid tail_valid More dirty copies 

gone head_excl tail_stale Two copies. stale tail 
head_stale tail3xcl Two copies. stale head 

Table 1: Stable Sharing-List States. 

When the sharing set is empty the memory line is in the state home. Otherwise 
memory is in one of the two states fresh or gone . In the state fresh. memory is 
known to contain valid data. while in the state gone. memory data may be stale. 
When the memory state is gone. valid data is found in one or more cache lines of 
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the sharing set. Since memory updates are always completed indivisibly, memory 
has no transient intennediate states. 

A cache line that is not in use is in the state invalid (shown as ---- in the table). The 
data in a cache line is always valid for at least one entry in the sharing list. The head 
node knows when memory containsfresh data, and reflects this by being in the state 
onlyJresh or headJresh. The contents of head entries in other states must be 
written back to memory when the sharing list collapses. 

Additional cache line state infonnation gives the position of the cache line in the 
sharing list: head, mid and tail. A cache line that is both the head and the tail is in 
the state only. Special two-entry list states (head_excl&tail_stale or 
head _stale&taiCexcl) are provided to efficiently support pairwise sharing. A cache 
line in the only_dirty, head_excl, or tail_excl states can be modified. 

The basic sharing-list updates are described in the following sections. The optional 
pairwise-sharing updates are described in a later chapter. 

5 Sharing-List Updates 

5.1 Insertion 

On a load miss, a node joins an existing sharing list by sending a prepend request 
(Rl in Figure 3) to the addressed memory line. The target of this subaetion is 
defmed by the 16-bit node identification of the memory controller, plus the 48-bit 
physical line address within the node. The memory controller swaps its old head 
pointer with a pointer to the new node, and returns the old head pointer in an 
immediate response (SI in Figure 3) back to the requester. 

New Old 
Head node Head node Middle node 

.... ... 
--~ 

Tail node 

-.. 

Double sharing·list links 

Request (R) or response (S) 

Figure 3: Sharing list insertion initiated. 

After receiving this response, the new head (if the sharing list was not empty) 
infonns the old head of its predecessor in the list by sending a new-head request, 
R2, to the old head. The old head updates its pointers and (if asked) returns a copy 
of its data in the response, S2. After these two transactions have completed, the 
sharing list has one more entry and a new head, as illustrated in Figure 4. 
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New 
Head node 

Old 
Head node 

Memory 

Middle node 

••• 

Figure 4: Sharing list insertion completed. 

Tail node 

Several new nodes might (nearly) simultaneously prepend themselves to an existing 
list. Memory immediately responds to the prepend requests in the order that they are 
received. The new head, however, delays other would-be new heads until it has 
prepended itself to the sharing list. This scheme is fast and ensures forward 
progress. Insertion bandwidth is however limited by the constant time it takes to 
execute the prepend request in memory. A truly scalable architecture would insert 
elements into the sharing set even faster; we will briefly elaborate on this in 
Section 9. 

S.2 Deletions 

When a node no longer wants to share a memory line, it deletes its entry from the 
sharing list. The entry in a single-entry list is deleted by writing the data back to 
memory. Otherwise, the delete operation involves transfers between adjacent entries 
in the sharing list. 

A middle-of-list cache line (called ML) has a forward pointer with value Vf and a 
backward pointer with value Vb, as illustrated in Figure 5. Note that backward 
pointers point to the left while forward pointers point to the right. If the deleting 
node is in the middle of the list, it fIrst sends an update backward request (R 1) to its 
successor. This request contains the node identification Vb, which normally updates 
the backward pointer in the successor. 

Head node ~Rz... ML node - R.,!. ~ Other node Tail node -_. 

Memory 

Figure 5: Sharing set deletion. 
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The deleting node then sends an update forward request(R2) to the predecessor, 
containing the identification, Vf, of the successor. This leaves the sharing list with 
one less entry, as illustrated in Figure 6. 

Head node Othernoda Tail node -_. 

Memory 

Figure 6: Sharing set deletion. 

Note that these are the nonnal protocols for deleting an entry from a doubly-linked 
list. However, special care is required to resolve conflicts when deletions are 
concurrently perfonned by adjacent nodes. 

The above described deletion algorithm is scalable to a large set of nodes, since 
many deletions can occur in parallel. In the extreme case, however, deletions in one 
sharing list will be serialized when all nodes delete themselves at the same time. In 
this case, the deletions occur only at the (dynamically changing) tail entry. 

S.3 Reduction to Single-Entry Sharing List 

The SCI cache coherence protocol is invalidation based: in order to write, a node 
must invalidate copies in the other sharing list entries. A head node has the privilege 
to delete all the other nodes from the list. and hence may reduce the sharing set to a 
single-entry list with itself as the only member. The head deletes or purges the rest 
of the list by first sending a purge request to the second node in the list. This node 
responds by returning the identification of its successor (the third node in the list). 
The head then sends a purge request to this next node (as seen in Figure 7). This 
node gives a purge reply, containing the identification of the next node in the list. 
etc. 
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Purge request --------->-
Head node -<_ y~g~r!Pll _ _ _ Purge node Tail node 

---

Memory 

Figure 7: Reduction to single-entry list. 

The time used to reduce the sharing list to a single-entry list when the data structure 
is a linear list is proportional to the size of the list. Previous studies have shown that 
sharing sets are usually not large (Eggers 88, Agarwal 88b). Hence the linear time 
that this operation uses will nonnally not be of any concern. 

In the future, however, new highly parallel algorithms will perhaps not have such 
characteristics. An optimization of this purge operation is defined in . optional 
extensions to the SCI base protocol: a node can, under certain circumstances, 
forward the purge request to both the adjacent and further distant nodes. In this way, 
the purge process can be concurrently active at multiple sites within the sharing list. 
In Section 9 we will briefly describe the data structures which support these more­
efficient sharing list reductions. 

SCI supports both weak and strong ordering. Strong ordering is enforced by waiting 
for the purge to complete before allowing the processor to proceed; for weak 
ordering, the processor may proceed before the purge is complete, only checking 
completion as needed for program correctness. 

6. Scalability 

A computer architecture is scalable if it is possible to add new components (e.g. 
processors or memory modules) and get an increased perfonnance appropriate to the 
added cost. 

SCI supports up to 65,000+ nodes, hence it has the potential to be scalable up to this 
limit The SCI coherence protocol is scalable in the sense that that there is no central 
control and no globally-shared resource. Any number of memory or sharing-list 
operations can take place at the same time provided they do not use conflicting 
resources (the same part of the interconnect, the same memory module, or the same 
cache). 

The SCI directory is scalable in the sense that any number of nodes can share the 
same memory line, and the size of the directory is proportional to the number of 
memory lines and cache lines. Deletion of elements from the sharing set is fully 
scalable. This operation is executed in a decentralized way and does not (usually) 
involve the central directory (in memory) at all. 
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Ideally a shared-memory system should be able to handle a large (proportional to 
the total number of nodes in the system) number of accesses to the same memory 
location "at the same time." We define a system to be logarithmically scalable if the 
maximum delay for any operation is proportional to 10g(N), where N is the number 
of nodes in the system. We are considering extensions to the base protocol that 
make SCI scalable even according to this definition. The implementation of the 
sharing set as a list makes two operations linear: 1) set insertion (including 
distribution of data to all new members), and 2) the reduction of the set. In order to 
make these two operations scalable, the sharing set can optionally be structured as a 
tree. See Section 9 for details. 

7. Performance 

Previous sections have described the basic SCI sharing-list operations required for 
coherently-shared data. SCI also provides a rich set of interoperable performance­
enhancement options, which (at some cost in complexity) can be implemented as 
required to enhance system performance. Several of these options (DMA, pairwise­
sharing, and QOLB) are discussed in the following sections. 

7.1 DMA 

In some of the existing RISC-based systems, DMA I/O transfers are performed non­
coherently into what are otherwise coherently managed pages of memory address 
space. For data transfers, this dramatically complicates the I/O driver software, 
which has to explicitly manage the flushing of relevant cache lines. For instruction­
page replacements, the problems are significant but less severe (since the data is 
read-only). However, special treatment of instruction-cache pages is less practical 
for languages which support or encourage the use of self-modifying code. 

To simplify software, SCI provides coherence check options for DMA transfers; 
these options improve the performance of DMA-related coherence checking, while 
reducing the complexity of their implementation. These simple protocol 
optimizations are possible because of the nature of DMA participation - a DMA 
controller doesn't need to be added to the sharing list. However, the DMA controller 
is required to have a minimal (one line) cache in order to participate in the 
coherence protocols. 

For example, consider the coherent DMA read protocols. If the memory state is 
home or fresh, the memory read returns the data and leaves the sharing-list state 
unchanged. The DMA reader is prepended to the existing sharing list (from which 
the read data is copied) only when the memory state is gone. We rejected the idea of 
reading from the sharing-list without prepending to it, since the structure of the 
sharing list (and hence its validity) may change between the time that memory is 
read and the old sharing-list head is accessed. 

7.2 Pairwise sharing 

The pairwise sharing option is invoked when the sharing set consists of two nodes 
and is constant over a period of time. At most one of the nodes may modify the data 
at a time, but this capability can be negotiated between the nodes without involving 
memory. If processor A needs to modify the line (that was last read by processor B), 
it sends a request (Rl) to processor B. When the request is processed at processor B, 
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its state is changed to stale and a (modifiable) excl copy is returned (Sl) to 
processor A, as illustrated in Figure 8 (showing processors A and B as the head and 
tail respectively). 

Head node (A) Tall node (B) Head node (A) Tall node (B) 

(head dirtY! (tall valid} (head ex~ (tall stale) 

head's mOdify setup head's data modifiable 

Figure 8: Pairwise sharing (head's data modified). 

Similarly, when node B needs to read the line (that was last written by processor A), 
it sends a request (R2) to processor A. When the request is processed at processor 
A, its state is changed to dirty and a (readable) valid copy is returned (S2) to 
processor B. These steps are illustrated in Figure 9. 

Head node (A) Tail node (B) Head node (A) Tail node (B) 

(taiLstale) (taiL valid} 

tail's read setup tail's data readable 

Figure 9: Pairwise sharing (tail's data read). 

In this way data can be transferred directly between the caches of the two processors 
sharing the data. This is a fundamental advantage of distributed-list protocols over 
their central-list counterparts, since the memory bottleneck is avoided and the 
transfers are much more efficient. The performance advantages (when compared to 
central-list protocols) can be calculated when the pairwise-write components and 
node delays (as illustrated in Figure 10) are considered. 

Head node Tail node Head node Tail node 

(head_dirty> (taH_valid.> 
head_exc/j taiLstale) 

SCI Pairwise Update 

Central-List Update 

Figure 10: Pairwise-Sharing Write Sequences (SCI and Central Lists). 

To simplify the comparison, assume that the node-access delays are twice the 
subaction transmission delays (a reasonable assumption for SCI). The pairwise 
performance of SCI and central-list protocols (which require an additional 
transaction and node-access delay) is summarized in Table 2. 



Parameter 
Total transaction latency 
Number of subactions 
Nodes accesses performed 

SCI 
4 
2 
1 

Central List 
7 
3 
2 

Table 2: Pairwise-write Performance Comparison (smaller is better). 
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This performance distinction indirectly affects system performance, since pairwise­
sharing is only one form of data sharing. However, we expect to see large amounts 
of pairwise-sharing, so this distinction should significantly affect overall system 
performance. Note that this performance comparison does not consider the 
performance loss associated with implementing specialized 3-phase transaction 
sequences (Rl,sl,S2), which are assumed by the central-list coherence protocols 
(DASH and SDD). 

7.3 QOLB 

In a multiprocessor computer, implementation of primitives for data sharing and 
synchronization is of vital importance. Sharing and synchronization operations can 
be done by software, with simple coherence hardware support. Special software 
algorithms, based on the use of the indivisible swap and compare&swap primitives, 
are sufficient to implement a variety of efficient non-blocking enqueue and dequeue 
operations. These algorithms can be designed to minimize the number of 
unnecessary coherence transactions sent through the interconnect (Mellor-Crummey 
90b). 

However, better performance is possible when the synchronization mechanisms are 
integrated with the cache coherence protocol. These generally involve direct cache­
to-cache transactions that are delayed until the data is in a useful (unlocked) state. It 
should then be possible (and easy) to write efficient programs that utilize the shared 
memory and the caches in an optimal way. 

In SCI, a special QOLB (Queue On Lock Bit, Goodman 89) mechanism creates a 
queue of processors, where only the first processor has access to the line in 
question. When this fIrst processor has fInished using the data, the ownership is 
automatically transferred to the next processor in the queue. Where possible, 
enrollment in the queue also effects a prefetch of the desired data. 

The SCI version of QOLB uses a sharing list where all but one processing node (at 
the tail) is in the head idle or mid idle states, and the owner of the cache line is in 
the tail_need state. The processing nodes prepend themselves into the sharing list 
and passively wait in the idle state until the tail's copy is passed to them. When a 
QOLB lock is released, the tail passes its copy to the previous entry in the sharing 
list, which becomes the new tail. 

The QOLB protocols use the sharing-list tags provided by the basic SCI protocols, 
but additional cache-line states (like head idle and mid idle) are required to support 
this optional extension. The QOLB mechanism also-works efficiently for two­
element sharing lists, using the pairwise-sharing protocols described previously. 

Such an SCI QOLB mechanism only assures exclusive access to a line as long as it 
resides in cache. Therefore, the QOLB locks are only used for scheduling 
synchronization instruction sequences; indivisible instruction sequences (such as 
swap) are relied on to maintain the integrity of shared data structures. 
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8 Fault tolerance and error recovery 

The SCI transaction protocol ensures that requests and responses are correctly 
transferred between the nodes. The SCI cache coherence protocol is based on split 
transactions (request and response subactions) that time out when a response is not 
returned within a software-specified timeout interval. When the timeout is 
exceeded, software is expected to invoke a fault recovery routine. 

The SCI cache coherence protocol can recover from any number of transmission 
errors. To support this recovery, the deletion of a previously dirty cache line is 
always delayed until after the dirty data has been reliably copied to another location. 
Otherwise, dirty data could be lost if the transaction containing the dirty data were 
dropped. 

When data is being modified, for example, a new head prepends to an only_dirty 
entry and leaves this entry in the tail stale state. If the prepend transaction (which 
contains the dirty data) is damaged; the dirty data can be recovered from the 
tail_stale copy. Note that the robust prepend algorithm also leaves the sharing-list 
entries in efficient pairwise-sharing states (head_excl and tail_stale). 

Special care is also required when an only dirty copy is returned to memory; a two 
transaction sequence is required. The dirty data is first written back to memory 
(transaction 1) and the cache-line ownership of the clean line is then returned to 
memory (transaction 2). The increased use of interconnect bandwidth is small, since 
the data (which is the largest part of the packet) is only transmitted once. 

Recovery from errors is handled by fault-recovery software that is activated by the 
transaction-timeout error. The recovery strategy is to 1) disable coherent memory 
accesses to the affected cache-line address(es), 2) return dirty cache-line copies to 
memory, 3) discard the residual sharing-list structures, and 4) re-enable coherent 
access to the affected cache-line addresses. 

To simplify the recovery, the fault-recovery software is expected to use a non­
coherent memory-access mode. Special transactions are provided to selectively 
disable coherent memory accesses while the recovery is being performed. The 
recovery software extracts the affected cache lines from remote processors and 
leaves their cumulative state in a pre-reserved range of memory address space. 
Software searches through these residual sharing-list states and identifies the cache 
line with the most-recently modified data. After the modified data is copied to its 
proper memory location, the memory is re-enabled for accesses to the affected 
cache line. 

No attempt is made to reconstruct the sharing-list structure, since similar structures 
can be dynamically re-created after the fault-recovery process has completed. 
Identifying the cache-line with the most-recently modified data can be a complex 
task, but with our low transmission error rates the performance of the recovery 
process should not be a concern. 
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9 Ongoing Research 

The linear list structures appear to be adequate for moderate-sized systems, but in 
very large systems (thousands of processors) more efficient structures may become 
importanL We are working on extensions to the SCI protocols that have logarithmic 
rather than linear performance, supporting combining of requests in the interconnect 
when congestion occurs, rapid parallel distribution of responses to combined 
requests, and fast purging of lists. 

The strategy we are pursuing uses a third pointer for each line in each cache 
controller, that points to a distant (or at least non-adjacent) part of the list. Each 
sharing-list would have its forward and backward pointers (to its adjacent 
neighbors) as well as an approximate pointer to a more distant (but closer to the tail) 
sharing-list entty, as illustrated in Figure 12. Note that this is an illustration of an 
approximate pointer structure; the analysis and selection of approximate pointer 
structures is being addressed as an extension to the base SCI standard. 

~ (approximate pointers) 

• [ •• ;;1; .11 •• ; i;. .1.; •• 
• • • 12 11 10 9 8 7 6 5 4 3 2 1 0 

«-head) (list position) (tail) 

Figure 11: Approximate pointer structures. 

These pointers allow tree structures to be created in order to achieve logarithmic 
performance. f!owever, the tree is not maintained (which would be prohibitively 
expensive) so the pointer is checked for validity as it is used (in case the target node 
has subsequently rolled out the line, for example). Thus we call them approximate 
pointers: they approximately formed an optimal tree when created, and they may 
still point to a useful place when they are used. ' 

Memory requests can be combined in the interconnect (Gottlieb 83, Edler 85) or at 
the memory controller. As requests combine, the originating nodes are informed of 
their position in the list (measured as distance from the tail). Each node uses its 
position value to determine how to create its approximate pointer, following the 
linear list pointers initially, in a series of hops we call recursive doubling. Choosing 
optimal ·pointer strategies is a subject of our current SCI extensions work. One 
needs good performance in both directions (the initial data fetch as well as the fmal 
data purge), with gtadual degradation of performance when a few of the nodes leave 
the lisL 

The linear lists are always correct, and are relied on for correct performance 
wherever the approximate pointers fail. The approximate pointer scheme is thus 
merely an optimization that gives logarithmic performance in many situations, and 
can be added to the SCI standard at some later date when it is well understood. 
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10 Conclusion 

The cache coherence protocol of SCI is invalidation based and uses distributed 
sharing lists and directories. The basic cache coherence operations are effICient and 
simple. The high performance is particularly due to the fact that a new cache line 
can join the set of sharers by one simple and extremely fast memory operation. 
Other operations such as deletion and breaking down of the sharing set are executed 
decentralized and possibly in parallel while new caches concurrently join the 
sharing list at full speed. 

The SCI cache directory is scalable. The directory overhead is a maximum of 3.5% 
of the memory and 7.4% of the cache size. In this data structure up to a theoretical 
maximum of 65,000+ caches can share the same line. 

The SCI cache coherence protocol is based on point-to-point subactions arranged as 
transactions, where the request subaction is sent and a response subaction is 
returned. By avoiding specialized 3-party transactions (as are used in the SDD and 
DASH protocols), the simpler SCI transactions should be faster and more reliable 
(errors can be trapped at the earliest possible moment). Unlike the DASH protocols, 
the SCI coherence protocols allow transactions to be completed in any order, which 
places fewer constraints on the design of the interconnect. 

The distributed-list protocols have other advantages over their memory-list 
counterparts. The size of the memory-resident directory remains largely constant as 
the number of processors is increased; special directory overflow protocols (as 
implemented in the DASH and Alewife protocols) are not required. The memory­
update protocols can always be completed immediately, which eliminates the 
livelock/deadlock conditions that arise if memory rejects new requests while 
processing others. 

We are not aware of any other coherence protocol that has addressed the issue of 
data recovery after transmission errors. SCI not only addresses this issue, but 
supports recovery from an arbitrary number of transmission errors. Although other 
protocols might be extendable to provide such capabilities, we suspect that the 
specialized transaction-set requirements of some distributed protocols (3-party 
transactions and constrained ordering, for example) would make them difficult to 
extend. 

Because it is based on three simple directory operations, the SCI cache coherence 
protocol is relatively easy to understand. However, SCI supports a high degree of 
parallelism, and several of these directory operations could be performed 
simultaneously on the same sharing list. Thus, it is not immediately obvious that the 
operations will give correct results in all cases of interaction. Simulations are being 
performed in order to find errors in the draft specifications of the cache coherence 
algorithms. Since the SCI coherence protocols are specified as C-code routines, 
exact simulations of the specification can be performed. 

Given the large numbers of combinations of transient states, these simulations might 
not find all errors in the draft specifications. A mathematical proof is therefore 
being performed on the cache coherence protocol (Gjessing 9Oa-c). 
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The SCI cache coherence protocol has been designed based on currently known 
technology and research results. Since no real execution traces exist for directory­
based shared-memory multiprocessors, some design choices have probably been 
made without sufficiently sound arguments. When the fIrst SCI based computers are 
operational we will be able to evaluate the design and eventually correct and 
improve it. It will be very interesting to see what kinds of new algorithms evolve 
when new large-scale cache-coherent multiprocessors are in regular use. 
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