Name:

Sign the honor code:

EECS 570 Midterm Exam

Fall 2025

Unigname:

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:
# Question Points
1 Short Answers /15
2 Amdahl’s Law /5
3 Coherence Overhead /10
4 Coherence Protocol /20
5 Vector Processing /10
6 Transactional Memory /15
7 Memory Consistency /20
Total /95
NOTES:
e Calculators are allowed, but no PDAs, portables, cell phones, etc.
e Don’t spend too much time on any one problem.
e You have 90 minutes for the exam.
e Be sure to show work and explain what you’ve done when asked to do so.
e The exam has 17 pages. Make sure you have all of them.




1) Short Answer [15 pts]

a) Consider sense-reversing barrier implementation. Explain in 1-2 sentences why we need the
"sense" variable to alternate between true/false, rather than just using a simple counter. [2 pts]

b) In hardware transactional memory (HTM), which system updates architectural memory state
before committing a transaction. Choose one. [1 point]

i) eager conflict detection ii) lazy conflict detection

iii) eager versioning iv) lazy versioning

¢) What locking discipline ensures deadlock freedom? [3 points]

d) Select all statements that are true about a ticket lock. [5 pts]

i) Ticket locks provide fairness (FIFO ordering).

ii) Ticket locks are non-blocking.

iii) Ticket locks need an atomic operation to acquire and release the lock.

iv) Ticket locks incur O(P) interconnect traffic per lock acquire/release with P threads.

v) Ticket locks can incur O(P?) interconnect traffic under high contention when multiple threads
spin on the same variable.



e) Calculate the work and depth of the following acyclic directed graph. Also, draw the critical
path(s) in the system. [4 points]

1
1 3
\/ ﬂ/
5 4
T .
2 4 1 2

Depth =

Work =




2) Amdahl’s Law [5 pts]
You parallelized a data processing app and got a 6x speedup on 16 cores. Profiling shows the

remaining bottleneck is a sequential code, while the rest of the code scales perfectly.

a) Based on the measured 6x speedup on 16 cores, what percentage of the original execution
time was sequential? Show your work. [2 points]

b) You have budget for one optimization:
e Option A: Optimize the sequential bottleneck to run 2x faster, but stay on 16 cores
e Option B: Upgrade to 32 cores (speed of sequential code remains unchanged)

Calculate the speedup for each option. Which should you choose and why? [3 points]



3) Cache Coherence [10 pts]

Consider the following multithreaded C code that runs on a 4-core system with an MSI snooping
cache coherence protocol. Each core has a private 32KB L1 cache with 64-byte cache lines.
Assume the cache is write-back and uses a write-allocate policy.

#define NUM THREADS 4
#define ITERATIONS 1000000
struct counter t {
long count; // 8 bytes
long account info [5]; // 40 bytes
} counters[NUM THREADS];
void worker (int id) {
for (int 1 = 0; 1 < ITERATIONS; i++) {
counters[id] .count++;

}

return NULL;
}

a) Even though this program is data-parallel—each thread updates a different counter—it does
not scale well with more threads.

Identify a coherence protocol related overhead. Indicate which shared variables cause the
problem. [3 pts]

b) Assume Thread 0 (Core 0) and Thread 1 (Core 1) run concurrently, each executing
counters[id].count++ at nearly the same time.

Thread 0 performs its increment first, followed immediately by Thread 1.
Initially, both cores have the cache line containing counters in the Invalid (I) state.

Trace the coherence traffic for one loop iteration and fill in the table below. [4 pts]



Event Bus Message(s) Coherence Coherence state
state (Core 1)
(Core 0)

Initial State - I |

Core 0: counters[0].count++ | Message:

Sent by:

Message:

Sent by:

Core 1: counters[1].count++ | Message:

Sent by:

Message:

Sent by:

c¢) Propose a simple change to the code to reduce the coherence overhead you identified in part
(a). Your solution should ONLY modify the counter_t struct definition, and leave all other code
unmodified. Briefly explain. [3 points]



4) Coherence Protocols [20 Points]
The Xerox Dragon protocol uses four states:

E (Exclusive): Block is only in this cache, clean.

M (Modified): Block is only in this cache, dirty.

Sc (Shared-clean): Block is shared by multiple caches; this cache is not the last writer.
Sm (Shared-modified): Block is shared; this cache is the /ast writer and must update
memory on eviction.

Dragon is a write-update protocol—when a block is written, other caches’ copies are updated,
not invalidated.

a) Complete the following state transition diagram for the Dragon protocol using only the
given action/reaction symboils. [15 pts]

e Three transitions are already labeled; fill in the remaining ones.
e You may add up to 2 extra edges.
e Do not add states or transient states.
e Superfluous edges incur a —1 point penalty.
Use S to mark transitions when sharers exist, and !S when no sharers exist. Here, S
refers to a hardware “shared” line connected to all processors, which indicates
whether a block being broadcast on the bus is cached by more than one processor.
Event Description
PrRd Processor Read
Prwr Processor Write
PrRdMiss Processor Read Miss
PrWrMiss Processor Write Miss
BusRd Bus Read
BusUpd Bus Update
BusReply Bus Reply
Update Update own cache block
Flush Place the block on the bus and write to memory




PrRd/-

—| -
IS && PrRdMiss/ e e

BusRd

BusRd; BusUpd

S && PrWMiss/ e "

b) The Dragon protocol allows the cache blocks in the Sc state to be replaced silently without
any bus activity. What optimization to the coherence protocol can be made if a broadcast was
made to let other caches know that a Sc block is being replaced? [5 points]



5) Vector Processing [10 pts]

Consider the following scalar code:

int indices[16];
int values[16], result[l6];

for (int i = 0; 1 < 16; i++) {

int idx = indices|[i];
result[idx] = result[idx] + wvalues[i] * 2;

Consider the following vector instruction set. Each element is an int (32-bit integers).

Instruction What it does Example

VLD Load 4 consecutive elements from memory. VLD V1, [A+i] - loads A[i..i+3]

VST Store 4 consecutive elements to memory. VST V1, [A+i] — stores V1 » A[i..i+3]

VGATHER Load 4 elements using an index list (indirect VGATHER V2, [A], V1 - loads A[vi[e..3]]
access).

VSCATTER Store 4 elements using an index list. VSCATTER V2, [A], V1 — stores V2[i] =

A[vi[i]]

VMUL Multiply each of the 4 elements by a VMUL V3, Vi, #2 — doubles each element
number.

VADD Add two 4-element vectors element-by- VADD V4, V1, V2 — V4[i] = V1[i] + V2[i]
element.

Vector registers: VO-V5



a) For the following access, specify whether the access pattern is contiguous or irregular. Also,
specify the vector instruction you would use. [2 pts]

Access Access Pattern

indices[1i]
(read)

values[i]
(read)

result[idx]
(read)

result[idx]
(write)

Vector Instruction

b) Show the vectorized loop body for processing 4 elements per iteration. [3 pts]

for (int 1 = 0; 1 < 16; 1 += 4) {

//

//

//

/7

/7

/7

1)

Load 4 consecutive indices[i..i+3]

V0, [indices + 1]

Gather 4 old result values using indices

VvV1l, [result], VO

Load 4 consecutive values[i..i+3]

V2, [values + 1i]

Multiply each by 2

V3, V2, #2

Add old result + doubled wvalues

v4, v1, V3

Scatter back to result using indices

V4, [result], VO

10



c¢) Calculate the speedup of the vectorized version compared to the scalar version for the
16-element array. Show your work. [5 pts]

Use these simple costs:

e Vector and scalar load/store: 10 cycles
e Vector and scalar arithmetic (mul/add): 4 cycles

e Scatter and gather: 40 cycles

e Loop overhead: 3 cycles per iteration (scalar and vector)

11



6) Transactional Memory [15 pts]

Initial state: X =Y =0

Transaction T1 Transaction T2
I1: Read X I4: Read Y
I2: Write Y =1 I5: Write X =1
I3: Read Y I6: Read X

a) Is there a conflict between T1 and T2? If so, identify all pairs of conflicting instructions.

(2 pts]

b) Transactions guarantee serializability. That is, all transactions can be ordered such that
they appear to execute one after another in a single core (total order).
Assume T1 and T2 are executed concurrently on two cores starting at the same cycle 0.
Assume that each core can execute one memory access in each cycle.
Assume a transactional memory system that uses eager versioning and lazy conflict
detection.
Create a serializable order for instructions in T1 and T2 that takes the least number of
cycles.
(Hints: An execution of T1 and T2 can conflict, but still be serializable.
There exists a solution that takes fewer than 6 cycles ). [5 pts]
Cycles Transaction T1 Transaction T2
0
1
2
3
4
5

12




c) Iftwo concurrent transactions execute conflicting memory accesses, a conventional
system would abort one of them. While this is sufficient constraint, it is not necessary to
ensure serializability of transactions.

Say your runtime system can keep track of the data dependencies (RAW, WAR, WAW)
between two or more concurrent transactions. Determine a less restrictive constraint
that the system could check between those dependencies to determine that the
execution of transactions is NOT serializable. It should be less restrictive than checking
for any conflict. lllustrate with an example that is serializable but not conflict-free. [5 pts]

d) Give a simple code example with two transactions that can deadlock. [3 pts]

Transaction T1 Transaction T2
begin tx begin tx
end tx end tx

13



7) Consistency Models [20 pts]

a)

Which of the following memory ordering constraints does in-window speculation help
mitigate the overhead of? Circle all that apply. [4 pts]

Load -> Load Load -> Store

Store -> Store Store -> Load

fence -> Load fence -> Store (fence is full fence)

Load -> fence Store -> fence

Is it possible to guarantee sequentially consistent (SC) execution on an x86 processor?

If so, how? [2 pts]

Select True or False.
+1 for correct. -1 for incorrect answer. No penalty for blank. [5 pts]

i) An SC execution guarantees data-race-freedom
True / False

i) SC guarantees that there is only one possible order of execution for memory
accesses in a program

True / False

i) Data-race-free program guarantees that there is only one possible order of execution
for memory accesses in that program

True / False

iv) Function inlining optimization in the compiler cannot violate SC. True / False

v) Modern concurrent languages such as C++/Java guarantee x86 TSO. True / False

14



d) Which of the memory models allows the following program behavior? Select all that
apply. [2 pts]

int A = B = 0;

Thread T1 Thread T2
A= 1; B =1;
print (B); print (A);

OQutput: 0, O
a) Sequential Consistency
b) Total Store Order
c) Relaxed Consistency

e) Consider the following program. Assume function incr () is invoked concurrently in two

threads.
int balance = 0;
lock 1 = UNLOCK;

int flag = 0;

int incr(int x)
{
int tmp = 0;

lock (1)
tmp = balance;
unlock (1)

lock (1)
tmp
balance = tmp;

unlock (1)

tmp + x;

flag = 1;

15



i) Identify data-races in this code, if any. Circle the pair of memory accesses that
constitute a data-race. Also, indicate whether it would result in an incorrect execution
under SC. [3 pts]

ii) Is there a bug in this code if the programmer wants to ensure that updates to balance
are correct. If so, identify the bug. Would using transactions instead of locks avoid the
bug? [4 pts]

16



[ Work sheet]

17



