
Name: Uniqname:

EECS 570 Winter 2022 Final Exam - SOLUTIONS

Total points: 100
Total time: 120 minutes
Closed book, closed notes.
Calculators are allowed, but no PDAs, Portables, Cell phones, etc.
For calculation questions, show your work and clearly indicate your final answers.
Use pen or a dark pencil.
Do not spend too much time on any one question.
State any reasonable assumptions that you need to make.
There are 12 pages in this exam. Please make sure that you have all pages.
Please try to write all your answers in the assigned spaces.
If you really need extra space, you may use the backs of pages (but please clearly indicate that you are doing so).

Please sign the Honor Code:

I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations
of the Honor Code.

Q1 /10

Q2 /20

Q3 /20

Q4 /30

Q5 /20

Total /100

1 of 12



Name: Uniqname:

1 Memory Consistency I (10 points)

(a) (5 points) Consider the following program.

Core 0 Core 1

(i1) x = 1 (i3) y = 1

(i2) r1 = y (i4) r2 = x

Is the outcome r1=0, r2=0 forbidden under SC? Circle Yes or No as appropriate.

Yes No

(b) (5 points) Consider the following program.

Core 0 Core 1

(i1) x = 1 (i3) r1 = y

(i2) y = 1 (i4) r2 = x

Is the outcome r1=1, r2=0 forbidden under TSO? Circle Yes or No as appropriate.

Yes No

2 of 12



Name: Uniqname:

2 Interconnects I (20 points)

(a) (10 points) What is this circuit? Label its inputs and outputs (using the blanks provided), and
briefly explain its operation.

Priority 0

Priority 1

Priority 2

Grant 0

Grant 1

Grant 2

Answer: This circuit is the priority generation circuitry for a round-robin arbiter. It uses the
grant vector from the current cycle to generate the priority vector for the next cycle. If Granti is
asserted, then Priorityi+1 will be asserted in the next cycle, and all other entries in the priority
vector will be 0. Thus, the request currently granted this cycle will have the lowest priority next
cycle. If no Grant signals are asserted, the priorities will remain unchanged.

3 of 12



Name: Uniqname:

(b) (5 points) The Occamy is a parallel processor with an on-chip network. The Occamy’s network is
a 2-D mesh, and uses Valiant’s routing algorithm with X-Y routing. The routing is implemented
using source routing. Tom is an architect working on the Occamy. He notices that the use of
Valiant’s routing algorithm requires that the packet exit the network at the intermediate node,
only to be re-injected into the network from the intermediate node to proceed to its destination.
This seems like extra overhead to Tom, so he optimizes the network implementation as follows:
instead of exiting the network at the intermediate node, a packet is simply routed first from its
source to an input of the intermediate node, and directly from there to its destination. Shortly
after making this change, Tom observes that the Occamy starts hanging occasionally and needs
to be rebooted whenever it hangs. What is going on? Be sure to explain your answer.

Answer: When using Valiant’s routing algorithm in combination with X-Y routing, deadlock
can result if the packet does not exit the network at the intermediate node. For Valiant’s routing
algorithm with X-Y routing, the overall route is an X-Y plus X-Y route, with the first X-Y being
to go from the source to the intermediate node, and the second X-Y to go from the intermediate
node to the destination. If a packet does not need to travel any hops in the X-direction to get to
the intermediate node, and does not need any hops in the Y direction to get from the intermediate
node to the destination, then the overall route becomes a Y plus X route (i.e., traverse the Y
direction, exit, be re-injected, and traverse the X direction). If the packet doesn’t exit the network
at the intermediate node, this becomes a Y-X route. We then have a network that essentially
allows both X-Y and Y-X routes, which is known to lead to deadlock. This is what is happening.

4 of 12



Name: Uniqname:

(c) (5 points) A network implements credit-based flow control, with a 5-cycle router pipeline, with a
credit pipeline delay of 2 cycles. The network uses buffers of size 10, with a flit propagation delay
of 2 cycles and a credit propagation delay of 1 cycle. What is the buffer turnaround time for this
network?

Answer: Turnaround time = Credit prop. delay + Credit pipeline delay + Router pipeline delay
+ Flit propagation delay

= 1 + 2 + 5 + 2 = 10 cycles.

—END OF QUESTION 2—

5 of 12



Name: Uniqname:

3 Fantastic Bugs and Where to Find Them (20 points)

Newt is working on the Thunderbird, a server-class multicore processor which implements TSO. The
Thunderbird is running a web server. The Thunderbird currently runs workloads correctly, but it’s a
bit slow.

Answer the following questions. Be sure to explain your answers.

(a) (5 points) Newt wishes to improve the performance of the Thunderbird, so he adds a next-line
prefetcher (for both instructions and data) to the processor. Puzzlingly to Newt, the modified
processor’s performance when running the web server remains almost exactly the same as before
the modification. What is likely going on? (You may assume that Newt has implemented the
next-line prefetcher correctly.) The prefetcher remains in the processor for parts (b) and
(c) of this question.

Answer: A web server is a scale-out workload. Next-line prefetchers have been shown to be
incapable of handling the large working set sizes/instruction footprints and access patterns/control
flow of scale-out workloads [Ferdman12]. Thus, it’s not surprising that the next-line prefetcher
doesn’t improve performance for such a workload.

(b) (5 points) Newt notices that the coherence protocol of the Thunderbird is rather simplistic, and
stalls in a number of different scenarios. Newt optimizes the coherence protocol to reduce stalls,
including eliminating the stall (by adding transient states) that occurs when a core receives an
invalidation for a line before it receives the data for that line. However, upon running some bench-
marks with the new protocol, Newt notices that certain loads in the program end up staying in
the pipeline forever and never complete, despite generating lots of memory requests and receiving
data for those memory requests. What is the reason for this?

Answer: Invalidation-before-use in a non-stalling protocol (which is what the protocol essentially
is after Newt’s modifications) can lead to livelock if it occurs repeatedly. This is what is happening
here. The loads in question issue read requests, but they are invalidated before their data arrives
due to another core’s store, forcing the loading core to discard the data when it arrives and re-issue
its load request. If this happens repeatedly, the load will not be able to complete and will stay in
the pipeline forever. This is what is happening to the loads in question.

6 of 12



Name: Uniqname:

(c) (5 points) To fix the issue with the loads that don’t finish, Newt decides to ensure that memory
requests generated for loads can use the data provided to them (even if it’s been invalidated)
to service a load, as long as the cache discards the data immediately after the load operation
completes. This does indeed fix the issue of loads never completing, but Newt now finds memory
consistency violations (specifically, TSO violations) popping up in his benchmark runs, leaving
him rather befuddled. What is the reason for these memory consistency violations?

Answer: This is an instance of the Peekaboo problem. Newt has added prefetching, a coherence
protocol with invalidation-before-use, and a livelock-avoidance mechanism that allows the use of
stale data to the Thunderbird. When combined, these three features can generate a consistency
violation for programs like mp:

Core 0 Core 1

(i1) x = 1 (i3) r1 = y

(i2) y = 1 (i4) r2 = x

Here, if we prefetch x on core 1, and it’s invalidated before use by core 0’s store to x, and the stores
on core 0 complete and the store of y is read by core 1 before the now-invalidated data for x reaches
core 1 and is used for the load i4 (i.e., for one operation), then a consistency violation of TSO
(the forbidden outcome of mp) can occur, even without OoO execution or pipeline reorderings.

(d) (5 points) What can Newt do to eliminate the memory consistency violations in (c) while also
preventing the issue described in (b)?

Answer: Newt can ensure that for any instruction like i4 in mp (henceforth called a ‘Peekaboo
instruction’), it is the oldest load or store in program order at the time the coherence request for
it is issued. Prior loads must have performed and prior stores must have reached the memory
hierarchy and become visible to all cores before the coherence request for the Peekaboo instruction
is issued.

Alternate answer: remove the prefetcher, and issue memory requests in program order and one-
at-a-time.

Another alternate answer: remove the prefetcher, the coherence optimizations, and the livelock-
avoidance mechanism. (Not the nicest solution, but it works.)

7 of 12



Name: Uniqname:

4 Interconnects II (30 points)

(a) (10 points) The following diagram gives a skeleton of a 2:4 separable allocator (i.e., 2 requestors,
4 resources). Label the boxes and connect the missing wires to complete the diagram of the
allocator. You do not need to label the wires.

2:1 
arbiter

4:1 
arbiter

4:1 
arbiter

2:1 
arbiter

2:1 
arbiter

2:1 
arbiter

8 of 12



Name: Uniqname:

(b) (5 points) SuperNet industries are developing a processor with an on-chip network, where routers
have 4 ports. The network has good path diversity, and so multiple paths exist to every des-
tination. Engineers at SuperNet want to develop a new feature called “turbo mode”. In turbo
mode, instead of transmitting at most one flit from one input to one output every cycle, the router
attempts to send two flits from a given input to two different outputs in a single cycle (where
each output corresponds to one of the paths to the packet’s destination). You may assume that
the flits are set up so that each flit contains the information necessary for its routing. You may
also assume that flits are only taken from a maximum of 2 input ports every cycle (since up to 4
output ports will be needed to support turbo mode for flits from the 2 input ports).

Can the separable allocator from (a) be used by routers for switch allocation in such a network?
Why or why not? Explain your answer.

Answer: No, the separable allocator from (a) cannot be used for this network. The separable
allocator in (a) only allows each requestor to gain access to one resource each cycle. Thus, each
input can only be granted at most one output by it, but turbo mode requires an input to be
granted access to two outputs in the same cycle. This is not possible with the allocator from (a).

(c) (5 points) Consider an on-chip network with 3 virtual channels (VC0, VC1, and VC2). The cores
(and directory) connected by the network use an MSI coherence protocol that does not expect
point-to-point ordering—in other words, a protocol like your base MSI protocol for PA2. Requests
travel on VC0, forwarded requests on VC1, and replies on VC2.

The network’s routing algorithm is not deadlock-free. To alleviate the deadlock, an engineer
proposes making VC1 an escape VC. Will this make the system deadlock-free (as far as the
processor and network are concerned)? Why or why not? Explain your answer.

Answer: No, making VC1 an escape VC will just swap a routing deadlock for a protocol-level
deadlock. In escape VCs, a packet always has a chance of moving to the escape VC. However,
this would enable e.g., Data messages from VC2 to jump to VC1, and potentially be blocked
by forwarded requests, e.g., a Fwd-GetM blocking a Data message, while the Data is needed to
service the Fwd-GetM. Thus, the system will still deadlock.

9 of 12



Name: Uniqname:

(d) (5 points) A RISC-V startup, Fiver, is developing an MPSoC that has an on-chip network. They
decide to use an irregular topology for their network. They begin with a 2D mesh that uses turn-
based routing, and proceed by successively merging adjacent routers until doing so would violate
performance or bandwidth constraints. Once the switch merging is complete, Fiver engineers run
benchmarks on their model of the processor. To their surprise, they find that certain nodes are
unable to send messages to each other despite a network path existing between the nodes. What
is likely going on?

Answer: Turn-based routing will not work in a network if there is no path from a source to a
destination that only uses the turns allowed by the routing algorithm. This can happen in an
irregular topology. Consider this topology and the West-first routing algorithm:

a b

c

Here, node c cannot reach node a under the West-first algorithm. This is likely the sort of
phenomenon that is happening to Fiver’s chip.

(e) (5 points) What is a solution to the issue that Fiver engineers are facing in (d)?

Answer: Fiver engineers can use a custom routing algorithm for their irregular topology, as long
as they can prove it is deadlock-free for that topology.

Alternate answer: Fiver engineers could elect to not merge switches in their custom topology
creation if doing so would make certain nodes unreachable from others under the turn-based
routing algorithm they are using.

10 of 12



Name: Uniqname:

5 Memory Consistency II (20 points)

(a) (10 points) Engineers at Chips-R-Us are creating a multicore processor. Its pipelines are in-order
and don’t conduct speculative execution. Each core has its own FIFO store buffer from which it
can read its own writes early. Only one store is allowed to be in-flight from a given core’s store
buffer to the memory hierarchy at any time. The cache hierarchy is private L1s and a shared L2.

The Chips-R-Us coherence protocol is based on MSI, but does not track sharers. On
writes, the writing core obtains write permissions from the directory (ensuring a total order on
all writes to a given address), but invalidations are not sent to current sharers. Instead, on any
miss in its private L1, each core self-invalidates all Shared lines in its L1.Such self-invalidations
also invalidate lines in transient states on the way to Shared (i.e., lines that are waiting for data
responses to service loads). Cores do not use invalidated data. A fence results in a self-invalidation
identical to that which occurs on an L1 miss.

Also note the following points:

• If a core has a copy of a line in Shared and wants to write to the line, it experiences a store
miss. In response to its corresponding write request, the latest copy of the line is sent to the
core along with write permissions.

• After a bounded number of reads to a Shared line in an L1, the line is evicted from that L1.

• You may ignore read-modify-write instructions for the purposes of this question.

Is Chips-R-Us’s processor a valid implementation of TSO? If so, explain how the implementation
maintains TSO’s required orderings. If this implementation of TSO is buggy, describe a bug that
could arise in it. (You may assume that the pipeline and store buffer are implemented correctly.)

Answer: Yes, Chips-R-Us’s processor is a valid implementation of TSO. (It is a slightly simplified
version of TSO-CC [Elver and Nagarjan HPCA 2014].) It ensures St-St ordering through its FIFO
store buffer which sends stores to the memory hierarchy one at a time. Ld-St ordering is ensured
by in-order execution of the pipeline and the FIFO-ness of the store buffer. To ensure Ld-Ld
ordering, if a load observes a given value, then subsequent loads cannot observe any values that
were stale (i.e., no longer the latest value) at the time the first load’s value was written, otherwise
the loads will appear to have been reordered. Self-invalidation on a miss ensures that all values
that are stale with respect to that miss are eliminated from the private L1 which missed.

A fence must ensure St-Ld ordering. It does so by draining the store buffer and ensuring that
subsequent loads after the fence cannot read stale values by self-invalidating all shared lines before
those loads can execute.

11 of 12



Name: Uniqname:

(b) (10 points) This question is not related to part (a). Consider the following litmus test.

Core 0 Core 1

(i1) x = 1 (i4) r1 = y

(i2) FENCE (i5) y = 2

(i3) y = 1 (i6) r2 = y

<addr>

(i7) r3 = x

Can r1=1, r2=2, r3=0?

A microarchitecture maintains the following orderings:

• The FENCE (instruction i2) ensures that all cores observe i1 before i3.

• The set of memory operations to a given address in the test obey SC with respect to each
other. In other words, the outcomes of memory operations obey SC per location.

• As the test depicts, there is an address dependency between i6 and i7. This dependency is
preserved by the microarchitecture, i.e., i6 and i7 are executed in order.

• The microarchitecture implements rMCA write atomicity.

• The microarchitecture does not implement address prediction or value prediction.

Given these orderings, can the outcome r1=1, r2=2, r3=0 be visible on this microarchitecture?
If the outcome cannot occur, clearly explain why it cannot occur. If the outcome can occur,
describe clearly how it could occur. (If you contend that the outcome can occur, you may not use
obviously incorrect functionality—e.g., a buggy microarchitectural implementation of the FENCE
operation—to cause it to occur.)

Answer: Yes, this outcome can occur on the microarchitecture. This test is essentially mp+dmb+fri-
rfi-ctrlisb from [Alglave et al. TOPLAS 2014], which was found to be visible on certain ARM
processors at the time. Here, i6 can execute and read its value (early) from i5 in the store buffer
before i5 is made visible to all cores. i7 can then execute after i6, and both i6 and i7 can “commit
early” before i5 is made visible to all cores and before i4 executes. This does not break per-location
SC, as an “old” value of y will still be in the memory hierarchy. As long as i4 executes and reads
from the memory hierarchy before i5 leaves the store buffer and is made visible to all other cores,
i4 will get an “old” value of y and per-location SC will be maintained.

Thus, we can have the following execution:

i. i5 puts y = 2 in the store buffer.

ii. i6 reads r2 = 2 from the store buffer.

iii. i7 executes and reads r3 = 0.

iv. i6 and i7 commit.

v. i1 executes.

vi. The fence i2 ensures that i1 is made visible to all cores.

vii. i3 executes and is made visible to core 1.

viii. i4 reads r1 = 1 from the memory hierarchy and commits.

ix. i5 exits the store buffer and is made visible to all cores. i5 commits.

12 of 12


	Memory Consistency I (10 points)
	Interconnects I (20 points)
	Fantastic Bugs and Where to Find Them (20 points)
	Interconnects II (30 points)
	Memory Consistency II (20 points)

