
Design	and	Verification	of	a	Cache	Coherency	Protocol	

Due:				 Mon.	3/26	11:59pm	 (Waypoint	due	via	Canvas	on	3/12)	

Overview	

In	this	assignment,	you	will	design	and	verify	a	cache	coherency	protocol	 for	a	multiprocessor	system.	
Your	protocol	will	be	a	fairly	simple	invalidation-based	protocol,	but	to	get	full	credit	you	must	implement	
an	optimization.	We	will	describe	the	basic	requirements	and	a	possible	optimization	for	you.	As	always,	
creativity	is	encouraged.	
		
Writing	a	cache	coherency	protocol	is	reasonably	challenging;	verifying	its	correctness	is	a	necessary,	but	
very	 difficult	 aspect	 of	 the	 process.	 Sophisticated	 protocols	 (e.g.,	 DASH),	 have	 been	 developed	 and	
verified,	however	this	remains	an	active	research	area.	How	do	we	reduce	the	number	of	messages	for	a	
transaction?	The	size	of	the	directory?	How	fast	can	the	directory	controller	run,	and	how	can	we	reduce	
the	design	complexity?	All	of	these	are	fundamentally	related	to	the	design	and	verification	of	the	protocol	
itself.	

Baseline	Protocol	

You	will	design	and	verify	an	invalidation-based	cache	coherency	protocol.	The	protocol	you	develop	will	
have	a	number	of	characteristics:	

1. It	 uses	 an	 interconnect	 network	 that	 supports	 only	 point-to-point	 communication.	 All	
communication	 is	 done	 by	 sending	 and	 receiving	 messages.	 The	 interconnect	 network	 may	
reorder	 messages	 arbitrarily.	 It	 may	 delay	 messages,	 but	 it	 will	 always	 deliver	 messages	
eventually.	 Messages	 are	 never	 lost,	 corrupted	 or	 replicated.	 Message	 delivery	 cannot	 be	
assumed	to	be	in	the	same	order	as	they	were	sent,	even	for	the	same	sender	and	receiver	pair.	

2. At	the	receiving	side	of	the	interconnect	system,	messages	are	delivered	to	a	receive	port.	Once	
a	message	has	been	delivered	to	the	receive	port,	 it	will	block	all	subsequent	messages	to	this	
port	until	the	message	is	read.	Consider	this	behavior	equivalent	to	that	of	a	mailbox	with	room	
for	only	one	letter:	you	have	to	remove	the	letter	from	the	mailbox	before	you	can	receive	the	
next	one.	On	the	sending	side,	there	is	no	such	restriction:	you	can	always	send	messages.	The	
interconnect	system	has	enough	buffer	space	to	queue	messages.	

3. For	the	purpose	of	this	assignment,	you	may	assume	that	there	is	no	limit	on	the	buffer	space	in	
the	interconnect	system.	However,	your	protocol	will	be	considered	broken	if	there	is	a	way	to	
generate	an	infinite	number	of	undelivered	messages.	Besides,	you	will	not	be	able	to	verify	your	
protocol	in	this	case.	

4. You	may	assume	that	the	interconnect	network	supports	multiple	lanes.	For	each	lane,	you	have	
a	separate	set	of	send-	and	receive-ports	for	each	unit.	Traffic	on	one	lane	is	independent	of	traffic	
in	the	other	lanes.	Messages	will	never	switch	lanes.	Note	that	using	fewer	lanes	is	better.	

	



5. Each	processor	has	a	dedicated	cache	that	 is	not	shared	with	any	other	processor.	All	 caches	
must	be	kept	coherent	by	your	cache	coherency	protocol.	Processors	may	issue	load	and	store	
operations	 only.	 Because	 this	 assignment	 only	 deals	 with	 cache	 coherency	 and	 not	 with	
consistency	 issues,	you	will	be	concerned	with	only	one	storage	 location	 (address).	However,	
you	need	to	model	cache	conflicts.	To	do	this,	you	need	to	model	a	third	operation	besides	load	
and	store:	a	cache	write-back.	Write-backs	normally	arise	from	a	cache	conflict	if	the	old	line	is	
dirty.	Write-back	operations	may	occur	at	any	time	between	any	pair	of	load/store	operations.	If	
the	cache	is	 in	a	clean	state,	you	may	simply	set	 it	to	be	invalid	or	take	the	appropriate	action	
according	to	your	CC	protocol.	Cache	replacements	of	dirty	 lines	must	obviously	write	the	 line	
back	to	memory.	

6. You	should	assume	that	the	coherency	unit	is	equal	to	one	word	and	that	all	loads	and	stores	read	
or	write	the	entire	word.	

7. Besides	processors	with	their	caches,	there	is	one	memory	unit	in	your	system.	The	memory	unit	
has	a	directory-based	cache-consistency	controller	which	ensures	 that	only	one	processor	 can	
write	 to	 the	 memory	 block	 at	 a	 time	 (exclusive-ownership	 style	 protocol).	 The	 directory	
representation	 is	 unimportant	 for	 this	 assignment.	 You	 should	 assume	 that	 you	 have	 a	 full	
directory	(bit	vector)	that	can	keep	track	of	all	sharers.	

8. The	 interconnect	 system	 can	 send	messages	 from	 any	 unit	 to	 any	 other	 unit.	 It	 is	 OK	 if	 your	
protocol	requires	that	a	cache	controller	has	to	send	a	message	to	another	cache	controller.	

	
For	this	assignment,	your	cache	coherency	protocol	should	not	worry	about	consistency	issues.	Because	
of	that,	you	may	assume	that	the	memory	of	this	machine	has	only	one	word.	Your	protocol	has	to	make	
sure	that	loads	from	up	to	three	(3)	processors	always	return	the	value	of	the	most	recent	stores.	In	this	
context,	this	means	that	loads	and	stores	issued	by	one	processor	are	seen	by	that	processor	in	program	
order.	
	
You	 are	 supposed	 to	 write	 a	 plain,	 directory-based	 cache-coherency	 base-line	 protocol	 without	 any	
optimizations	 other	 than	 forwarding	 of	 invalidations	 and	 exclusive	 ownership.	 In	 other	 words,	 your	
baseline	 protocol	 should	 use	 no	 more	 than	 3	 hops	 for	 any	 transactions.	 For	 example	 assume	 that	
processor	3	has	exclusive	ownership	and	processor	1	issues	a	load,	then	P3	is	supposed	to	send	the	cache	
line	to	the	memory	and	to	P1	(forwarding).	This	is	to	minimize	latency.	
	
The	base-line	protocol	shall	deliver	data	always	in	the	state	needed	by	the	requesting	processor.	In	other	
words	do	not	bother	with	speculating	on	supplying	data	in	E-state	for	a	normal	load.	Thus	E-state	is	always	
a	consequence	of	a	store.	Therefore	in	this	case	you	only	have	3	cache	states:	I	=	invalid,	S	=	shared	(read-
only)	and	M	=	modified	(exclusive	and	dirty).	The	memory	unit	could	be	regarded	as	a	home	node	without	
a	processor,	so	it	will	never	do	anything	on	its	own.	For	example,	it	will	never	issue	an	unsolicited	recall-
request.	

	

	



Optimizations	

The	design	space	for	cache	coherency	protocols	is	very	large.	In	the	past,	a	variety	of	optimizations	have	
been	proposed	and	implemented	that	reduce	the	directory	storage,	cut	the	number	of	message	hops,	or	
otherwise	improve	resource	and	performance	for	distributed	shared-memory	systems.	In	this	project,	we	
want	you	to	implement	and	verify	at	least	one	optimization	for	your	baseline	protocol.	
	
For	example,	consider	the	scenario	depicted	in	Figure	1.	Initially,	the	address	X	is	shared	among	a	group	
of	nodes	(not	shown).	Then,	node	1	requests	modified	(M)	access	to	X.	As	part	of	the	invalidation	they	
receive,	the	sharers	of	X	record	that	node	1	now	has	X	in	the	modified	state.	When	one	of	the	former	
sharers	(N)	requests	access	to	X	again,	a	speculative	request	is	issued	to	node	1	for	X	in	hopes	that	P1	still	
has	X	in	modified	state.	

	

Figure	1.	Speculative	requests	to	reduce	the	number	of	message	hops.	(a)	shows	the	baseline	protocol		
with	three	hops,	while	(b)	reduces	this	to	two	hops	if	the	speculative	request	is	successful.	

The	goal	is	to	reduce	the	number	of	hops	accessing	X.	If	the	speculative	request	is	successful,	the	normal	
three-hop	transaction	is	reduced	to	two.	Note	that	the	sharing	node	N	must	still	send	a	non-speculative	
request	to	the	directory	controller	in	case	X	is	no	longer	held	at	node	1.	
	
This	optimization	 is	 fairly	 straightforward,	but	note	 that	we’re	not	discussing	 corner	 cases	here:	what	
happens	when	the	speculative	request	arrives	at	the	same	time	that	node	1	is	writing-back	X?	You	must	
flush	out	the	details	of	this	or	other	optimizations	and	make	sure	they	are	correct	by	verifying	the	protocol	
and	your	optimizations.	

	

	

	



Deliverables	

You	must	 specify	and	verify	your	protocol	and	optimization(s)	using	Murphi,	a	 formal	verification	 tool	
available	 from	 the	 class	 website	 page.	 Murphi	 runs	 out-of-the-box	 on	 an	 x86	 Linux	 machine	 when	
compiled	for	32-bit	binary,	but	contact	us	ASAP	if	you	have	any	trouble.	The	Murphi	distribution	comes	
with	 a	 manual	 and	 tutorial	 in	 the	 doc/directory;	 there	 are	 also	 some	 documents	 under	 the	 ex/dash	
directory	worth	examining.	Using	the	system,	your	will	turn	in	the	Murphi	source	code	that	describes	and	
verifies	 your	 protocol	 and	 a	 two-page	 description	 of	 your	 protocol,	 optimizations,	 and	 verification	
approach.	

Deadlines	

To	prevent	you	from	leaving	this	to	the	last	minute,	we	want	to	see	the	start	of	a	working	protocol	by	
midnight	 on	March	 12th.	 Submit	 to	 canvas	 a	 short	 (one-page)	 note	 describing	 your	 status	 and	what	
optimization(s)	you	are	implementing.	You	should	have	started	working	with	Murphi	and	made	significant	
progress	towards	the	baseline	protocol.	A	small	number	of	points	(10)	of	your	assignment	grade	will	come	
from	completing	this	waypoint.	

The	final	version	is	due	two	weeks	later	and	should	be	submitted	through	Canvas	(please	zip	the	files).	
We	expect	you	to	submit:	

(1) A	revised	two-page	description	of	your	protocol,	optimizations	and	verification	approach	
(2) A	diagram	documenting	the	complete	state	machine	for	your	protocol		
(3) The	Murphi	code	that	demonstrates	the	correctness	of	your	protocol.		The	assertions	within	

this	code	must	prove	that	coherence	has	been	maintained.	
(4) The	output	from	Murphi,	showing	that	no	errors	were	found,	the	number	of	states	explored	

and	the	running	time	
	

DO	NOT	LEAVE	THE	BULK	OF	ASSIGNMENT	FOR	THE	LAST	FEW	DAYS!	DO	NOT	OMIT	THE	WRITE-UP.	


