EECS 570
Lecture 1

Parallel Computer s U
Architecture R

Intel Paragon XP/S
Winter 2024

Prof. Ronald Dreslinski
http://www.eecs.umich.edu/courses/eecs570/
Slides developed in part by Profs. Austin, Adve, Falsafi, Martin,

Narayanasamy, Nowatzyk, Peh, and Wenisch of CMU, EPFL, MIT,
UPenn, U-M, UIUC

Lecture 1
EECS 570

Slide 1

EECS 570 Class Info

e Instructor: Prof. Ronald Dreslinski(rdreslin@umich.edu)

e Research interests:
7 Intersection of computer architecture/VLSI

Lecture 1
EECS 570 Slide 2

EECS 570 Class Info

e GSls:
3 Jonah Rosenblum(jonaher@umich.edu)
3 Joy Dong (joydong@umich.edu)

e Class info:
3 URL: https://www.eecs.umich.edu/courses/eecs570/
3 Canvas for reading quizzes and reporting grades
3 Piazza for technical discussions and project coordination

e Enrollment:
7 Enrollment will not go over 85 under any circumstances

Lecture 1
EECS 570 Slide 3

Meeting Times

e Lecture:
3 MW 3:00-4:20pm

e Discussion
3 F 3:30-4:20pm
3 Used for talking about programming assignments and projects
3 Also for discussing class topics in small groups

e Office Hours:

3 Prof. Dreslinski: Mondays 2pm-2:50pm, Wednesday 5-6pm,
2637 BBB

3 GSI: TBD (will be posted on course webpage)

e« Q&A:
3 Use Piazza for all technical questions
3 Office hours for course policy feedback

7 Use email very sparingl L 1
EECS 570 y sparingly e,

Who Should Take 570?

« Graduate Students (and seniors interested in research)
7 Computer architects to be
7 Computer system designers
3 Those interested in computer systems

e Required Background

3 Computer Architecture (e.g., EECS 470)
3 C/C++ Programming

o If you do not have the required background (especially a good
base in computer architecture), do NOT take this course.

A Topics covered such as coherence and consistency are complex
even for computer architects

A This course requires prior knowledge of topics like out-of-order
execution, speculation, rollback, caching, prefetching...

Lecture 1
EECS 570 Slide 5

Grading (tentative)

e 2 Programming Assignments: 5% (PA1) and 10% (PA2)
e Reading Quizzes for (almost) every lecture: 10%

e Midterm Exam: 25%

e Final Exam: 25%

e Final Research Project: 25%

e This course is a lot of work. Do NOT underestimate it.

e The course grade is heavily weighted towards the end of the
semester

7 Please don’t ask what your final grade will be after the
midterm; we honestly have no way of knowing

Lecture 1
EECS 570 Slide 6

Grading (Contd.)

e Group studies are encouraged
e Group discussions are encouraged

« However,...

3 All programming assignments must be results of individual
work

3 All reading quizzes must be done individually, questions/
answers should not be posted publicly

« There is no tolerance for academic dishonesty. Please refer
to the University Policy on cheating and plagiarism.
Discussion and group studies are encouraged, but all
submitted material must be the student's individual work (or
in case of the project, individual group work).

Lecture 1
EECS 570 Slide 7

Some Advice on Reading

e If you carefully read every paper from start to finish, it will
take a very long time

e Learn to skim past details that are not critical to the paper’s
overall message

Lecture 1
EECS 570 Slide 8

Reading Quizzes

e You must take an online quiz for every paper
e Quizzes must be completed by class start via Canvas

e There will be 2 multiple choice questions
7 The questions are chosen randomly from a list

T You only have 5 minutes
O Not enough time to find the answer if you haven’t read the paper

7 You only get one attempt
« Some of the questions may be reused on the midterm/final

4 lowest quiz grades (of about 40) will be dropped over the
course of the semester (e.g., can skip some if you fall ill)

7 Retakes/retries/reschedules will not be given for any reason
O The quiz drops are intended to cover such cases

Lecture 1
EECS 570 Slide 9

Reading Quizzes

« Quizzes do not make the difference between you passing
and failing

3 They are only worth 10% of your grade
3 Don’t worry too much if you get some quiz questions wrong
e The quiz questions have been used in 2 (possibly more) past
semesters
A They did not cause people to fail in those semesters

e The quiz questions and quiz policy are not going to change

 Please do not post on Piazza complaining about quizzes or
asking for more to be dropped

7 Questions asking for changes in quiz policy will be summarily
removed

3 If you have constructive feedback on the quizzes, please discuss
with me in OH

Lecture 1

EECS 570 Slide 10

Discussing Course Policy

 Please do not use Piazza to ask for changes in course policy
3 It just doesn’t work well

 Posts asking for course policy changes will be summarily
removed

3 | am happy to listen to constructive feedback during my OH

« Regular logistical questions are fine to ask via Piazza

3 OK: “The Canvas quizzes for Monday’s lecture are not available.
Can the prof or GSI please enable them?”

7 Not OK: “Can we have 6 quizzes be dropped instead of 4?”

e This course’s structure has largely been the same for about a
decade

7 Many iterations of students have made it through this course
3 Large changes are not necessary

Lecture 1
EECS 570 Slide 11

Piazza Guidelines

« Make sure your question is clear and as precise as you can
make it

3 The easier it is for us to understand your question, the better
we will be able to help you

« Before posting, please search existing posts to see whether
your question has already been answered

e Do not make multiple small posts when a single larger one
would suffice

e You are responsible for reading and being aware of questions
and posts on Piazza

e Piazza sign-up link will be posted in a Canvas announcement
later today

Lecture 1
EECS 570 Slide 12

Final Project

 Original research on a topic related to the course

7 Goal: conduct and present original research in computer
architecture

3 25% of overall grade

3 Done in groups of 4-5 (exceptions may be made for PhD
students)

7 Please don’t join a final project group and then drop the
course; it makes things difficult for the other group members
 Available infrastructure
7 gem5 multiprocessor simulator
7 GPGPUsim
3 Pin
7 Xeon Phi accelerators

« Timeline (and further info) will be posted on course website

Lecture 1
EECS 570 Slide 13

Late Assignment Policy

« No late submissions for PA1, PA2, or final project

o If you have extenuating circumstances (e.g., admitted to
hospital), email us and we’ll work something out
7 Having too much coursework to complete to be able to meet
the deadline is not an extenuating circumstance

e You will have ample time to work on the assignments, so
please start early!

Lecture 1
EECS 570 Slide 14

Regrade Policy

« Applies only to PA1, PA2, and midterm

e Regrade requests must be submitted in writing within one
week from the day the assignment/midterm is handed back

« Regrade requests must specify clearly what the grading issue is

3 There should be a clear technical grading mistake for a regrade
to be justified

7 Do not use regrades to just try and squeeze out more points

e On a regrade, the entire assignment will be regraded, and the
grade may go up or down

Lecture 1
EECS 570 Slide 15

Announcements

No discussion this Friday.

e Online quizzes (Canvas) on 15t readings due Wednesday,
3:00pm

e Please sign up for Piazza (sign up link will be posted in
announcement on Canvas)

Lecture 1
EECS 570 Slide 16

Readings

For Wednesday 1/17 (quizzes due by 3:00pm)

7 David Wood and Mark Hill. “Cost-Effective Parallel
Computing,” IEEE Computer, 1995.

3 Mark Hill et al. “215t Century Computer Architecture.”
CCC White Paper, 2012.

For Monday 1/22:

H Kim, R Vuduc, S
Christina Delimitrou and Baghsorkhi, J Choi, Wen-
Christos Kozyrakis. mei Hwu, Performance
Amdahl's law for tail Analysis and Tuning for
latency. Commun. ACM 61, General Purpose Graphics
July 2018 Processing Units (GPGPU),
Ch. 1

Lecture 1
EECS 570 Slide 17

Parallel Computer Architecture

The Multicore Revolution
Why did it happen?

Lecture 1
EECS 570 Slide 13

If you want to make your computer faster, there are only
two options:

1-increaseclockfrequency .
2. execute two or more things in parallel
| onl | Parallelism (ILP)

Programmer specified explicit parallelism

Lecture 1
EECS 570 Slide 14

The ILP Wall

. E
- ‘ D Cache Stal

. ! Cache St
" . . - [| Cache Stall

. Pipeine Stal

1.5 . : .
* . 4 . B ActuslIPC
: . : . . p

0S
8 8 E E 2 3 > 2 E 5 § 2 s § 3
& E 2 5 & 3 i & 0B 8 & & & & * & E £
£ : 3 = N 3 a & o8 = 8
Figure 4. IPC Breakdown for a single 2-issue Figure 5. TPC Breakdown for the 6-issue processor
Olukotun et al ASPLOS 96

 6-issue has higher IPC than 2-issue, but not by 3x
3 Memory (I & D) and dependence (pipeline) stalls limit IPC

Lecture 1
EECS 570 Slide 15

Single-thread performance

10000
15%/yr.
@ 1000
c
(4+]
E 100
o
&
Q
& 10
1 | | | | |
1985 1990 1995 2000 2005 2010

Source: Hennessy & Patterson, Computer Architecture: A Quantitative Approach, 4™ ed.

Conclusion: Can’t scale MHz or issue width to keep selling chips
Hence, multicore!

Lecture 1
EECS 570 Slide 16

ccona 1 he Power Wall

1000000

Transistors (100,000's)
100000 - power (W)

A Performance (GOPS)
@ Efficiency (GOPS/W)

10000

1000

100

10

= Limits on heat extraction

0.1

0.01

Limits on energy-efficiency of operations

0.001 .] 1 ; u
1985 1990 1995 2000 2005 2010

Lecture 1
EECs 570 Slide 17

ccona 1 he Power Wall

1000000

Transistors (100,000's)
100000 - power (W)

A Performance (GOPS)
@ Efficiency (GOPS/W)

10000

1000

100

10

N Limits on heat extraction
Stagnates performance growth @ Xi

1

0.1

0.01

Limits on energy-efficiency of operations

0.001 l] 1 ; u
985 1990 1995 2000 2005 2010

Era of High Performance Computing - Era of Energy-Efficient Computing
C.

Lecture 1
EECs 570 Slide 18

Classic CMOS Dennard Scaling:
the Science behind Moore's Law

\oltage: V/a
Oxide: toy/ O
Wire width: W/a
Gate width: L/a
Diffusion: x4/a
Substrate: o Ny

Higher Density: ~o?
Higher Speed: ~a

Source: Future of Computing Performance:
Game Over or Next Level?,
National Academy Press, 2011

Voltage, V/ a

—»< WIRING

tox/t

J<~Lla—>
p substrdte, doping

P — C V2 f R. H. Dennard et al.,

IEEE J. Solid State Circuits, (1974).

a.*NA Xdl(l

Lecture 1
Slide 19

Post-classic CMOS Dennard Scaling
Post Dennard CMOS Scaling Rule TODO:

m Chips w/ higher power (no), smaller (®),

dark silicon (©), or other (?)

Voltage: VG

o.tag.e v Voltage, V/ a
Oxide: tox/t — ; WIRING ;
Wire width: W/a ¢

Gate width: L/a
Diffusion: x4/
Substrate: o N4

Higher Density: ~a?2 J<~Lla.—>
p substrdte, doping

Higher Speed: ~a
C ‘ - P f— C V2 f R. H. Dennard et al.,

IEEE J. Solid State Circuits, (1974).

o*Na Xd/(l

Lecture 1
Slide 20

Leakage Killed Dennard Scaling

Leakage:
 Exponential in inverse of V,,
e Exponential in temperature

e Linear in device count

To switch well
« must keep V,,/V,, > 3

-V, 4 can’t go down

Lecture 1
EECS 570 Slide 21

Multicore:
Solution to Power-constrained design?

Power=CV?F FaoV
Scale clock frequency to 80%
Now add a second core

Performance Power
Same power budget, but 1.6x performance!

But:
O Must parallelize application
7 Remember Amdahl’s Law!

Lecture 1
EECs 570 Slide 22

What Is a Parallel Computer?

“A collection of processing elements that communicate and
cooperate to solve large problems fast.”

Almasi & Gottlieb, 1989

Lecture 1
EECS 570 Slide 23

Spectrum of Parallelism

Multithreading
Multiprocessing

Bit-level Pipelining ILP Distributed

G, Py]C|

Py
Y ¢

v
G P c

EECS 370 EECS 470 EECS 570 EECS 591

Why multiprocessing?
o Desire for performance
« Techniques from 370/470 difficult to scale further

Lecture 1
EECs 570 Slide 24

Why Parallelism Now?

e These arguments are no longer theoretical

 All major processor vendors are producing multicore chips
7 Most machines today are already parallel machines
3 All programmers will be parallel programmers???

 New software model

7 Want a new feature? Hide the “cost” by speeding up the code
first
3 All programmers will be performance programmers???

« Some may eventually be hidden in libraries, compilers, and
high level languages

7 But a lot of work is needed to get there

e Big open questions:

3 How should the chips, languages, OS be designed to make it
easier for us to develop parallel programs?

Lecture 1
EECS 570 Slide 30

Multicore in Products

e “We are dedicating all of our future product development to multicore
designs. ... This is a sea change in computing”

Paul Otellini, President, Intel (2005)

o All microprocessor companies switch to MP (2X cores / 2 yrs)

Intel's Nehalem- | Azul’'s Vega nVidia’'s Tesla
EX
Processors/System 4 16 4
Cores/Processor 8 48 448
Threads/Processor 2 1
64 768 1792

Lecture 1
EECS 570 Slide 26

Revolution Continues..

Azul’s Vega 3 7300
54-core chip

864 cores
768 GB Memory
May 2008

EECS 570

Blue Gene/Q Sequoia
16-core chip

1.6 million cores
1.6 PB
2012

Sun’s Modular DataCenter ‘08
8-core chip, 8-thread/core
816 cores / 160 sq.feet

Lakeside Datacenter (Chicago)
1.1 milion sq.feet

~45 million threads

Lecture 1
Slide 27

Multiprocessors Are Here To Stay

« Moore’s law is making the multiprocessor a commodity part
3 1B transistors on a chip, what to do with all of them?
3 Not enough ILP to justify a huge uniprocessor

O Really big caches? t,, increases, diminishing %, returns

miss

 Chip multiprocessors (CMPs)

O Every computing device (even your cell phone)
is now a multiprocessor

Lecture 1
EECS 570 Slide 28

Accelerator-Level Parallelism ireddi and Hil 2019

« Accelerators are specialized processing elements for

different types of tasks
T Machine learning, crypto, graphics (GPUs), etc

e __ + DDR Logic qDDRLogic ' o App|e A12 SyStem‘
: gnagtyﬁsign_al processor m On_ChIp (SOC)
1154 HEVC encoder 7 More than 40
el b « accelerators
AW § [Wang and Shao
2019]
Lecture 1

Slide 34

Heterogeneous Parallelism Across the
Stack

« Parallelism has percolated up to high-level languages and
compilers

3 Java, C/C++11, C#, etc. all have threads
« OS modified to best utilise parallel hardware

 New software toolchains for hardware accelerators

7 e.g. TensorFlow, PyTorch, TVM ol
Language (HLL)

Compile
r

e New landscape!

Architecture
(ISA)

Microarchitecture

RTL (e.g. Verilog)

Lecture 1
EECS 570 Slide 35

Course Outline

e Unit | — Parallel Programming Models
7 Message passing, shared memory (pthreads and GPU)

e Unit Il = Synchronization
3 Synchronization, Locks, Lock-free structures
3 Transactional Memory

 Unit lll = Coherency and Consistency
T Snooping bus-based systems
3 Directory-based distributed shared memory
7 Memory Consistency Models

e Unit IV — Interconnection Networks
7 On-chip and off-chip networks
e Unit V — Applications
3 ML, health, and data-center applications

Lecture 1
EECS 570 Slide 36

Parallel Programming Intro

Lecture 1
EECS 570 Slide 29

Motivation for MP Systems

o Classical reason for multiprocessing:
More performance by using multiple processors in parallel

O Divide computation among processors and allow them to
work concurrently

3 Assumption 1: There is parallelism in the application

O Assumption 2: We can exploit this parallelism

Lecture 1
EECS 570 Slide 30

Finding Parallelism

1. Functional parallelism
3 Car:{engine, brakes, entertain, nav, ...}
O Game: {physics, logic, Ul, render, ...}
3 Signal processing: {transform, filter, scaling, ...}

2. Data parallelism
O Vector, matrix, db table, pixels, ...

3. Request parallelism
O Web, shared database, telephony, ...

Lecture 1
EECS 570 Slide 31

Computational Complexity of (Sequential)
Algorithms

« Model: Each step takes a unit time

« Determine the time (/space) required by the algorithm as a
function of input size

Lecture 1
EECS 570 Slide 32

Sequential Sorting Example

« Given an array of size n

« MergeSort takes O(n log n) time
« BubbleSort takes O(n?) time

 But, a BubbleSort implementation can sometimes be faster
than a MergeSort implementation

« Why?

Lecture 1
EECS 570 Slide 33

Sequential Sorting Example

« Given an array of size n

« MergeSort takes O(n log n) time
« BubbleSort takes O(n?) time

« But, a BubbleSort implementation can sometimes be faster
than a MergeSort implementation

« The model is still useful
3 Indicates the scalability of the algorithm for large inputs

O Lets us prove things like a sorting algorithm requires at least
O(n log n) comparisons

Lecture 1
EECS 570 Slide 34

We need a similar model for parallel
algorithms

Lecture 1
EECs 570 Slide 35

