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Outline

• Memory consistency problem 
– Reordering of instructions within a core may change 

semantics of parallel program 
• Need for memory consistency models 

– architecture level 
– programming language level 

• Sequential consistency model 
• Relaxed memory models  

– weak consistency model 
– release consistency model 

• Conclusions



Recall: uniprocessor execution

• Processors reorder operations to improve 
performance 

• Constraint on reordering: must respect dependences 
– data dependences must be respected: in particular, loads/stores to a given 

memory address must be executed in program order 
– control dependences must be respected



Permitted memory-op reorderings

• Stores to different memory locations can be performed out of program 
order 
               store v1, data                                store b1, flag 
               store b1, flag                        store v1, data 

• Loads from different memory locations can be performed out of program 
order 
                load flag, r1                                    load data,r2 
                load data, r2                          load flag, 

r1 

• Load and store to different memory locations can be performed out of 
program order by the hardware 

	



Example of hardware reordering

Memory systemProcessor

Store buffer

Load bypassing

• Store buffer holds store operations that need to be sent to memory 
• Loads are higher priority operations than stores since their results are 
  needed to keep processor busy, so they bypass the store buffer 

– load can bypass previous stores on its way to memory 
• Load address is checked against addresses in store buffer, so store 
  buffer satisfies load if there is an address match 

– load can return result before previous stores have completed



Key issue
• In single-threaded programs, reordering of instructions does 

not affect the output of the program 
– may improve performance but does not change the 

semantics 
• In shared-memory programs, reordering of instructions 

executed by a thread may change the output of the program. 
– these usually occur in programs that use ordinary loads and 

stores instead of atomic operations to synchronize threads 
(data races) 

• Two examples follow 
– Example (I): reordering of stores to different locations 
– Example (II): reordering of load and store to different 

locations



Example (I) 

Code: 
Initially A = Flag = 0 

P1 	 	 	 	 	 P2  
A = 23; 	 	 	 	 while (Flag != 1) ;  
Flag = 1; 	 	 	 	 ... = A;  

    Idea:  
– P1 writes data into A and sets Flag to tell P2 that data value 

can be read from A.  
– P2 waits till Flag is set and then reads data from A.



Execution Sequence for (I)
Code: 
Initially A = Flag = 0 
P1 		 	 	 P2  
A = 23; 	 	 	 while (Flag != 1) {;}  
Flag = 1; 		 	 ... = A;  

Possible execution sequence on each processor: 
P1 		 	 	 P2  
Write A 23 	 	 	 Read Flag      //get 0  
Write Flag 1                                           …… 
 	 	  	 	 	 Read Flag      //get 1  
	 	 	 	 	 Read A          //what do you get?

Problem: If the two writes on processor P1 can be reordered, it is possible for 
processor P2 to read 0 from variable A.  
Can happen on most modern processors even with coherent caches 
Intuitively, there is a connection between A and Flag that is not obvious if you 
just look at the program, which is all that compilers and processors can do.



Example II
Code: (like Dekker’s algorithm) 
Initially Flag1 = Flag2 = 0 
P1 	 	 	 	 P2  
Flag1 = 1; 	 	 	 Flag2 = 1;	  
If (Flag2 == 0)                     	 If (Flag1 == 0)  
   critical section 	 	     critical section	   

Possible execution sequence on each processor: 
P1 	 	 	 	 P2  
Write Flag1, 1 		 	 Write Flag2, 1  
Read Flag2  //get 0	 	 Read Flag1  //what do you get? 
	 	 	 	 	



Execution sequence for (II)
Code: (like Dekker’s algorithm) 
Initially Flag1 = Flag2 = 0 
P1 	 	 	 	 P2  
Flag1 = 1; 	 	           Flag2 = 1;	  
If (Flag2 == 0)                          If (Flag1 == 0)  
   critical section 	 	     critical section	   

Possible execution sequence on each processor: 
P1 	 	 	 	 P2  
Write Flag1, 1 	 	 Write Flag2, 1  
Read Flag2 //get 0 	 	 Read Flag1, ??  
	 	 	 	 	  
	  
      Most people would say that P2 will read 1 as the value of Flag1. 
      Since P1 reads 0 as the value of Flag2, P1’s read of Flag2 must happen before P2 writes to 

Flag2. Intuitively, we would expect P1’s write of Flag to happen before P2’s read of Flag1. 

      However, this is true only if reads and writes on the same processor to different locations are 
not reordered by the compiler or the hardware. 

      Unfortunately, this is very common on most processors (store-buffers with load-bypassing).



Lessons
• Uniprocessors can reorder instructions subject only to control 

and data dependence constraints 
• These constraints are not sufficient in shared-memory context 

– parallel programs with data races may produce counter-
intuitive results 

• Question: what constraints must we put on uniprocessor 
instruction reordering so that 
– shared-memory programming is intuitive 
– but we do not lose uniprocessor performance? 

• Many answers to this question 
– memory consistency model supported by the processor



Consistency models
- Consistency models are not about memory operations from  

different processors. 
- Consistency models are not about dependent memory 

operations in a single processor’s instruction stream (these are 
respected even by processors that reorder instructions). 

- Consistency models are all about ordering constraints on 
independent memory operations in a single processor’s 
instruction stream that have some high-level dependence 
(such as flags guarding data) that should be respected to 
obtain intuitively reasonable results.



Sequential Consistency
- Simple model for reasoning about parallel programs 

- Meaning of parallel program: interleaving of instructions from 
threads 
- at each step, one thread is chosen for execution 
- one instruction is executed from that thread 

- Note: different interleavings of instructions may produce different 
results but all are legal executions 

- You can verify that the programs we considered before execute as 
expected under these semantics

Example: 
Initially A = Flag = 0 
P1 		 	 	 P2  
A = 23; 	 	 	 while (Flag != 1) ; 
Flag = 1; 		 	 ... = A;  



Sequential consistency

Equivalent to this model: 
– processor does not reorder its own loads and stores to 

global memory 
– loads and stores from different processors are sent to 

global memory in some interleaved order (but what 
about caching?)

MEMORY

P1 P3P2 Pn



Sequential Consistency
• Systems with coherent caches: 

– SC execution if processor does not reorder loads and stores to 
global memory 

• Examples of forbidden behavior: 
– load by-passing with store buffers 
– load satisfied by store buffer before store has become visible 

globally (i.e., before line has been invalidated from other caches)

Memory systemProcessor

Store buffer

Load bypassing



Problem

• Sequential consistency provides a simple model for reasoning about 
parallel programs 

• However, it disallows use of features like store buffers that are used 
to speed up uniprocessor programs 

• Key issue: 
– sequential consistency assumes every global memory operation 

might be involved in inter-thread synchronization 
– this is usually not the case 

• (e.g.) once you enter a critical section, you may do a lot of operations 
on global data structures 

– Unfortunately, all global memory operations are slowed down 
• Solution: ask the programmer



Relaxed consistency model: 
Weak consistency

- Programmer specifies regions within which global memory operations can be reordered 
- Processor has fence instruction: 

- all data operations before fence in program order must complete before fence is 
executed 

- all data operations after fence in program order must wait for fence to complete 
- fences are performed in program order 
- atomic instructions are treated as fences 

- Implementation of fence:  
- processor has counter that is incremented when data op is issued, and decremented when data 

op is completed 
- Example: PowerPC has SYNC instruction 
- Language constructs: 

- OpenMP: flush 
- All synchronization operations like lock and unlock act like a fence



Weak ordering picture

fence

fence

fence

program 
execution

Memory operations within these 
regions can be reordered



Example (I) revisited
Code: 
Initially A = Flag = 0 

P1 		 	 	 	 P2  
A = 23; 
fence; 	 	 	 	 while (Flag != 1) ; 
Flag = 1;                                            	 fence; 
 	 	 	 	 	 ... = A;  

    Execution:  
– P1 writes data into A 
– Fence waits till write to A is completed 
– P1 then writes data to Flag 
– Therefore, if P2 sees Flag = 1, it is guaranteed that it will read the correct value 

of A even if memory operations in P1 before fence and memory operations 
after fence are reordered by the hardware or compiler.



Another relaxed model:  
release consistency

- Further relaxation of weak consistency 
- Synchronization accesses are divided into  

- Acquires: operations like lock 
- Release: operations like unlock 

- Semantics of acquire: 
- Acquire must complete before all following memory accesses 

- Semantics of release:  
- all memory operations before release are complete 

- However, 
- acquire does not wait for accesses preceding it 
- accesses after release in program order do not have to wait for release 

- operations which follow release and which need to wait must be protected by an acquire



Example

L/S

ACQ

  L/S

REL

  L/S

       Which operations can be overlapped?



Implementations on Current Processors



Comments
• In the literature, there are a large number of other consistency 

models 
– processor consistency 
– total store order (TSO) 
– …. 

• It is important to remember that these are concerned with 
reordering of independent memory operations within a 
processor. 

• Easy to come up with shared-memory programs that behave 
differently for each consistency model. 

• All processors today support some version of memory fences 
and those are exposed in programming language



Memory consistency:  
program level

• Shared-memory programming 
languages also need to have a 
memory consistency model 

• Example: 
– compiler may reorder the two 

statements in P1 or the two 
statements in P2, leading to 
incorrect results 

• This is similar to problem at 
instruction level but it affects 
compilation, not execution

Code: 
Initially A = Flag = 0 

P1 	 	 	 P2  
A = 23; 	 	 while (Flag != 1) ;  
Flag = 1; 	.	 .. = A; 



C++ Memory Model

• Provides SC for data-race free programs 

• Memory operations: 
– Data: load, store 
– Synchronization: mutex lock/unlock, atomic load/store, atomic read-modify-

write











Summary

• Two problems: memory consistency and cache coherence 
• Cache coherence 

– preserve the illusion that there is a single logical memory location 
corresponding to each program variable even though there may be 
many physical memory locations where the variable is stored 

• Memory consistency model 
– what instructions is hardware allowed to reorder? 
– nothing really to do with memory operations from different processors/

threads 
– sequential consistency in systems with coherent caches: perform global 

memory operations in program order 
– relaxed consistency models: all of them rely on some notion of a fence 

operation that demarcates regions within which reordering is 
permissible


