
EECS 570
1

EECS 570
Lecture 13
End-to-End SC

Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/

Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin,
Narayanasamy, Nowatzyk, Reinhardt, Singh, Smith, Torrellas and Wenisch.

EECS 570
2

Announcements

Midterm exam – 26th Wednesday 3p-4:20p

Old exams posted on the website

EECS 570
3

Readings

For this week:
Sorin, Hill, Wood. A Primer on Memory Consistency and Cache Coherence. Synthesis

Lectures, 2011.Chapter 3

A Safety-First Approach to Memory Models. Abhayendra Singh, Satish Narayanasamy,
Daniel Marino, Todd Millstein, Madanlal Musuvathi. IEEE Micro, Top Picks from the 2012
Computer Architecture Conferences, May/June 2013.

Skim this paper: The Silently Shifting Semicolon.  

http://web.cs.ucla.edu/~todd/research/snapl15.pdf

EECS 570
4

Language-Level
DRF-0 Vs SC

Memory Model

a thread

A ; B
Execute A and then B

Program Order

Threads

Memory is a map from address to values
with reads/writes taking effect immediately

Address Values

0xDEADBEE0 0x0000002a

0xDEADBEE4 0x00000042

0xDEADBEE8 0xDEADBEEF

Atomic Shared Memory

Shared Memory

Intuitive Concurrency Semantics

Shared Memory

Threads

Memory model that guarantees this
is called sequential consistency

Atomic

Program order

X* x = null;
bool flag = false;

// Producer Thread // Consumer Thread
A: x = new X(); C: while(!flag);	
B: flag = true; D: x->f++;

8

sequential consistency
(SC)

[Lamport 1979]
memory operations appear to occur
in some global order consistent with

the program order

Sequential Consistency

Intuitive reasoning fails in C++/Java

X* x = null;
bool flag = false;

// Producer Thread // Consumer Thread
A: x = new X(); C: while(!flag);	
B: flag = true; D: x->f++;

In C++ model this can crash!

9

!#$@!

C: while(!flag);
D: x->f++;

// Producer // Consumer
A: x = new X(); C: while(!flag);	
B: flag = true; D: x->f++;B: flag = true;

Intuitive reasoning fails in C++/Java
X* x = null;
bool flag = false;

A: x = new X();

B doesn’t depend on A.

It might be faster to reorder them!

O p t i m i z i n g C o m p i l e r a n d H a r d w a r e

Null
Dereference!

10

Hardware

Why are accesses reordered?

11

Programming Language

Compiler

sequentially valid
optimizations can reorder

memory accesses

e.g. common subexpression
elimination, register promotion,

instruction scheduling

sequentially valid hardware
optimizations can reorder

memory accesses

e.g. out-of-order execution, store
buffers

performance optimization

performance optimization

weak semantics

Data-Race-Free-0 Model

• Java Memory Model

• C++ Memory Model

// Thread t // Thread u
A: x = new Data(); C: while(!flag);	
B: flag = true; D: x->f++;

access the same memory location
at least one is a write

A Short Detour: Data Races

12

A program has a data race if it has an execution in which
two conflicting accesses to memory are simultaneously

ready to execute.

Data Race

Useful Data Races

• Data races are essential for implementing
shared-memory synchronization

13

AcquireLock(){
 while (lock == 1) {}
 t = CAS (lock, 0, 1);
 if (!t) retry;
}

ReleaseLock() {
 lock = 0;
}

Data Race Free Memory Model

14

DRF0
[Adve & Hill 1990]

SC behavior for data-race-free programs,
weak or no semantics otherwise

A program is data-race-free if all data races are
appropriately annotated (volatile/atomic)

Java Memory Model
(JMM)

[Manson et al. 2005]

C++0x Memory Model
[Boehm & Adve 2008]

DRF0-compliant Program

X* x = null;
bool flag = false;

A: x = new X(); C: while(!flag);	
B: flag = true; D: x->f++;

15

atomic

• DRF0 guarantees SC
…. only if data-race-free (all unsafe accesses are annotated)

• What if there is one data-race?
…. all bets are off (e.g., compiler can output an empty binary!)

Data-Races are Common

• Unintentional data-races
– Easy to accidentally introduce a data race

• forget to grab a lock
• grab the wrong lock
• forget a volatile annotation
• …

• Intentional data-races
– 100s of “benign” data-races in legacy code
[Narayanasamy et al. PLDI 2007]

16

Data Races with no Race Condition
(assuming SC)

• Single writer multiple readers

17

// Thread t // Thread u
A: time++; B: l = time;

Data Races with no Race Condition
(assuming SC)

• Lazy initialization

18

// Thread t // Thread u
 if(p == 0) if(p == 0)
 p = init(); p = init();

Intentional Data Races

• ~97% of data races are not errors under SC
– Experience from one Microsoft internal data-

race detection study [Narayanasamy et al. PLDI’07]

• The main reason to annotate data races is
to protect against compiler/hardware
optimizations

19

Data Race Detection
is Not a Solution

• Current static data-race detectors are not sound
and precise
– typically only handle locks, conservative due to

aliasing, ...

• Dynamic analysis is costly
– DRFx: throw exception on a data-race [Marino’10]

– Either slow (8x) or requires complex hardware

• Legacy issues
20

Deficiencies of DRF0

21

weak or no
semantics for data-

racy programs

no easy way to
identify & reject
racy programs

problematic for

DEBUGGABILITY
programmer must assume non-SC

behavior for all programs

SAFETY
optimization + data race =

jump to arbitrary code!
[Boehm et al., PLDI 2008]

COMPILER CORRECTNESS
Java must maintain safety at the

cost of complexity
[Ševčík&Aspinall, ECOOP 2008]

Analogous to unsafe languages:
relying on programmer

infallibility

22

Languages, compilers, processors are adopting DRF0
Not a strong foundation

Rust:
 Atomics - The Rustonomicon

Foundations of the
C++ concurrency
memory model

The Java memory model

The Go Memory Model

https://doc.rust-lang.org/nomicon/atomics.html
https://doc.rust-lang.org/nomicon/atomics.html
https://doc.rust-lang.org/nomicon/atomics.html
https://dl.acm.org/doi/10.1145/1375581.1375591
https://dl.acm.org/doi/10.1145/1375581.1375591
https://dl.acm.org/doi/10.1145/1375581.1375591
https://dl.acm.org/doi/10.1145/1047659.1040336
https://go.dev/ref/mem

Language-level SC:
A Safety-First Approach

23

Program order and shared memory
are important abstractions

Modern languages should protect them

All programs, buggy or otherwise,
should have SC semantics

Efficiently supporting
Language-Level SC

24

What is the Cost of SC?

25

SC prevents essentially all compiler and
hardware optimizations.

And thus SC is impractical. Or is it?

Review: SC

Shared Memory

Threads

Memory model that guarantees this
is called sequential consistency

Atomic

Program order

X* x = null;
bool flag = false;

// Producer Thread // Consumer Thread
A: x = new X(); C: while(!flag);	
B: flag = true; D: x->f++;

27

sequential consistency
(SC)

[Lamport 1979]
memory operations appear to occur
in some global order consistent with

the program order

Sequential Consistency

END-TO-END SEQUENTIAL CONSISTENCY

Efficient language-level SC is feasible with hardware-software
cooperation

● SC-Preserving compiler (Language specification)

● SC-Preserving hardware (Hardware ISA)

SC-PRESERVING COMPILER

SC-PRESERVING DEFINITION

○ A SC-preserving compiler ensures that

	 every SC-behavior of the binary

	 is a SC-behavior of the source

○ Guarantees end-to-end SC when the binary is run on SC-
hardware

AN SC-PRESERVING C COMPILER

modified LLVM[Lattner & Adve 2004] to be SC-preserving
● obvious idea: restrict optimizations so they never reorder

shared accesses
● simple, small modifications to the base compiler
● slowdown on x86: average of 3.8%

○ PARSEC, SPLASH-2, SPEC CINT2006

31

SOME OPTIMIZATIONS PRESERVE SC

for(i=0;i<3;i++)
	 X++; loop unrolling X++;X++;X++

foo();
bar();
baz();

function inlining

bar(){X++;}

foo();
X++;
baz();

t=X*4; arithmetic
simplification

t=X<<2; unreachable code elim.

dead argument elim.

scalar replication

correlated val prop

tail call elim

loop rotation

loop unswitching

allocating locals to virtual registers

virtual to physical register allocation

stack slot coloring

arithmetic reassociation

all optimizations on locals and compiler temporaries

Many

OPTIMIZATIONS THAT BREAK SC

○ Example: Common Subexpression Elimination (CSE)

	 t,u,v are local variables
	 X,Y are possibly shared

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

COMMON SUBEXPRESSION ELIMINATION IS NOT SC-PRESERVING

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

M1: X =
1;
M2: Y =
1;

M1: X =
1;
M2: Y =
1;

u == 1 ➔ v == 5 possibly u == 1 && v == 0

Init: X = Y = 0; Init: X = Y = 0;

IMPLEMENTING CSE IN A SC-PRESERVING COMPILER

○ Enable this transformation when
● X is a safe variable, or
● Y is a safe variable

● Identifying safe variables:
● Compiler generated temporaries
● Stack allocated variables whose address is not taken

○ More safe variables?

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

A SC-PRESERVING LLVM COMPILER FOR C PROGRAMS

○ Enable transformations on safe variables

○ Enable transformations involving a single shared variable
● e.g. t= X; u=X; v=X;  t=X; u=t; v=t;

○ Enable trace-preserving optimizations
● These do not change the order of memory operations
● e.g. loop unrolling, procedure inlining, control-flow

simplification, dead-code elimination,…

○ Modified each of ~70 passes in LLVM to be SC-preserving

EXPERIMENTS USING LLVM

○ baseline
stock LLVM compiler with standard optimizations (-O3)

○ no optimizations
disable all LLVM optimization passes

○ naïve SC-preserving
disable LLVM passes that possibly reorder memory accesses

○ SC-preserving
use modified LLVM passes that avoid reordering shared memory
accesses

○ ran compiled programs on 8-core Intel Xeon
37

-8.00%

19.00%

46.00%

73.00%

100.00%

facesim streamcluster blackscholes radix cholesky water-spatial

llvm-noopt
llvm+trace-preserving
SC-preserving

PARALLEL BENCHMARKS

Slowdown over LLVM –O3

38

Naïve
SC-preserving

 SC-preserving

 No opts.

480 373 154 132 200 116 159173 237 298

SPEC INTEGER 2006

39

0.0%

50.0%

100.0%

150.0%

400.perlbench 403.gcc 445.gobmk 458.sjeng 464.h264ref 473.astar Avg

No optimization Naïve SC-preserving SC-preserving
487149 170

Slowdown over LLVM –O3

HOW FAR CAN A SC-PRESERVING COMPILER GO?
float s, *x, *y;
int i;
s=0;
for(i=0; i<n; i+
+){
 s += (x[i]-y[i])
 * (x[i]-
y[i]);
}

float s, *x, *y;
float *px, *py, *e;

s=0; py=y; e = &x[n]
for(px=x; px<e; px++, py+
+){
 s += (*px-*py)
 * (*px-*py);
}

float s, *x, *y;
int i;
s=0;
for(i=0; i<n; i++){
 s += (*(x + i*sizeof(float))
–
 *(y +
i*sizeof(float))) *
 (*(x + i*sizeof(float))
–
 *(y +
i*sizeof(float)));
}

float s, *x, *y;
float *px, *py, *e, t;

s=0; py=y; e = &x[n]
for(px=x; px<e; px++, py+
+){
 t = (*px-*py);
 s += t*t;
}

 no
opt.

SC
 pres

full
opt

MANY “CAN’T-LIVE-WITHOUT” OPTIMIZATIONS ARE
EAGER-LOAD OPTIMIZATIONS

○ Eagerly perform loads or use values from previous loads or stores

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = X*5;
L2: u = Y;
L3: v = t;

L1: X = 2;
L2: u = Y;
L3: v = X*5;

L1: X = 2;
L2: u = Y;
L3: v = 10;

L1:
L2: for(…)
L3: t =
X*5;

L1: u = X*5;
L2: for(…)
L3: t =
u;

Common
Subexpression

Elimination

Constant/copy
Propagation

Loop-invariant
Code

Motion

-9.00%

18.25%

45.50%

72.75%

100.00%

facesim streamcluster blackscholes radix cholesky water-spatial

llvm-noopt
llvm+trace-preserving
SC-preserving
SC-preserving + eager loads

PERFORMANCE OVERHEAD

Allowing eager-load optimizations alone reduces max
overhead to 6%

480 373 154 132 200 116 159173 237 298

SPECULATIVELY PERFORMING EAGER-LOAD OPTIMIZATIONS

○ On monitor.load, hardware starts tracking coherence
messages on X’s cache line

○ The interference check fails if X’s cache line has been
downgraded since the monitor.load

○ In our implementation, a single instruction checks
interference on up to 32 tags

L1: t = X*5;
L2: u = Y;
L3: v = X*5;

L1: t = monitor.load(X, tag)
* 5;
L2: u = Y;
L3: v = t;
C4: if
(interference.check(tag))
C5: v = X*5;

CONCLUSION ON SC-PRESERVING COMPILER

○ Efficient SC-preserving compiler is feasible with careful
engineering

○ Hardware support can enable eager-load optimizations
without violating SC

SC-PRESERVING HARDWARE

SC: HARDWARE

Formal Requirements:
Before LOAD is performed w.r.t. any other processor,
	 all prior LOADs must be globally performed and
	 all prior STOREs must be performed

Before STORE is performed w.r.t. any other processor,
	 all prior LOADs globally performed and
	 all previous STORE be performed.

Every CPU issues memory ops in program order

In simple words:
	 SC: Perform memory operations in program order

NAÏVE SC PROCESSOR DESIGN

Requirement: Perform memory operations in program order

Need

	 coherence

	 store atomicity

	 + memory ordering restrictions

REVIEW: COHERENCE

A Memory System is Coherent if
● can serialize all operations to that location such that,
● operations performed by any processor to a location appear in program

order (<p)
● value returned by a read is value written by last store to that location

There is broad consensus that coherence is a good idea.

STORE ATOMICITY: EXAMPLE 1

Intuition says: P3 prints A=1
● But, with caches:

○ A=0 initially cached at P3 in shared state
○ Invalidation for A arrives at P2; sends out B=1
○ Invalidation for B arrives at P3
○ P3 prints A=0 before invalidation from P1 arrives

Many past commercial systems allow this behavior
● Key issue here: store atomicity

○ Do new values reach all nodes at the same time?

 		 	 A=0 B=0
P1
A=1;

P2
while (A==0);
B = 1;

P3
while (B==0);
print A;

STORE ATOMICITY: EXAMPLE 2

○ Store atomicity –All nodes will agree on the order that
writes happen

● Under store-atomicity, what results are (im-)possible?

 		 	 A=0 B=0
P1
A=1;

P2
B = 1;

P3
Ld B -> r1;
Ld A -> r2;

P4
Ld A -> r1;
Ld B -> r2;

IMPLEMENTING STORE ATOMICITY

○ On a bus…
● Trivial (mostly); store is globally performed when it reaches the bus

○ With invalidation-based directory coherence…
● Writer cannot reveal new value till all invalidations are ack’d

○ With update-based coherence…
● Hard to achieve… updates must be ordered across all nodes

○ With multiprocessors & shared caches
● Cores that share a cache must not see one another’s writes! (ugly!)

SC MEMORY ORDERING CONSTRAINT

Memory ordering constraints:

● Processor core waits for store to complete, before issuing next memory
op

● Processor core waits for load to complete, before issuing next op

Problem: Too slow …

EECS 570
53

Optimizations

❒ Non-Binding store prefetching
❍ A non-binding prefetch is effectively a no-op as far as memory

model is concerned

❒ Speculative cores (e.g., branch prediction)
❍ Squashed loads/stores due to any misspeculation made to look

like non-binding prefetches

❒ In-window speculation

❒ Out-of-window speculation

Execution in strict SC

• Miss on Wr A stalls all unrelated accesses

Memory accesses issue one-at-a-time

Wr C

Wr A

Rd BCPU
pipeline

Wr A	 Miss

Rd B	 Idle

Wr C	 Idle

Rd D

Rd D	 Not fetched

Rd E

Rd E	 Not fetched

SC + Store Buffer

• Removes pending stores from ROB…

• …but still no memory parallelism

Wr A

Rd D

Rd B

Wr CCPU
pipeline

Wr A	 Miss

Rd B	 Idle

Wr C	 Idle

Rd E

Rd D	 Idle

Store buffer

Rd E	 Not fetched

SC + Store Buffer + Store Prefetching
[Gharachorloo 91]

• Key Idea: Separate fetching write permission from writing to the cache
– “Store prefetch” performs coherence ops in advance
– Commit value to cache when write leaves ROB

• May need to re-request store permission upon commit

Wr A

Rd D

Rd B

Wr CCPU
pipeline

Wr A	 Miss

Rd B	 Idle

Wr C	 Prefetch

Rd E

Rd D	 Idle

Store buffer

Rd E	 Not fetched

MIPS R10K:
SC + SB + Prefetch + In-window Load Speculation

[Gharachorloo 91]

• Key Idea: Perform load speculatively, use branch rewind to roll back if the
value of the load changes
– Invalidation messages “snoop” load-store queue

• If invalidation “hits” a complete load, rewind & re-execute
• Alternative implementation – redo all loads in program order at retirement

(“Value”-based ordering) [Cain & Lipasti 04]

Wr A

Rd D

Rd B

Wr CCPU
pipeline

Wr A	 Miss

Rd B	 Complete

Wr C	 Prefetch

Rd E

Rd D	 Miss

Store buffer

Rd E	 Not fetched

Speculative execution of
loads in execution window
[Gharachorloo et al., 1991]

SC hardware overhead

ROB Store buffer
(FIFO)

Memory operations in
pipeline can not be

executed out-of-order

Stores must retire in-order
Loads must wait for store

buffer drain

Speculative load commit
[Ranganathan et al., 1997]

Speculative store commit
[Gniady et al., 1999]

Several speculative and non-speculative optimizations
have addressed this problem

58

SC-PRESERVING STORE BUFFER
--- NON-SPECULATIVE

OPPORTUNITY

○ Safe and Unsafe accesses
● Private or read-only shared accesses are safe

○ No need to enforce memory model constraints
for safe accesses 	 [Shasha & Snir, 1988; Adve, 1993]

○ Large fraction of memory accesses are safe
	 	 	 	 [Hardvellas et al., 2009; Cuesta et al.,

2011]

60

MEMORY ACCESS CLASSIFICATION

○ Two complementary access classification schemes
● Static compiler analysis
● Dynamic page protection mechanism

61

Unsafe loads must wait for unsafe
store buffer drain

Unsafe stores must retire in-orderStores must retire in-order

Loads must wait for store buffer drain

Old Rules
Conventional SC

New Rules
Access Type Aware SC

Cannot commit a load when
a store is still pending

SC HARDWARE DESIGN

Reorder
Buffer

Store
Buffer

load a
load X
store b
load a
store Y

XaYa b

Safe
Store
Buffer

Coalesce &
retire

out-of-order

Commit safe loads always

Commit unsafe loads even when
safe stores are pending

TWO STORE BUFFERS:
CORRECTNESS CHALLENGE

○ Uniform-Type assumption
● All accesses to a memory location are of the same type

○ Store-to-load forwarding
● Safe loads look-up only safe store buffer and vice-versa

○ Store-to-store program order
● Stores to a location will be committed into same store buffer

○ Challenge:
● Safe/unsafe classifier may transiently violate Uniform-Type

assumption
● Ensure correct store-to-load and store-to-store semantics

Static Classifier
• Conservative analysis to identify safe accesses
– Non-escaping function locals, temporaries, and literals

• ISA is extended to indicate type

• Safe bit is set at decode

6565

Safe Store buffer

Unsafe store bufferROB safe

Dynamic Classifier

• Dynamically classify pages as safe or unsafe
– Extend page protection to thread level
– Extend TLB to track page type

Safe bit set during address translation

TLB entry

physical address safe

Page table entry

physical address

shared

read-only

owner

[Dunlap et al. VEE’08]

Safe Store buffer

Unsafe store bufferROB safe

Dynamic Classifier:
Ensuring Correctness

• Problem: A page’s type can change from safe
to unsafe
– Access-type assumption may be violated
– SC may be violated

• Solution:
– Drain store buffers of processors that last accessed

the page

67

SIMULATION METHODOLOGY

○ LLVM compiler extensions
● SC-preserving
● Support for static classification

○ Hardware simulator
● Simics based FeS2, x86_64

○ Benchmarks:
● PARSEC, SPLASH-2, Apache web server (SURGE)

○ Compare End-To-End SC to
● Stock LLVM on TSO
● Stock LLVM on RMO 68

COST OF END-TO-END SC

Pe
rf

or
m

an
ce

ov

er
he

ad
 w

rt
 T

SO

HW
 +

 S
to

ck
 c

om
pi

le
r

-5%

6%

18%

29%

40%

blackscholes facesim fluidanimate swaptions apache

Average performance cost of end-to-end SC is 6.2%
w.r.t stock compiler on TSO

SC-baseline HW + SC-compiler SC-hybrid HW + SC-compiler
RMOHW + Stock-compiler TSO HW + SC-compiler

END-TO-END SEQUENTIAL CONSISTENCY

○ DRF0: assume a memory access is safe by default

○ SC: assumes a memory access is unsafe by default

○ SC-Preserving compiler
● Optimizations that break SC don’t buy much performance
● Exposing hardware load speculation enables more

optimizations

○ SC Hardware
● Identify safe accesses using compiler and OS
● Relax memory ordering constraints for safe accesses

○ Overhead over stock: avg. ~6%

Out-of-Window Speculation
Early HW solutions

[Ranganathan 97] [Gniady 99]

• Log all instructions
 Large storage requirement

• Read old value before store
 Extra L1 traffic

• Assoc. search on external req.
 Limited capacity

Early solutions require impractical mechanisms

CPU Ld C

St A

speculatively
retired

Fence

Ld B

Undo
buffer

Race
detector

A

B

InvisiFence
[Blundell et al. ISCA 2009]

• Key departure: apply to weakly-ordered system
– Straightforward hardware; fewest stalls to address

• Augment with familiar deep speculation mechanisms
– Violation detection: read/write bits in cache
– Version management: clean to L2 before 1st write

• Result: eliminate fence stalls (up to 13% speedup)
– No fine-grained (per-store) tracking
– Fast & simple commit and rollback
– Conventional memory system

• For strong ordering: speculate more (“implicit fences”)
– Bonus: can even eliminate LSQ snooping! (a la [Ceze’07])

