
EECS 570

EECS 570
Lecture 15
Weaker Consistency Models

Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/

Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin,
Narayanasamy, Nowatzyk, Reinhardt, Singh, Smith, Torrellas and Wenisch.

EECS 570

Announcements

Midterm exam – 26th Wednesday

Old exams posted on the website

Time: 3-4:20p

Location:
	
 DOW 1017	 (Last name: A – M)

IOE 1680	 	 (Last name: N- T)

DOW 1206	 (Last name: U-Z)

Syllabus: all lectures and reading up until this week

EECS 570

Readings

For this week:
Sorin, Hill, Wood. A Primer on Memory Consistency and Cache Coherence. Synthesis

Lectures, 2011.Chapter 3

A Safety-First Approach to Memory Models. Abhayendra Singh, Satish Narayanasamy,
Daniel Marino, Todd Millstein, Madanlal Musuvathi. IEEE Micro, Top Picks from the 2012
Computer Architecture Conferences, May/June 2013.

Skim this paper: The Silently Shifting Semicolon.  

http://web.cs.ucla.edu/~todd/research/snapl15.pdf

EECS 570

What states are infeasible under SC?

Core 0 Core 1

(i1) x = 1;
(i2) y = 1;

(i3) r1 =
y;

(i4) r2 =
x;

 A=0 flag=0
Processor 0
A=1;
flag=1;

Processor 1
while (!flag); // spin
print A;

 		 	 A=0 B=0
P1
A=1;

P2
while (A==0);
B = 1;

EECS 570

In-Window Speculation

5

EECS 570

MIPS R10K:
SC + SB + Prefetch + In-window Load Speculation

• Key Idea: Perform load speculatively, use branch rewind to roll back if
the value of the load changes
❒ Invalidation messages “snoop” load-store queue

❍ If invalidation “hits” a speculative load, rewind & re-execute
❍ Alternative implementation – redo all loads in program order at

retirement (“Value”-based ordering) [Cain & Lipasti 04]

Wr A

Rd D

Rd B

Wr CCPU
pipeline

Wr A	 Miss

Rd B	 Complete

Wr C	 Prefetch

Rd E

Rd D	 Miss

Store buffer

Rd E	 Not fetched

EECS 570

Out-of-Window Speculation

7

EECS 570

Out-of-Window Speculation
Early HW solutions

• Log all instructions
 Large storage requirement

• Read old value before store
 Extra L1 traffic

• Assoc. search on external req.
 Limited capacity

Early solutions require impractical mechanisms

CPU Ld C

St A

speculatively
retired

Fence

Ld B

Undo
buffer

Race
detector

A

B

EECS 570

InvisiFence
[Blundell et al. ISCA 2009]

• Key departure: apply to weakly-ordered system
❒ Straightforward hardware; fewest stalls to address

• Augment with familiar deep speculation mechanisms
❒ Violation detection: read/write bits in cache
❒ Version management: clean to L2 before 1st write

• Result: eliminate fence stalls (up to 13% speedup)
❒ No fine-grained (per-store) tracking
❒ Fast & simple commit and rollback
❒ Conventional memory system

• For strong ordering: speculate more (“implicit fences”)
❒ Bonus: can even eliminate LSQ snooping! (a la [Ceze’07])

EECS 570

Language-Level
DRF-0 Vs SC

Memory Model

a thread

A ; B
Execute A and then B

Program Order

Threads

Memory is a map from address to values
with reads/writes taking effect immediately

Address Values

0xDEADBEE0 0x0000002a

0xDEADBEE4 0x00000042

0xDEADBEE8 0xDEADBEEF

Atomic Shared Memory

Shared Memory

Intuitive Concurrency Semantics

Shared Memory

Threads

Memory model that guarantees this
is called sequential consistency

Atomic

Program order

X* x = null;
bool flag = false;

// Producer Thread // Consumer Thread
A: x = new X(); C: while(!flag);	
B: flag = true; D: x->f++;

14

sequential consistency
(SC)

[Lamport 1979]
memory operations appear to occur
in some global order consistent with

the program order

Sequential Consistency

Intuitive reasoning fails in C++/Java

X* x = null;
bool flag = false;

// Producer Thread // Consumer Thread
A: x = new X(); C: while(!flag);	
B: flag = true; D: x->f++;

In C++ model this can crash!

15

!#$@!

C: while(!flag);
D: x->f++;

// Producer // Consumer
A: x = new X(); C: while(!flag);	
B: flag = true; D: x->f++;B: flag = true;

Intuitive reasoning fails in C++/Java
X* x = null;
bool flag = false;

A: x = new X();

B doesn’t depend on A.

It might be faster to reorder them!

O p t i m i z i n g C o m p i l e r a n d H a r d w a r e

Null
Dereference!

16

Hardware

Why are accesses reordered?

17

Programming Language

Compiler

sequentially valid
optimizations can reorder

memory accesses

e.g. common subexpression
elimination, register promotion,

instruction scheduling

sequentially valid hardware
optimizations can reorder

memory accesses

e.g. out-of-order execution, store
buffers

performance optimization

performance optimization

weak semantics

Data-Race-Free-0 Model

• Java Memory Model

• C++ Memory Model

// Thread t // Thread u
A: x = new Data(); C: while(!flag);	
B: flag = true; D: x->f++;

access the same memory location
at least one is a write

A Short Detour: Data Races

18

A program has a data race if it has an execution in which
two conflicting accesses to memory are simultaneously

ready to execute.

Data Race

Useful Data Races

• Data races are essential for implementing
shared-memory synchronization

19

AcquireLock(){
 while (lock == 1) {}
 t = CAS (lock, 0, 1);
 if (!t) retry;
}

ReleaseLock() {
 lock = 0;
}

Data Race Free Memory Model

20

DRF0
[Adve & Hill 1990]

SC behavior for data-race-free programs,
weak or no semantics otherwise

A program is data-race-free if all data races are
appropriately annotated (volatile/atomic)

Java Memory Model
(JMM)

[Manson et al. 2005]

C++0x Memory Model
[Boehm & Adve 2008]

DRF0-compliant Program

X* x = null;
bool flag = false;

A: x = new X(); C: while(!flag);	
B: flag = true; D: x->f++;

21

atomic

• DRF0 guarantees SC
…. only if data-race-free (all unsafe accesses are annotated)

• What if there is one data-race?
…. all bets are off (e.g., compiler can output an empty binary!)

Data-Races are Common

• Unintentional data-races
– Easy to accidentally introduce a data race

• forget to grab a lock
• grab the wrong lock
• forget a volatile annotation
• …

• Intentional data-races
– 100s of “benign” data-races in legacy code
[Narayanasamy et al. PLDI 2007]

22

Data Races with no Race Condition
(assuming SC)

• Single writer multiple readers

23

// Thread t // Thread u
A: time++; B: l = time;

Data Races with no Race Condition
(assuming SC)

• Lazy initialization

24

// Thread t // Thread u
 if(p == 0) if(p == 0)
 p = init(); p = init();

Intentional Data Races

• ~97% of data races are not errors under SC
– Experience from one Microsoft internal data-

race detection study [Narayanasamy et al. PLDI’07]

• The main reason to annotate data races is
to protect against compiler/hardware
optimizations

25

Data Race Detection
is Not a Solution

• Current static data-race detectors are not sound
and precise
– typically only handle locks, conservative due to

aliasing, ...

• Dynamic analysis is costly
– DRFx: throw exception on a data-race [Marino’10]

– Either slow (8x) or requires complex hardware

• Legacy issues
26

Deficiencies of DRF0

27

weak or no
semantics for data-

racy programs

no easy way to
identify & reject
racy programs

problematic for

DEBUGGABILITY
programmer must assume non-SC

behavior for all programs

SAFETY
optimization + data race =

jump to arbitrary code!
[Boehm et al., PLDI 2008]

COMPILER CORRECTNESS
Java must maintain safety at the

cost of complexity
[Ševčík&Aspinall, ECOOP 2008]

Analogous to unsafe languages:
relying on programmer

infallibility

28

Languages, compilers, processors are adopting DRF0
Not a strong foundation

Rust:
 Atomics - The Rustonomicon

Foundations of the
C++ concurrency
memory model

The Java memory model

The Go Memory Model

https://doc.rust-lang.org/nomicon/atomics.html
https://doc.rust-lang.org/nomicon/atomics.html
https://doc.rust-lang.org/nomicon/atomics.html
https://dl.acm.org/doi/10.1145/1375581.1375591
https://dl.acm.org/doi/10.1145/1375581.1375591
https://dl.acm.org/doi/10.1145/1375581.1375591
https://dl.acm.org/doi/10.1145/1047659.1040336
https://go.dev/ref/mem

Language-level SC:
A Safety-First Approach

29

Program order and shared memory
are important abstractions

Modern languages should protect them

All programs, buggy or otherwise,
should have SC semantics

EECS 570
30

Relaxed Consistency

EECS 570
31

Review: Problems with SC

• Difficult to implement efficiently in hardware
❒ Straight-forward implementations:

❍ No concurrency among memory access
❍ Strict ordering of memory accesses at each node
❍ Essentially precludes out-of-order CPUs

• Unnecessarily restrictive
❒ Most parallel programs won’t notice out-of-order accesses

• Conflicts with latency hiding techniques

EECS 570
32

Execution in strict SC

• Miss on Wr A stalls all unrelated accesses

Memory accesses issue one-at-a-time

Wr A

Wr D

Rd B

Rd CCPU
pipeline

Wr A	 Miss

Rd B	 Idle

Rd C	 Idle

Rd E

Wr D	 Idle

EECS 570
33

Sun’s “Total Store Order” (TSO)

• Formal requirements [v8 architecture manual]:
❒ Order - There exists a partial memory order (<M) and it is total

for all operations with store semantics
❒ Atomicity - Atomic read-modify-writes do not allow a store

between the read and write parts
❒ Termination - All stores are performed in finite time
❒ Value – Loads return the most recent value w.r.t. memory

order (<M) and w.r.t. local program order (<p)
❒ LoadOP – Loads are blocking
❒ StoreStore – Stores are ordered

EECS 570
34

Dekker’s Algorithm

• Mutually exclusive access to a critical region
❒ Works as advertised under sequential consistency

	 	 /* initial A = B = 0 */
	 	 P1	 	 	 	 P2
	 	 A = 1;	 	 	 	 B=1;
	 	 if (B != 0) goto retry; 	 if (A != 0) goto retry;
	 	 /* enter critical section*/	 /* enter critical section*/

EECS 570
35

TSO: Programmer’s Perspective

• Can occasionally lead to astonishing behavior changes
❒ E.g., Dekker’s algorithm doesn’t work
❒ ISAs provide an STBAR (store barrier) to manually force order

❍ Semantics – store buffer must be empty before memory
operations after STBAR may be executed

❒ Can also enforce order by replacing stores with RMWs

• But, the key case, where sync is done with locks, simply works
❒ Lock acquires are RMW operations ⇒

they force order for preceding/succeeding loads/stores
❍ Load semantics of RMW imply load-load orderings
❍ Ditto for store semantics

❒ Lock release is a store operation ⇒
it must be performed after critical section is done

EECS 570
36

TSO: Compiler’s Perspective

• Compiler may now hoist loads across stores
❒ Still can’t reorder stores or move loads across loads
❒ Not clear how helpful this is in practice…
❒ …Recent results from Prof. Satish’s group:

❍ 5-30% perf. gap vs. compiler that preserves SC [PLDI’11]

• No new crazy memory barriers to emit
❒ Library/OS writers need to use a little bit of caution;

use RMWs instead of loads/stores for synchronization
❒ TSO-unsafe code is rare enough that it can be the programmer’s

problem
• No need to invoke “undefined behavior” to avoid onerous

implementation requirements

EECS 570
37

TSO: HW Perspective

• Allows a FIFO-ordered, non-coalescing store buffer
❒ Typically maintains stores at word-granularity
❒ Loads search buffer for matching store(s)

❍ Some ISAs must deal with merging partial load matches
❒ Coalescing only allowed among adjacent stores to same block
❒ Must force buffer to drain on RMW and STBAR
❒ Often, this is implemented in same HW structure as (speculative)

store queue

• Can hide store latency!
❒ But, store buffer may need to be quite big

❍ Stores that will be cache hits remain buffered behind misses
❒ Associative search limits scalability

❍ E.g., certainly no more than 64 entries

EECS 570
38

Execution in TSO

• Stores misses do not stall retirement

❒ St A, St C, Ld D misses overlapped
❒ Ld B retired without waiting for St A to fill
❒ St C consumes space in store buffer even though it will hit

TSO hides store miss latency

St A

St C

Ld D
CPU

pipeline

St A	 Miss

St C	 Hit

Ld D	 Miss

Ld B
Ld B	 Retired

retired

Ld E Ld E	 Idle

EECS 570
39

TSO Variants

• Differ in their notions of write atomicity
• IBM 370 was the same as TSO except that loads could not

read from the store buffer early

• Consider:
Core 0 Core 1

(i1) x = 1;
(i2) r1 = x;
(i3) r2 = y;

(i4) y = 1;
(i5) r3 = y;
(i6) r4 = x;

IBM 370 Forbids: r1 = 1, r2 = 0, r3 = 1, r4
= 0

EECS 570
40

Processor Consistency (PC)

• [Goodman 1989]
• Basically TSO with the relaxation of store atomicity

• Consider the IRIW litmus test:

Core 0 Core 1 Core 2 Core 3

x = 1; y = 1; r1 = x;
r2 = y;

r3 = y;
r4 = x;

Allowed under PC: r1 = 1, r2 = 0, r3 = 1, r4 =
0

EECS 570
41

Variants of Store Atomicity

• Notation from [Trippel et al. ASPLOS 2017]
• MCA: a store becomes visible to all cores (including the

performing core) at the same time
❒ IBM 370 style

• rMCA: a store may become visible to the performing core
before other cores, but once it becomes visible to one other
core, it must become visible to all other cores at the same
time
❒ TSO style
❒ commonly referred to as “multicopy atomicity” in the

literature today, but terminology can vary
• nMCA: a store may become visible to different cores at

different times
❒ PC style
❒ Can significantly complicate reasoning

EECS 570
42

Relaxing Write-to-Write Order

• Allows writes to coalesce in SB & drain early

• Motivation: Coalescing store buffers & early drain

St A

St C

Ld D
CPU

pipeline

St A	 Miss

St C	 Hit

Ld D	 Miss

Ld B
Ld B	 Retired

retired

Ld E Ld E	 Idle

Allows us
to drain this

EECS 570
43

Sun’s “Partial Store Order” (PSO)

• Formal requirements [v8 architecture manual]:
❒ Order - There exists a partial memory order (<M) and it is total

for all operations with store semantics
❒ Atomicity - Atomic read-modify-writes do not allow a store

between the read and write parts
❒ Termination - All stores are performed in finite time
❒ Value – Loads return the most recent value w.r.t. memory

order (<M) and w.r.t. local program order (<p)
❒ LoadOP – Loads are blocking
❒ StoreStore – Stores are ordered only if they are separated by a

membar (memory barrier) instruction
❒ StoreStoreEq – Stores to the same address are ordered

EECS 570
44

PSO: Compiler/HW Perspective

• Allows an unordered, coalescing post-retirement store buffer
❒ Can now use a cache-block-grain set-associative structure
❒ Store misses leave store buffer upon cache fill
❒ Loads search buffer for matching store(s)
❒ Must force buffer to drain on RMW and STBAR

• Much more efficient store buffer

• But, still doesn’t allow out-of-order loads
❒ No OoO execution (without speculation)
❒ Compiler’s hands are still tied

EECS 570
45

Relaxing all Order

• Now Ld E can complete even though earlier insn aren’t done

• Motivation: Out-of-order execution & multiple load misses

St A

St C

Ld D
CPU

pipeline

St A	 Miss

St C	 Miss

Ld D	 Miss

Ld B
Ld B	 Retired

retired

Ld E Ld E	 Done

EECS 570
46

Two ISA Approaches to enforce order

• Approach 1: Using explicit “fence” (aka memory barrier)
❒ Sun’s Relaxed Memory Order (RMO), Alpha, PowerPC, ARM
		 	 Ld, St, …

	 	 	 L L S S
	 	 Fence 	 ↓↓↓↓ Enforces order if bit is set

 L S L S
	 	 Ld, St, …

• Approach 2: Annotate loads/stores that do synchronization
❒ Weak Ordering, Release Consistency (RC)
❒ Data-Race-Free-0 (DRF0) – prog. language-level model

Load.acquire 	 Lock1
…
Store.release	 Lock1

EECS 570
47

More definitions… Dependence Order

• A refinement of program order (<p)
• Dependence order (<d) captures the minimal subset of (<p)

that guarantees self-consistent execution traces. X <p Y
implies X <d Y if at least one of the following is true:
❒ The execution of Y is conditional on X and S(Y) (Y is a store)
❒ Y reads a register that is written by X
❒ X and Y access the same memory location and S(X) and L(Y)

• Dependence order captures what an out-of-order core is
allowed to do (ignoring exceptions)

EECS 570
48

Sun’s “Relaxed Memory Order” (RMO)
• Formal requirements [v9 architecture manual]:

❒ X <d Y ∧ L(X) ⇒ X <M Y
❍ RMO will maintain dependence order if preceding insn. is a load

❒ M(X,Y) ⇒ X <M Y
❍ MEMBAR instructions order memory operations

❒ Xa <p Ya ∧ S(Y) ⇒ X <M Y
❍ Stores to the same address are performed in program order

❒ Assuming Y is a load to memory location a,
	 Value(La) = Value(Max<m { S | Sa <m La or Sa <p La })

❍ where Max<m{..} selects the most recent element with respect to the memory
order and where Value() yields the value of a particular memory transaction.

EECS 570
49

Execution in RMO w/ fence

• “Fence” indicates ordering affects correctness
❒ Retirement stalls at Fence
❒ Typically, accesses after fence don’t issue

St A

St C

Fence

Ld BCPU
pipeline

St A	 Miss

Ld D

Ld B	 Idle

St C	 Idle

retired

can’t issue

EECS 570
50

RMO: Programmer’s Perspective
• Programmer must specify MEMBARS wherever they are needed

❒ This is hard; Specifying minimum barriers is harder
❍ See Vsync [Oberhauser et al. ASPLOS 2021]

❒ Below: lock and unlock (from v9 ref. manual; w/o branch delays)
❒ RMO also does not preserve same address ld-ld ordering!

LockWithLDSTUB(lock)
	retry:	 ldstub [lock],%l0
		 	 tst %l0
		 	 be out
	loop:	 ldub [lock],%l0
		 	 tst %l0
		 	 bne loop
		 	 ba,a retry
	out:	membar #LoadLoad | #LoadStore

UnLockWithLDSTUB(lock)
		 	 membar #StoreStore 	 !RMO and PSO only
		 	 membar #LoadStore 	 !RMO only
		 	 stub %g0,[lock]

EECS 570
51

RMO: Compiler’s Perspective

• Sweet, sweet freedom!
❒ Compiler may freely re-order between fences
❒ Also across fences if the fence allows it (partial fences)
❒ Note: still can’t reorder stores to same address
❒ Programmer’s problem if the fences are wrong…

EECS 570
52

RMO: HW Perspective

• Unordered, coalescing post-retirement store buffer
❒ Just like PSO

• Out-of-order execution!
❒ Need a standard uniprocessor store queue
❒ Fence instruction implementation

❍ Easy – stall at issue
❍ Hard – retire to store buffer and track precise constraints

EECS 570
53

Weak Ordering (WO)
• [Dubois et al. ISCA 1986]

• Loads and stores can be labeled as “sync”
❒ No reordering allowed across sync instructions

EECS 570
54

Release Consistency (RC)
• Specialize loads and stores as “acquires” and “releases”

❒ Load at top of critical section is an acquire
❒ Store at bottom of critical section is a release
❒ Allows reordering into critical sections, but not out

EECS 570
55

Release Consistency (RC)

• Two flavours: RCsc and RCpc
❒ In RCsc, special accesses are sequentially consistent with

respect to each other
❒ In RCpc, special accesses are processor consistent with respect

to each other
• The difference has significant ramifications!

❒ In RCpc, even adding enough synchronization to eliminate
data races does not make the program behave like SC!

❒ In RCpc, ordering is not maintained between releases and
subsequent acquires
❍ Why do this?

❒ In RCpc, releases do not become visible to all cores at the
same time
❍ Why do this?

EECS 570
56

Data Races
A program has a data race if it has an execution in which two accesses
to the same address on different threads where at least one is a write

and at least one is not a synchronization access are not ordered by
synchronization accesses

Note: The definition of races can vary depending on the context.

Core 0	 	 Core 1
A: x = 1;		 C: r1 = y;	
B: y = 1;		 D: z = 1;

Core 0	 	 Core 1
A: x = 1;		 C: r1 = y;	
B: y = 1;		 D: bne r1, 1, C
	 	 	 E: r2 = x;

EECS 570
57

WO/RC: Programmer Perspective

• A new way of thinking: programmer-centric memory models
❒ If you annotate syncs correctly, your program will behave like SC

❍ WHY?
❒ E.g., Data-Race-Free-0 (DRF0) [Adve and Hill ISCA 1990]

❍ Accesses are either normal or sync
❍ Sync accesses are sequentially consistent, and order normal accesses
❍ Data races among normal accesses are prohibited

❍DRF0 programs appear as if they ran under SC
❍ Similar idea in [Gharachorloo et al. ISCA 1990]: “Properly-[Labelled]”

Programs
❒ SC-for-DRF forms the basis for programming language memory

models

EECS 570
58

The Ramifications of SC-for-DRF

• Hardware can freely reorder instructions in between acquire
and release operations
❒ No one else can tell!

• Compilers can freely reorder code in between acquire and
release operations
❒ Again, no one else can tell!

• So does this solve all memory consistency problems?
❒ Not quite!
❒ The hardware and compiler still need to maintain ISA-level

MCM and PL MCM guarantees
❒ What about cases where we want some atomics that are not

sequentially consistent? (for performance reasons)
❒ Next time: programming language MCMs

