EECS 570

Midterm Review

Parallel Computer Arch

Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/

Intel Paragon XP/S

Slides developed in part by Profs. Austin, Adve, Falsafi, Martin, Narayanasamy, Nowatzyk, Peh, and Wenisch of CMU, EPFL, MIT, UPenn, U-M, UIUC

1: Intro

- ILP Wall
- Power Wall
- Dennard Scaling / Post-Dennard Scaling
- Motivating Multiprocessors

2: Models and MPI

- Complexity analysis
 - Work & Depth
 - Critical Path
- Scheduling
 - Greedy scheduler
- Ahmdahl's Law
- Message Passing
 - Asynchronus vs Synchronus
 - Deadlock

3: Shared Memory + DLP

- Global address space
- Virtual addressing
- Synchronization
 - Locks
 - Barriers
- Bus based interconnect
- Point-to-point interconnects
- Vector Processing

4: Synchronization

- Aquire/Wait/Obtain
- Locks
 - Need atomic operations for Read-Modify-Write
 - Test&set
 - Fetch&op
 - Swap
 - Compare&swap
 - Test and Set Spin
 - Test and Test and Set Spin
 - Ticket Locks
 - Array Based Queue Locks
 - MCS Lock
- Barriers
 - Sense reversing barrier
 - Tree-Based

5: Transactional Memory

- Insert, lookup, delete -> transfer
- Fine grained locking difficult to program
- Coarse grained locking too slow
- Create TM (Read set, Write set)
- Version management (Eager or Lazy)
- Conflict Detetction (Eager or Lazy)

Where does TM not work at replacing locks

6: Snooping

- Single Reader Multiple Writer or Data value invariant
- Caches snoop all requests on single bus
- Make decisions about cacheline state
- Valid Invalid
- M O E -S -I
- Update vs. Invalidate protocols

7: SMP Designs

- Coherence Control Implementation
- Writebacks, non-atomicity, serialization/order
- Hierarchical caches
- Split Busses
- Deadlock, livelock & starvation
- TLB Coherence

8: Directory Protocols

- Snooping has bus bandwidth and snooping bandwidth problems
- Make a NoC, and add directory protocol
- Centralized vs Distributed
- Share list options
 - Bit vector, pointers, linked-lists, coarse vectors
- 4-hop vs 3-hop transactions
- Use of Ack's
- Race conditions
- Bounding messages

9: Memory Consistency Models

- Type of consistency models
 - Sequential consistency
 - ☐ TSO
 - Relaxed consistency
- Language-level vs hardware-level consistency models
- Data-race-free memory model
- Speculative hardware optimizations for memory-ordering overhead
 - In-window speculation
 - Out-of-window speculation
 - Type-based (local vs shared) optimization
- SC-preserving compiler