EECS 570 Lecture 14 GPUs

Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/co4urses/eecs570/

Slides adapted from instructional material with D. Kirk and W. Hwu, Programming Massively Parallel Processors: A Handson Approach, Third Edition.

Credits to Nikos Hardavellas (Northwestern), Reetu Das (UM), Thomas Wenisch

Readings

This week:

• Tor M. Aamodt, Wilson Wai Lun Fung, Timothy G. Rogers, General-Purpose Graphics Processor Architectures, Ch. 3.1-3.3, 4.1-4.3

Growth in GPUs

Revolution in GPUs

A major paradigm shift

18 future arenas of competition These industries could yield \$29-48 trillion in revenues and \$2-6 trillion in profits by 2040. Cloud Electric E-commerce Al software vehicles and services services THE DEPT

Cybersecurity

Video

games

Semiconductors

Shared autonomous vehicles

Batteries

Streaming

video

Space

Future air

mobility

Nuclear fission power plants

McKinsey Global Institute

Robotics

Industrial and consumer

Drugs for obesity and related conditions

Domain-Specific and Generative AI Application Systems

Model Customization, Evaluation, Safety, and Explainability

Model Architecture and Techniques

Systems Optimization

Systems and Applications

Ecosystem: LangChain, LlamaIndex, Weights & Biases NVIDIA: AI Workbench, NeMo Guardrails

Services and Microservices

Ecosystem: AWS Bedrock, AzureML, Cohere, Google Vertex AI, OpenAI APIs NVIDIA: NIM, Avatar Cloud Engine (ACE), BioNeMo, NeMo, Picasso

Models

Ecosystem: BLOOM, Llama, Mistral, MPT, OPT, Phi-2, Getty Images Al Generator, Shutterstock 3D Generator NVIDIA: BioMegatron, Edify, Nemotron

SDKs and Frameworks

Ecosystem: Colossal-AI, HuggingFace Transformers, PyTorch NVIDIA: A2X, Megatron-LM, NeMo Framework, Riva, Picasso

Libraries

Ecosystem: XLA NVIDIA: CUDA, CUTLASS, CV-CUDA, Megatron-Core, Megatron-LM, NCCL, RAFT, Transformer Engine, TensorRT-LLM, Ray

Management and Orchestration

Ecosystem: Kubernetes, Nephele, Slurm, VMware NVIDIA: Base Command Platform

Al computing stack

Computing at Exascale

El Capitan at Lawrence Livermore National Laboratory (LLNL)

Performance is expected to exceed 2 exaFLOPS, which comes with a \$600 million price tag.

CPUs: Latency Oriented Design

High clock frequency

- Large caches
 - Convert long latency memory accesses to short latency cache accesses

Sophisticated control

- Branch prediction for reduced branch latency
- Data forwarding for reduced data latency

Powerful ALU

• Reduced operation latency

CPU

DRAM

GPUs: Throughput Oriented Design

- Moderate clock frequency
- Smaller caches
 - To boost memory throughput
- Simple control
 - No branch prediction
 - No data forwarding
- Energy efficient ALUs
 - Many, long latency but heavily pipelined for high throughput
- Require massive number of threads to tolerate latencies

DRAM

CPU vs. GPU

- Different design philosophies
 - CPU: A few out-of-order cores
 - GPU: Many in-order SIMD cores

NVIDIA B100 (2024-25)

B100:

- Streaming Multiprocessors (SMs): 192
- L1 Cache: 128 KB per SM
- L2 Cache: 50 MB
- Transistor Count: 104 billion
- Memory Size: 192 GB HBM3e
- Memory Bandwidth: 8 TB/s
- Power Consumption: 700W

Each SM can execute 32 threads at a time

Exponential growth continues ...

Supercharging Next-Generation AI and Accelerated Computing

NVLink At-Scale Performance

Architecture Release

Massive Parallelism -Regularity

Applications Benefit from Both CPU and GPU

CPUs for sequential parts where latency matters

CPUs can be 10+X faster than GPUs for sequential code

GPUs for parallel parts where throughput wins

GPUs can be 10+X faster than CPUs for parallel code

Amdahl's Law

Speeding Up Real Applications

Big Idea: Amdahl's Law

Speedup = 1
Non-speed-up part
$$(1 - F) + \frac{F}{S}$$
 Speed-up part

Example: the execution time of half of the program can be accelerated by a factor of 2. What is the program speed-up overall?

$$\frac{1}{\frac{0.5+0.5}{2}} = \frac{1}{\frac{0.5+0.25}{2}} = 1.33$$

Load Balance

The total amount of time to complete a parallel job is limited by the thread that takes the longest to finish

Memory Bandwidth Constraint

Memory Contentions in accessing critical dat serialization

Massively parallel execution cannot afford se

Computation – Communication

Slowest of the two determines performance

Global Memory Bandwidth

Ideal

Reality

GPUs and SIMD/Vector Data Parallelism

- Graphics processing units (GPUs)
 - How do they have such high peak FLOPS?
 - Ans: exploit massive data parallelism
- "SIMT" execution model
 - **I** Single instruction multiple threads
 - Similar to both "vectors" and "SIMD"
 - □ A key difference: better support for conditional control flow
- Program it with CUDA or OpenCL (or Vulkan or Metal or ...)
 - Extensions to C (or Objective-C in the case of Metal)
 - Perform a "shader task" (a snippet of scalar computation) over many elements
 - Internally, GPU uses scatter/gather and vector mask operations

Context: History of Programming GPUs

• "GPGPU"

- Originally could only perform "shader" computations on images
- **So**, programmers started using this framework for computation
- Puzzle to work around the limitations, unlock the raw potential
- As GPU designers notice this trend...
 - Hardware provided more "hooks" for computation
 - Provided some limited software tools
- GPU designs are now fully embracing compute
 - More programmability features to each generation
 - □ Industrial-strength tools, documentation, tutorials, etc.
 - **Can be used for in-game physics**, etc.
 - Many application targets:

AI, graphics, data analytics, scientific computation, genomics

Throughput Computing: Hardware Basics

> Justin Hensley Advanced Micro Devices, Inc Graphics Product Group

What does a modern graphics API do?

A Simple Program - Diffuse Shader

```
sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
float4 diffuseShader(float3 norm, float2 uv)
  float3 kd;
  kd = myTex.Sample(mySamp, uv);
  kd *= clamp( dot(lightDir, norm), 0.0, 1.0);
  return float4(kd, 1.0);
                     Each invocation is independent, but no
                     explicitly exposed parallelism
```


Shader is compiled

Exploit data parallelism! - add two cores

Each invocation is independent!

Add even more cores - four cores

How about even more cores - 16 cores

128 cores?

How do you feed all these cores?

Back to the simple core...

•How do you feed all these cores?

Share cost of fetch / decode across many ALUs
SIMD Processing

Back to the simple core...

•How do you feed all these cores?

- Share cost of fetch / decode across many ALUs
 SIMD Processing
 Single
 Instruction
 - Multiple
 - Data

Back to the simple core...

How do you feed all these cores?

Share cost of fetch / decode across many ALUs
SIMD Processing
Single

SIMD Processing does not imply SIMD instructions!

Back to a single core...

128-Fragments in parallel

16 cores → 128 ALUs (16 cores * 8 ALUs) → 16 independent instruction streams

128-things in parallel

•X cores can work on primitives (triangles)

- -"geometry shader"
- Y cores can work on vertices
 - -"vertex shader"
- Z cores can work on fragments
 - -"pixel shader"
- N cores can work on data/work/etc

-"compute kernels"/"compute shaders"

Which cores working on what data changes over time

How to handle stalls?

•Memory access latency = 100's to 1000's of cycles

-Stalls occur when a core cannot run the next instruction

•GPUs don't have the large / fancy caches and logic that helps avoid stall because of a dependency on a previous operation.

•But we have LOTS of independent fragments.

–Interleave processing of many fragments on a single core to avoid stalls caused by high latency operations.

Throughput computing

Latency Hiding with "Thread Warps"

- Warp: A set of threads that execute the same instruction (on different data elements)
- Fine-grained multithreading
 - One instruction per thread in pipeline at a time (No branch prediction)
 - Interleave warp execution to hide latencies
- Register values of all threads stay in register file
- No OS context switching
- Memory latency hiding
 - **Graphics has millions of pixels**

Warp-based SIMD vs. Traditional SIMD

- Traditional SIMD contains a single thread
 - Lock step
 - Programming model is SIMD (no threads)
 - □ ISA contains vector/SIMD instructions
- Warp-based SIMD consists of multiple scalar threads executing in a SIMD manner (i.e., same instruction executed by all threads)
 - Each thread can be treated individually (i.e., placed in a different warp) → programming model not SIMD
 - Enables memory and branch latency tolerance
 - □ ISA is scalar \rightarrow vector instructions formed dynamically

CUDA Devices and Threads

- A compute device
 - □ Is a coprocessor to the CPU or host
 - □ Has its own DRAM (device memory)
 - **Runs many threads in parallel**
 - Is typically a GPU but can also be another type of parallel processing device
- Data-parallel portions of an application are expressed as device kernels which run on many threads
- Differences between GPU and CPU threads
 - □ GPU threads are extremely lightweight
 - O Very little creation overhead
 - **GPU needs 1000s of threads for full efficiency**
 - Multi-core CPU needs (relatively) only a few

Thread Batching: Grids and Blocks

- A kernel is executed as a grid of thread blocks
 - □ All threads share data memory space
- A thread block is a batch of threads that can cooperate with each other by:
 - □ Synchronizing their execution
 - For hazard-free shared memory accesses
 - Efficiently sharing data through a low latency shared memory
- Two threads from two different blocks cannot cooperate

Execution Model

- Each thread block is executed by a single multiprocessor
 - **Synchronized using shared memory**
- Many thread blocks are assigned to a single multiprocessor
 - **T** Executed concurrently in a time-sharing fashion
 - □ Keep GPU as busy as possible
- Running many threads in parallel can hide DRAM memory latency
 - □ Global memory access : 2~300 cycles

CUDA Device Memory Space Overview

- Each thread can:
 - □ R/W per-thread registers
 - **R/W** per-thread local memory
 - □ R/W per-block shared memory
 - **R/W per-grid global memory**
 - Read only per-grid constant memory
 - Read only per-grid texture memory

• The host can R/W global, constant, and texture memories

Example: Vector Addition Kernel

```
// Pair-wise addition of vector elements
// One thread per addition
```

```
__global___void
vectorAdd(float* iA, float* iB, float* oC)
{
    int idx = threadIdx.x
        + blockDim.x * blockId.x;
        oC[idx] = iA[idx] + iB[idx];
```

Courtesy NVIDIA

Example: Vector Addition Host Code

```
float* h_A = (float*) malloc(N * sizeof(float));
float* h_B = (float*) malloc(N * sizeof(float));
// ... initalize h_A and h_B
```

```
// allocate device memory
float* d_A, d_B, d_C;
cudaMalloc( (void**) &d_A, N * sizeof(float) );
cudaMalloc( (void**) &d_B, N * sizeof(float) );
cudaMalloc( (void**) &d_C, N * sizeof(float) );
```

```
// copy host memory to device
cudaMemcpy( d_A, h_A, N * sizeof(float),
cudaMemcpyHostToDevice );
cudaMemcpy( d_B, h_B, N * sizeof(float),
cudaMemcpyHostToDevice );
```

```
// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256>>> ( d_A, d_B, d_C);
```

CUDA-Strengths

- (Relatively) easy to program (small learning curve)
- Success with several complex applications
 At least 7X faster than CPU stand-alone implementations
- Allows us to read and write data at any location in the device memory
- More fast memory close to the processors (registers + shared memory)

CUDA-Limitations

- Some hardwired graphic components are hidden
- Better tools are needed
 - **Profiling**
 - Memory blocking and layout
 - Binary Translation
- Difficult to find optimal values for CUDA execution parameters
 - Number of thread per block
 - Dimension and orientation of blocks and grid
 - Use of on-chip memory resources including registers and shared memory
- Working with GPUs is an active area of research