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Readings

This week: 
• Tor M. Aamodt, Wilson Wai Lun Fung, Timothy G. Rogers, General-Purpose 

Graphics Processor Architectures, Ch. 3.1-3.3, 4.1-4.3



Growth in GPUs
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Revolution in GPUs
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Nvidia Increased Compute Power 1000X in 8 Years to 20 Petaflops in the Blackwell GPU | NextBigFuture.com

https://www.nextbigfuture.com/2024/03/nvidia-increased-compute-power-1000x-in-8-years-to-20-petaflops-in-the-blackwell-gpu.html


A major 
paradigm 

shift



AI computing stack



Computing at Exascale
El Capitan at Lawrence Livermore 
National Laboratory (LLNL) 
 

Performance is expected 
to exceed 2 exaFLOPS, 
which comes with a $600 
million price tag. 
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CPUs: Latency Oriented Design 

High clock frequency 
Large caches 

• Convert long latency memory accesses 
to short latency cache accesses 

Sophisticated control 
• Branch prediction for reduced branch 

latency 
• Data forwarding for reduced data 

latency 

Powerful ALU 
• Reduced operation latency
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GPUs: Throughput Oriented Design

▪ Moderate clock frequency 
▪ Smaller caches 

• To boost memory throughput 

▪ Simple control 
• No branch prediction 
• No data forwarding 

▪ Energy efficient ALUs 
• Many, long latency but heavily pipelined 

for high throughput 

▪ Require massive number of threads to 
tolerate latencies

DRAM

GPU



CPU vs. GPU

• Different design philosophies 
• CPU: A few out-of-order cores 
• GPU: Many in-order SIMD cores
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NVIDIA B100 (2024-25)

Each SM can execute 32 threads at a time
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Sources: ASUS China Tony Yu, Kurnal on X, via VideoCardz

https://www.bilibili.com/video/BV1AGfWYFEaY/
https://x.com/Kurnalsalts/status/1883153126011892140
https://x.com/Kurnalsalts/status/1883153126011892140
https://videocardz.com/newz/nvidia-gb202-blackwell-760mm%C2%B2-gpu-die-shot-revealed-24756-cores-and-512-bit-bus
https://videocardz.com/newz/nvidia-gb202-blackwell-760mm%C2%B2-gpu-die-shot-revealed-24756-cores-and-512-bit-bus


Exponential growth continues …
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Massive 
Parallelism - 
Regularity



Applications Benefit from Both CPU and GPU 

CPUs for sequential parts where 
latency matters 

CPUs can be 10+X faster than GPUs for 
sequential code

GPUs for parallel parts where 
throughput wins 

GPUs can be 10+X faster than CPUs 
for parallel code



Amdahl’s Law
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Speedup =
1

+1 - f f
N



Speeding Up Real Applications
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Load Balance

The total amount of time to complete a parallel job is limited 
by the thread that takes the longest to finish
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good bad!



Memory Bandwidth Constraint 

Memory Contentions in accessing critical data causes 
serialization 

Massively parallel execution cannot afford serialization 

Computation – Communication 
 Slowest of the two determines performance
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Global Memory Bandwidth
Ideal Reality
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GPUs and SIMD/Vector Data Parallelism

• Graphics processing units (GPUs) 
❒ How do they have such high peak FLOPS? 
❒ Ans: exploit massive data parallelism 

• “SIMT” execution model 
❒ Single instruction multiple threads 
❒ Similar to both “vectors” and “SIMD” 
❒ A key difference: better support for conditional control flow 

• Program it with CUDA or OpenCL (or Vulkan or Metal or …) 
❒ Extensions to C (or Objective-C in the case of Metal) 
❒ Perform a “shader task” (a snippet of scalar computation) over many elements 
❒ Internally, GPU uses scatter/gather and vector mask operations



Context: History of Programming GPUs

• “GPGPU” 
❒ Originally could only perform “shader” computations on images 
❒ So, programmers started using this framework for computation 
❒ Puzzle to work around the limitations, unlock the raw potential 

• As GPU designers notice this trend… 
❒ Hardware provided more “hooks” for computation 
❒ Provided some limited software tools 

• GPU designs are now fully embracing compute 
❒ More programmability features to each generation 
❒ Industrial-strength tools, documentation, tutorials, etc. 
❒ Can be used for in-game physics, etc. 
❒ Many application targets:  

AI, graphics, data analytics, scientific computation, genomics





















































Latency Hiding with “Thread Warps”
• Warp: A set of threads that 

execute the same instruction 
(on different data elements) 

• Fine-grained multithreading 
❒ One instruction per thread in pipeline 

at a time (No branch prediction) 
❒ Interleave warp execution to hide 

latencies 
• Register values of all threads stay in 

register file 

• No OS context switching 

• Memory latency hiding 
❒ Graphics has millions of pixels
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D-Cache

Thread Warp 6

Thread Warp 1
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Thread Warp 3
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SIMD Pipeline

Slide credit: Tor Aamodt



Warp-based SIMD vs. Traditional SIMD

• Traditional SIMD contains a single thread  
❒ Lock step 
❒ Programming model is SIMD (no threads) 
❒ ISA contains vector/SIMD instructions 

• Warp-based SIMD consists of multiple scalar threads executing in a SIMD 
manner (i.e., same instruction executed by all threads) 
❒ Each thread can be treated individually (i.e., placed in a different warp)  

programming model not SIMD 
❍ Enables memory and branch latency tolerance 

❒ ISA is scalar  vector instructions formed dynamically





CUDA Devices and Threads

• A compute device 
❒ Is a coprocessor to the CPU or host 
❒ Has its own DRAM (device memory) 
❒ Runs many threads in parallel 
❒ Is typically a GPU but can also be another type of  parallel processing 

device  
• Data-parallel portions of an application are expressed as device 

kernels which run on many threads 
• Differences between GPU and CPU threads  

❒ GPU threads are extremely lightweight 
❍ Very little creation overhead 

❒ GPU needs 1000s of threads for full efficiency 
❍ Multi-core CPU needs (relatively) only a few



Thread Batching: Grids and Blocks
• A kernel is executed as a  

grid of thread blocks 
❒ All threads share data memory space 

• A thread block is a batch of threads that 
can cooperate with each other by: 
❒ Synchronizing their execution 

❍ For hazard-free shared memory accesses 
❒ Efficiently sharing data through a low 

latency shared memory 
• Two threads from two different blocks 

cannot cooperate
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Execution Model

• Each thread block is executed by a single multiprocessor 
❒ Synchronized using shared memory 

• Many thread blocks are assigned to a single multiprocessor 
❒ Executed concurrently in a time-sharing fashion 
❒ Keep GPU as busy as possible  

• Running many threads in parallel can hide DRAM memory latency 
❒ Global memory access : 2~300 cycles



CUDA Device Memory Space Overview

• Each thread can: 
❒ R/W per-thread registers 
❒ R/W per-thread local memory 
❒ R/W per-block shared memory 
❒ R/W per-grid global memory 
❒ Read only per-grid constant memory 
❒ Read only per-grid texture memory
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• The host can R/W 

global, constant, and 
texture memories



Example: Vector Addition Kernel

// Pair-wise addition of vector elements 
// One thread per addition 

__global__ void 
vectorAdd(float* iA, float* iB, float* oC)  
{ 
    int idx = threadIdx.x  
        + blockDim.x * blockId.x; 
    oC[idx] = iA[idx] + iB[idx]; 
}

Courtesy NVIDIA



Example: Vector Addition Host Code

float* h_A = (float*) malloc(N * sizeof(float)); 
float* h_B = (float*) malloc(N * sizeof(float)); 
// … initalize h_A and h_B 

// allocate device memory 
float* d_A, d_B, d_C; 
cudaMalloc( (void**) &d_A, N * sizeof(float) ); 
cudaMalloc( (void**) &d_B, N * sizeof(float) ); 
cudaMalloc( (void**) &d_C, N * sizeof(float) ); 

// copy host memory to device 
cudaMemcpy( d_A, h_A, N * sizeof(float),         
cudaMemcpyHostToDevice ); 

cudaMemcpy( d_B, h_B, N * sizeof(float),                
cudaMemcpyHostToDevice ); 

// execute the kernel on N/256 blocks of 256 threads each 
vectorAdd<<< N/256, 256>>>( d_A, d_B, d_C);

Courtesy NVIDIA



CUDA-Strengths

• (Relatively) easy to program (small learning curve) 

• Success with several complex applications  
❒ At least 7X faster than CPU stand-alone implementations 

• Allows us to read and write data at any location in the 
device memory 

• More fast memory close to the processors (registers + 
shared memory) 



CUDA-Limitations

• Some hardwired graphic components are hidden 
• Better tools are needed  

❒ Profiling 
❒ Memory blocking and layout 
❒ Binary Translation 

• Difficult to find optimal values for CUDA execution parameters 
❍ Number of thread per block 
❍ Dimension and orientation of blocks and grid 
❍ Use of on-chip memory resources including registers and shared memory 

• Working with GPUs is an active area of research


