EECS 570
Lecture 14
GPUs

Winter 2025
Prof. Satish Narayanasamy

http://www.eecs.umich.edu/cod4urses/eecs570/

Slides adapted from instructional material with D. Kirk and W. Hwu,
Programming Massively Parallel Processors: A Handson Approach, Third

Edition.
Credits to Nikos Hardavellas (Northwestern), Reetu Das (UM), Thomas Wenisch

EECS 570

Readings

This week:

o Tor M. Aamodt, Wilson Wai Lun Fung, Timothy G. Rogers, General-Purpose
Graphics Processor Architectures, Ch. 3.1-3.3, 4.1-4.3

Growth in GPUs

A quiet revolution and potential build-up

Computation: TFLOPs vs. 100 GFLOPs
1400

1200
-=+NVIDIA GPU
-—|ntel CPU

1000

800

(@)
o
o

"
Q.
®)
-
L
O

G70 3GHz Xeon
3GHz Quad
NV30 3GHZ Dual Core2 Duo

0 —1 Core P4

9/22/2002 2/4/2004 6/18/2005 10/31/2006 3/14/2008 712712009

Revolution in GPUs

1000X Al Compute in 8 Years

Blackwell
20,000 TFLOPS
FP4

Hopper /
4,000 TFLOPS /
FP8 4
Ampere ’
Pascal Volta 620 TFLOPS
19 TFLOPS 130 TFLOPS BF16/FP16
FP16 FP16

2016 2017

Nvidia Increased Compute Power 1000X in 8 Years to 20 Petaflops in the Blackwell GPU | NextBigFuture.com

https://www.nextbigfuture.com/2024/03/nvidia-increased-compute-power-1000x-in-8-years-to-20-petaflops-in-the-blackwell-gpu.html

A major
paradigm

shift

18 future arenas of competition

P

3 L Pha
) 1

?

E-commerce
Digital
advertising

W L=
=4

Cybersecurity

McKinsey

5
Al software
and services

-

Semiconductors

//-.s\

==

Batteries

Robotics

Global Institute

Cloud
services

Shared autonomous
vehicles

u
Modular

construction

oo,
A 3

y

7)
/"'\ £ 3 /':
o p

%

. -

g

Industrial and consumer

biotechnology

Drugs for obesity and
related conditions

Electric
vehicles

Streaming
video

N

N

Future air
mobility

Nuclear fission
power plants

Systems and Applications
Ecosystem: LangChain, Llamalndex, Weights & Biases
NVIDIA: Al Workbench, NeMo Guardrails

Domain-Specific > Services and Microservices
and Generative Al] Ecosystem: AWS Bedrock, AzureML, Cohere,
Application Systems Google Vertex Al, OpenAl APIs

NVIDIA: NIM, Avatar Cloud Engine (ACE), BioNeMo, NeMo, Picasso

Models

Ecosystem: BLOOM, Llama, Mistral, MPT, OPT, Phi-2,
Getty Images Al Generator, Shutterstock 3D Generator
NVIDIA: BioMegatron, Edify, Nemotron

Model Customization,
Evaluation, Safety,
and Explainability

SDKs and Frameworks
Ecosystem: Colossal-Al, HuggingFace Transformers, PyTorch

Model Architecture NVIDIA: A2X, Megatron-LM, NeMo Framework, Riva, Picasso

and Techniques

Libraries

Ecosystem: XLA

NVIDIA: CUDA, CUTLASS, CV-CUDA, Megatron-Core, Megatron-LM,
NCCL, RAFT, Transformer Engine, TensorRT-LLM, Ray

Management and Orchestration
Ecosystem: Kubernetes, Nephele, Slurm, VMware
NVIDIA: Base Command Platform

Al computing stack

P

Systems Optimization

Computing at Exascale

El Capitan at Lawrence Livermore
National Laboratory (LLNL)

Performance is expected
to exceed 2 exaFLOPS,
which comes with a $600
million price tag. L Lz oot o

Cray XK7 Compute Node

XK7 Compute Node Characteristics

AMD Series 6200 (Interlagos)

Host Memory
32GB
1600 MT/s DDR3

Gemini High Speed Interconnect

x

CPUs: Latency Oriented Design

High clock frequency CPU
Large caches
« Convert long latency memory accesses ALU ALU
to short latency cache accesses Control
ALU ALU

Sophisticated control

« Branch prediction for reduced branch
latency

« Data forwarding for reduced data
latency

Powerful ALU
« Reduced operation latency

GPUs: Throughput Oriented Design

= Moderate clock frequency

= Smaller caches
e To boost memory throughput

= Simple control
« No branch prediction
« No data forwarding

= Energy efficient ALUs

« Many, long latency but heavily pipelined
for high throughput

» Require massive number of threads to
tolerate latencies

CPU vs. GPU

« Different design philosophies

e CPU: A few out-of-order cores
o GPU: Many in-order SIMD cores

CPU

- ==

11

NVIDIA B100 (2024-25

ol

| GPCh2 |

“ 3

TPCR5 62
- [

Theaissiocs A

Toctaseal

4 B B IE il

ASUS China Tony Yu, Kurnal on X, via VideoCardz

B100:
e Streaming Multiprocessors (SMs): 192
e L1 Cache: 128 KB per SM
e L2 Cache: 50 MB
e Transistor Count: 104 billion
e Memory Size: 192 GB HBM3e
e Memory Bandwidth: 8 TB/s

e Power Consumption: 700W

Each SM can execute 32 threads at a time
12

https://www.bilibili.com/video/BV1AGfWYFEaY/
https://x.com/Kurnalsalts/status/1883153126011892140
https://x.com/Kurnalsalts/status/1883153126011892140
https://videocardz.com/newz/nvidia-gb202-blackwell-760mm%C2%B2-gpu-die-shot-revealed-24756-cores-and-512-bit-bus
https://videocardz.com/newz/nvidia-gb202-blackwell-760mm%C2%B2-gpu-die-shot-revealed-24756-cores-and-512-bit-bus

Exponential growth continues ...
Supercharging Next-Generation Al and Accelerated Computing

LLM Inference LLM Training Energy Efficiency Data Processing

vs. NVIDIA

30X = 4X = 25X 18X -~

2,100

1,800

1,500

o 1,200

NVLink At-Scale Performance

5% Generation NVLink

300

1t Generation NVLink

3" Generation NVLink

2" Generation NVLink

2014 <«

Architecture Release

» 2024

T s
TR P
R T e e
T
S

i"'-. >

Massive

Parallelism -

Regularity

Applications Benefit from Both CPU and GPU

CPUs for sequential parts where GPUs for parallel parts where
latency matters throughput wins

CPUs can be 10+X faster than GPUs for GPUs can be 10+X faster than CPUs
sequential code for parallel code

Amdahl’s Law

Speedup =

1-f

17

Speeding Up Real Applications

Big Idea: Amdahl’s Law

Speedup = 1
(1-F) * F

Non-speed-up part — S Speed-up part

Example: the execution time of half of the program can
be accelerated by a factor of 2.
What is the program speed-up overall?

1 1

05+05 0540025 =383

Load Balance

The total amount of time to complete a parallel job is limited
by the thread that takes the longest to finish

good bad!

19

Memory Bandwidth Constraint

£0 mermasonal Ticketing All Gates
T @rewsacins T B secriy el

Memory Contentions in accessing critical daig
serialization

Massively parallel execution cannot afford se =

Computation — Communication
Slowest of the two determines performance

20

Global Memory Bandwidth

Ideal

Reality

21

GPUs and SIMD/Vector Data Parallelism

e Graphics processing units (GPUs)
7 How do they have such high peak FLOPS?
3 Ans: exploit massive data parallelism

o “SIMT” execution model
3 Single instruction multiple threads
3 Similar to both “vectors” and “SIMD”
3 A key difference: better support for conditional control flow

e Program it with CUDA or OpenCL (or Vulkan or Metal or ...)
7 Extensions to C (or Objective-C in the case of Metal)
7 Perform a “shader task” (a snippet of scalar computation) over many elements
3 Internally, GPU uses scatter/gather and vector mask operations

Context: History of Programming GPUs

e “GPGPU”
3 Originally could only perform “shader” computations on images
3 So, programmers started using this framework for computation
3 Puzzle to work around the limitations, unlock the raw potential

» As GPU designers notice this trend...
3 Hardware provided more “hooks” for computation
3 Provided some limited software tools

« GPU designs are now fully embracing compute

3 More programmability features to each generation

3 Industrial-strength tools, documentation, tutorials, etc.
3 Can be used for in-game physics, etc.
0

Many application targets:
Al, graphics, data analytics, scientific computation, genomics

Throughput Computing:
Hardware Basics

What does a modern graphics API| do?

Geometry
Shader

Pixel
Shader

A Simple Program - Diffuse Shader

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;
floatd4d diffuseShader (float3 norm, float2 uv)
{
float3 kd;
kd = myTex.Sample (mySamp, uv);
kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
return floatd4(kd, 1.0);

} Each invocation is independent, but no
explicitly exposed parallelism

) SIGGRAPHASIA2008

10 adapted from Kayvon Fatahalian’s SIGGRAPH'08

Shader is compiled

1 Unshaded fragment in

sampler mySamp; <diffuseShader>:
Texture2D<float3> myTex; sample r0, v4, t0, sO
float3 lightDir; mul r3, v0, cb0[0]
floatd4 diffuseShader (float3 norm, float2 uv) madd r3, vl, cb0O[1], r3
{ madd r3, v2, cb0[2], r3
float3 kd; clmp r3, r3, 1(0.0), 1(1.0)
kd = myTex.Sample (mySamp, uv); mul o0, r0, r3
kd *= clamp(dot(lightDir, norm), 0.0, 1.0); mul ol, rl, r3
return floatd4(kd, 1.0); mul o2, r2, r3
} mov o3, 1(1.

e

1 Shaded fragment out

‘) SIGGRAPHASIA2008

NEW HORIZONS
11 adapted from Kayvon Fatahalian’s SIGGRAPH'08

Exploit data parallelism! - add two cores

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, vl, cb0[1l], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, 1(0.0), 1(1.0)
mul o0, r0, r3 Execute
mul o1, rl, r3 (ALU)
mul o2, r2, r3
mov o3, 1(1.0)

v

=

<diffuseShader>:
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, vl, cb0[1l], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, 1(0.0), 1(1.0)
Execute mul o0, r0, r3

(ALU) mul o1, rl, r3
mul o2, r2, r3
mov o3, 1(1.0)

v

e
e

Each invocation is independent!

NEW HORIZONS

CJ SIGGRAPHASIA2008

15 adapted from Kayvon Fatahalian’s SIGGRAPH'0S8 talk

Add even more cores - four cores

«diffuseStader>:

asaple 10, vd, &0, =0

mul £}, w3, cb0(0)

madd £¥, wi, cbO(1), =53
madd £}, w2, cb0(2), 253
clap £3, £3, 1(0.0), 1(2.0)
wul of, 2, 03

®mul ol, rl, 3

wul o2, £2, 03

mov o}, 1{1.0)

«diffuseStader>:

aaaple 10, vé, 0, =0

mul 3, w0, <b0(0)

madd £¥, wi, cbO(1], 23
madd £¥, w2, cb0(2), 23
clap £3, £3, 1(0.0), 1(2.0)
wul of, 0, 03

®mul ol, £, 03

wul o2, £2, 03

mov of, 1{1.0)

«diffuseShader>:

<diffuseShaders:
asaple 0, v, t0, =0 asaple 10, vé, &0, =0
mul £3, w3, cb0(0) mul 3, wd, <b0(0])

madd £3, wi, cbO(1], 3 madd £3, wi, 5
modd 3, w2, cb0(2), 25 madd £3, w2, 3
clap £3, £3, 1(0.0), 1(1.0} clag £3, £, 1(2.0}
el o, £, £l el o?, 9,

®al ol, 1, 13
®ul o2, £2, 13
mov ol 1{1.0)

v

ebo(1)
eb0(2)
1(0.0)
=
el ol, r1, 3
el o2, £2, 13

mov o3, 1{1.0)

SIGGRAPHASIA2008

NEW HORIZONS

How about even more cores - 16 cores

. II[II
.

.
. |I|]I

l
.

SIGGRAPHASIA2008

NEW HORIZONS

17 adapted from Kayvon Fatahalian's SIGGRAPH'08 talk

C--

128 cores

B)] -] B+
] 0]
o) B O W
o) O
o) I
o) O
o) 0
o) O O
o) 0
] 0] A])))]

0 &
Ny O
Sy ®
()
= n
O w £
'8 B
i) =9 o
Wi B = o5
i B 8§ =
WE W &35
— S
B N | 0 B o]
B0 - O) © S
©
I o M
£ 2
= o
= ()

“Iitems

r

How do you feed all these cores?

SIGGRAPHASIA2008

NEW HORIZONS

O

18

Back to the simple core...

‘How do you feed all these
cores?

*Share cost of fetch / decode
across many ALUs

*SIMD Processing

19 adapted from Kayvon Fatahalian's SIGGRAPH'08 talk

il

Execute
(ALU)

Back to the simple core...

‘How do you feed all these
cores?

*Share cost of fetch / decode
across many ALUs

*SIMD Processing
Single
Instruction
*Multiple
‘Data

20 adapted from Kayvon Fatahalian's SIGGRAPH'08 talk

ALU

ALU

ALU

ALU

ALU '
ALU '

ALU

ALU

Back to the simple core...

‘How do you feed all these
cores?

*Share cost of fetch / decode
across many ALUs

*SIMD Processing
Single

SIMD Processing does not

imply SIMD instructions!

ALU ALU

ALU

ALU '
ALU ALU ' ALU

ALU

H
2

Back to a single core...

333

<diffuseShader>:

sample r0, v4, t0, sO

mul r3, v0, cb0[0]

madd r3, vl, cb0[1l], 3
madd r3, v2, cb0[2], r3
clmp r3, r3, 1(0.0), 1(1.0)
mul o0, r0, r3

mul ol, rl, r3 ALU ALU ALU ALU
mul o2, r2, r3
mov o3,

CJ SIGGRAPHASIA2008

NEW HORIZONS
22 adapted from Kayvon Fatahalian's SIGGRAPH'08 talk

llel

®
| -
®
Q
=

Fragments i

128

SIGGRAPHASIA2008

NEW HORIZONS

O

(16 cores * 8 ALUs)

=*» 16 independent instruction streams

16 cores =» 128 ALUs

23

128-things in parallel

X cores can work on primitives (triangles)
—"‘geometry shader”
*Y cores can work on vertices
—“vertex shader”
«Z cores can work on fragments
—“pixel shader”
*N cores can work on data/work/etc
—“compute kernels”’/“compute shaders”
*Which cores working on what data changes over time

24 dapted from \aliar

What about branching?

@O OGIE)

Time
(clocks) ALUT ALU2 ALUS

1 4 1111] <unconditional

shader code>

if (x > 9) {
y = pow(x, exp);
y *= Ks;
refl = y + Ka;

refl = Ka;

}

<resume unconditional
shader code>

NEW HORIZONS

‘ ’ SIGGRAPHASIA2008

25 adapted from Kayvon Fatahalian’s SIGGRAPH'08 talk

What about branching?

Time
(clocks)

<unconditional
shader code>

Cif (x > @) {

| y = pow(x, exp);
y *= Ks;
refl = y + Ka;

refl = Ka;

<resume unconditional
shader code>

26 adapted from Kayvon Fatahalian’s SIGGRAPH'0S8 talk

What about branching?

L)) OO GG

Time

(clocks) ALUT ALU2 ALUS8
- - <unconditional
. . shader code>
F | F| if (x > 0) {
X X y = pow(x, exp);
% X y *= Ks;
refl = y + Ka;

x % } else {
| X = 8;

- refl = Ka;
o }

<resume unconditional

Not all ALUs do useful work! shader code>
Worst case: 1/8 performance

27 adapted from Kayvon Fatahaliai

What about branching?

- LROLO00OME

(clocks) ALUT ALU2 ALUS

<unconditional
shader code>

if (x > @) {
y = pow(x, exp);

<resume unconditional
shader code>

NEW HORIZONS

!) SIGGRAPHASIA2008

28 adapted from Kayvon Fatahalian’s SIGGRAPH’'08 talk

How to handle stalls?

*‘Memory access latency = 100’s to 1000’s of cycles
—Stalls occur when a core cannot run the next instruction

*GPUs don't have the large / fancy caches and logic that
helps avoid stall because of a dependency on a previous
operation.

‘But we have LOTS of independent fragments.

—Interleave processing of many fragments on a single core
to avoid stalls caused by high latency operations.

Hiding Memory Stalls

Time Frag1...8
(clocks) oOoooooo0

H HHE
H BH3IE
H H8IE
EH BHIBIE

30 adapted from Kayvon Fatahaliai

Hiding Memory Stalls

Time Frag1...8 Frag 9...16 Frag 17 ... 24 Frag 25...32
(clocks) 00000000 (e [s (e [([[[T

(1 © ©)

SIGGRAPHASIA2008

NEW HORIZONS

31 adapted from Kayvon Fatahali

32

Hiding Memory Stalls

Time Frag1...8 Frag 9...16 Frag 17 ... 24 Frag 25...32
(clocks) 00000000 (e [s (e [([[[T

(1 2 © O

Stall «

Runnable

) SIGGRAPHASIA2008

33

Hiding Memory Stalls

Time Frag1...8 Frag 9...16 Frag 17 ... 24 Frag 25...32
(clocks) 00000000 (e [s (e [([[[T

(1 2 © O

Runnable

NEW HORIZONS

(’ SIGGRAPHASIA2008

34

Hiding Memory Stalls

Time Frag1...8 Frag 9...16 Frag 17 ... 24 Frag 25...32
(clocks) 00000000 (e [s (e [([[[T

(1) © © O

Stall «
<"'r
Stall «

A

Runnable] Stall ;
4 N

Runnable

Stall -«
YV
Runnable

CJ SIGGRAPHASIA2008

NEW HORIZONS

Throughput computing

Time Frag1...8 Frag 9...16 Frag 17 ... 24 Frag 25...32
(clocks) 00000000 00000000 00000000 ([[[T

(1)

e ©)

Start

i Stall < lll'
‘” I\ I Start
| stall - III
“» N Start
Stall -

Runnable P ”v Ll!l““lJ
Stall -

IIIII“I Runnable NS

|
Donel |||||||| Runnable
|
i |||||||| Runnable

I ti f !
To maximum throughput of many groups NI

Done!

() SIGGRAPHASIA2008

NEW HORIZONS

35 adapted from Kayvon Fatahalian’s SIGGRAPH'08

(on different data elements)

 Fine-grained multithreading

W

m

» Register values of all threads stay in
register file

e No OS context switching

« Memory latency hiding

@ Graphics has millions of pixels

Latency Hiding with "Thread Warps"

» Warp: A set of threads that
execute the same instruction

One instruction per thread in pipeling
at a time (No branch prediction)

Interleave warp execution to hide
latencies

L 2
Thread Warp 3

Thread Warp 8

Thread Warp 7 |
I

\ 2
|-Fetch |

v

Decode |

MV € N €

NV 4 3 €
NV 4 N €

D-Cache

Al Hit?l [e

v
Writeback |

Warps available
for scheduling

SIMD Pipeline

Warps accessing

memory hierarchy
Miss?

Thread Warp 1
Thread Warp 2

| Thread.Warp 6 |

Slide credit: Tor Aamodt

Warp-based SIMD vs. Traditional SIMD

 Traditional SIMD contains a single thread
3 Lock step
3 Programming model is SIMD (no threads)

A ISA contains vector/SIMD instructions

* Warp-based SIMD consists of multiple scalar threads executing in a SIMD
manner (i.e., same instruction executed by all threads)

T Each thread can be treated individually (i.e., placed in a different warp) 2
programming model not SIMD

O Enables memory and branch latency tolerance
T ISAis scalar = vector instructions formed dynamically

CUDA In One Slide <X

NnVvIDIA
Block
Thread
per-block
per-thread shared
local memory Local barrier memory
Kernel foo ()
Global barrier per-device

global
memory

D NVIDIA Corporation 2009

CUDA Devices and Threads

A compute device

Is a coprocessor to the CPU or host
Has its own DRAM (device memory)
Runs many threads in parallel

Q a QA Q

Is typically a GPU but can also be another type of parallel processing
device

Data-parallel portions of an application are expressed as device
kernels which run on many threads

Differences between GPU and CPU threads
3 GPU threads are extremely lightweight

O Very little creation overhead

7 GPU needs 1000s of threads for full efficiency

O Multi-core CPU needs (relatively) only a few

Thread Batching: Grids and Blocks

« Akernelis executed as a Host Device
grid of thread blocks Grid 1
3 All threads share data memory space Kernel 1 Ei5ck T Bl Bisck

(0, 0) (1, 0) (2, 0)

e Athread block is a batch of threads that

Block .’ Block ' Block

can cooperate with each other by: o1 2l e

3 Synchronizing their execution

O For hazard-free shared memory accesses /Grid 2/

3 Efficiently sharing data through a low Kernel 2
latency shared memory

e« Two threads from two different blocks
cannot cooperate

Block (1, 1)

Execution Model

« Each thread block is executed by a single multiprocessor
3 Synchronized using shared memory

« Many thread blocks are assigned to a single multiprocessor
3 Executed concurrently in a time-sharing fashion
7 Keep GPU as busy as possible

* Running many threads in parallel can hide DRAM memory latency
3 Global memory access : 27300 cycles

CUDA Device Memory Space Overview

 Each thread can:
A R/W per-thread registers

(Device) Grid

Block (0, 0) Block (1, 0)
R/W per-thread local memory o oc

R/W per-block shared memory _ _
R/W per-grid global memory ’l ’l ’l ’J'

Read only per-grid texture memory | Thread (0,0) Thread (1,0) Thread (0,0) Thread (1,0)

Read only per-grid constant memory

9 0 Qa Qa4

e The host can R/W
global, constant, and
texture memories

Host

Example: Vector Addition Kernel

// Pair-wise addition of wvector elements
// One thread per addition

__global void
vectorAdd (float* iA, float* iB, float* oC)
{
int 1dx = threadldx.x
+ blockDim.x * blockId.x;
oC[i1dx] = 1A[idx] + 1B[idx];

Courtesy NVIDIA

Example: Vector Addition Host Code

float* h A = (float*) malloc(N * sizeof(float));
float* h B = (float*) malloc(N * sizeof(float));

// .. initalize h A and h B

// allocate device memory

float* d A, d B, d C;

cudaMallee((void**) &d A, N * sizeof(float));
cudaMallee((void**) &d B, N * sizeof(float));
cudaMallee((void**) &d C, N * sizeof(float));

// copy host memory to device
cudaMemepy(d A, h A, N * sizeof(float),
HostToDevice) ;
cudaMemepy(d B, h B, N * sizeof(float),
cudaMemcpyHostToDevice) ;

// execute the kernel on N/256 blocks of 256 threads each
vectorddd<<< N/256, 25@>>>(d A, 4 B, 4 C);

Courtesy NVIDIA

CUDA-Strengths

 (Relatively) easy to program (small learning curve)

 Success with several complex applications
A At least 7X faster than CPU stand-alone implementations

e Allows us to read and write data at any location in the
device memory

* More fast memory close to the processors (registers +
shared memory)

CUDA-Limitations

e Some hardwired graphic components are hidden

 Better tools are needed
3 Profiling
3 Memory blocking and layout
7 Binary Translation

e Difficult to find optimal values for CUDA execution parameters
O Number of thread per block
O Dimension and orientation of blocks and grid
O Use of on-chip memory resources including registers and shared memory

* Working with GPUs is an active area of research

