
EECS 570

EECS 570
Lecture 14
GPUs
Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/co4urses/eecs570/

Slides adapted from instructional material with D. Kirk and W. Hwu,
Programming Massively Parallel Processors: A Handson Approach, Third
Edition.
Credits to Nikos Hardavellas (Northwestern), Reetu Das (UM), Thomas Wenisch

Readings

This week:
• Tor M. Aamodt, Wilson Wai Lun Fung, Timothy G. Rogers, General-Purpose

Graphics Processor Architectures, Ch. 3.1-3.3, 4.1-4.3

Growth in GPUs

3

Revolution in GPUs

4
Nvidia Increased Compute Power 1000X in 8 Years to 20 Petaflops in the Blackwell GPU | NextBigFuture.com

https://www.nextbigfuture.com/2024/03/nvidia-increased-compute-power-1000x-in-8-years-to-20-petaflops-in-the-blackwell-gpu.html

A major
paradigm

shift

AI computing stack

Computing at Exascale
El Capitan at Lawrence Livermore
National Laboratory (LLNL)

Performance is expected
to exceed 2 exaFLOPS,
which comes with a $600
million price tag.

8

CPUs: Latency Oriented Design

High clock frequency
Large caches

• Convert long latency memory accesses
to short latency cache accesses

Sophisticated control
• Branch prediction for reduced branch

latency
• Data forwarding for reduced data

latency

Powerful ALU
• Reduced operation latency

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

GPUs: Throughput Oriented Design

▪ Moderate clock frequency
▪ Smaller caches

• To boost memory throughput

▪ Simple control
• No branch prediction
• No data forwarding

▪ Energy efficient ALUs
• Many, long latency but heavily pipelined

for high throughput

▪ Require massive number of threads to
tolerate latencies

DRAM

GPU

CPU vs. GPU

• Different design philosophies
• CPU: A few out-of-order cores
• GPU: Many in-order SIMD cores

11

NVIDIA B100 (2024-25)

Each SM can execute 32 threads at a time
12

Sources: ASUS China Tony Yu, Kurnal on X, via VideoCardz

https://www.bilibili.com/video/BV1AGfWYFEaY/
https://x.com/Kurnalsalts/status/1883153126011892140
https://x.com/Kurnalsalts/status/1883153126011892140
https://videocardz.com/newz/nvidia-gb202-blackwell-760mm%C2%B2-gpu-die-shot-revealed-24756-cores-and-512-bit-bus
https://videocardz.com/newz/nvidia-gb202-blackwell-760mm%C2%B2-gpu-die-shot-revealed-24756-cores-and-512-bit-bus

Exponential growth continues …

15

Massive
Parallelism -
Regularity

Applications Benefit from Both CPU and GPU

CPUs for sequential parts where
latency matters

CPUs can be 10+X faster than GPUs for
sequential code

GPUs for parallel parts where
throughput wins

GPUs can be 10+X faster than CPUs
for parallel code

Amdahl’s Law

17

Speedup =
1

+1 - f f
N

Speeding Up Real Applications

18

Load Balance

The total amount of time to complete a parallel job is limited
by the thread that takes the longest to finish

19

good bad!

Memory Bandwidth Constraint

Memory Contentions in accessing critical data causes
serialization

Massively parallel execution cannot afford serialization

Computation – Communication
 Slowest of the two determines performance

20

Global Memory Bandwidth
Ideal Reality

21

GPUs and SIMD/Vector Data Parallelism

• Graphics processing units (GPUs)
❒ How do they have such high peak FLOPS?
❒ Ans: exploit massive data parallelism

• “SIMT” execution model
❒ Single instruction multiple threads
❒ Similar to both “vectors” and “SIMD”
❒ A key difference: better support for conditional control flow

• Program it with CUDA or OpenCL (or Vulkan or Metal or …)
❒ Extensions to C (or Objective-C in the case of Metal)
❒ Perform a “shader task” (a snippet of scalar computation) over many elements
❒ Internally, GPU uses scatter/gather and vector mask operations

Context: History of Programming GPUs

• “GPGPU”
❒ Originally could only perform “shader” computations on images
❒ So, programmers started using this framework for computation
❒ Puzzle to work around the limitations, unlock the raw potential

• As GPU designers notice this trend…
❒ Hardware provided more “hooks” for computation
❒ Provided some limited software tools

• GPU designs are now fully embracing compute
❒ More programmability features to each generation
❒ Industrial-strength tools, documentation, tutorials, etc.
❒ Can be used for in-game physics, etc.
❒ Many application targets:

AI, graphics, data analytics, scientific computation, genomics

Latency Hiding with “Thread Warps”
• Warp: A set of threads that

execute the same instruction
(on different data elements)

• Fine-grained multithreading
❒ One instruction per thread in pipeline

at a time (No branch prediction)
❒ Interleave warp execution to hide

latencies
• Register values of all threads stay in

register file

• No OS context switching

• Memory latency hiding
❒ Graphics has millions of pixels

Decode

RF RFRF

A LU

A LU

A LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp-based SIMD vs. Traditional SIMD

• Traditional SIMD contains a single thread
❒ Lock step
❒ Programming model is SIMD (no threads)
❒ ISA contains vector/SIMD instructions

• Warp-based SIMD consists of multiple scalar threads executing in a SIMD
manner (i.e., same instruction executed by all threads)
❒ Each thread can be treated individually (i.e., placed in a different warp)

programming model not SIMD
❍ Enables memory and branch latency tolerance

❒ ISA is scalar vector instructions formed dynamically

CUDA Devices and Threads

• A compute device
❒ Is a coprocessor to the CPU or host
❒ Has its own DRAM (device memory)
❒ Runs many threads in parallel
❒ Is typically a GPU but can also be another type of parallel processing

device
• Data-parallel portions of an application are expressed as device

kernels which run on many threads
• Differences between GPU and CPU threads

❒ GPU threads are extremely lightweight
❍ Very little creation overhead

❒ GPU needs 1000s of threads for full efficiency
❍ Multi-core CPU needs (relatively) only a few

Thread Batching: Grids and Blocks
• A kernel is executed as a

grid of thread blocks
❒ All threads share data memory space

• A thread block is a batch of threads that
can cooperate with each other by:
❒ Synchronizing their execution

❍ For hazard-free shared memory accesses
❒ Efficiently sharing data through a low

latency shared memory
• Two threads from two different blocks

cannot cooperate

Host

Kernel 1

Kernel 2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Execution Model

• Each thread block is executed by a single multiprocessor
❒ Synchronized using shared memory

• Many thread blocks are assigned to a single multiprocessor
❒ Executed concurrently in a time-sharing fashion
❒ Keep GPU as busy as possible

• Running many threads in parallel can hide DRAM memory latency
❒ Global memory access : 2~300 cycles

CUDA Device Memory Space Overview

• Each thread can:
❒ R/W per-thread registers
❒ R/W per-thread local memory
❒ R/W per-block shared memory
❒ R/W per-grid global memory
❒ Read only per-grid constant memory
❒ Read only per-grid texture memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host
• The host can R/W

global, constant, and
texture memories

Example: Vector Addition Kernel

// Pair-wise addition of vector elements
// One thread per addition

__global__ void
vectorAdd(float* iA, float* iB, float* oC)
{
 int idx = threadIdx.x
 + blockDim.x * blockId.x;
 oC[idx] = iA[idx] + iB[idx];
}

Courtesy NVIDIA

Example: Vector Addition Host Code

float* h_A = (float*) malloc(N * sizeof(float));
float* h_B = (float*) malloc(N * sizeof(float));
// … initalize h_A and h_B

// allocate device memory
float* d_A, d_B, d_C;
cudaMalloc((void**) &d_A, N * sizeof(float));
cudaMalloc((void**) &d_B, N * sizeof(float));
cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float),
cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, N * sizeof(float),
cudaMemcpyHostToDevice);

// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256>>>(d_A, d_B, d_C);

Courtesy NVIDIA

CUDA-Strengths

• (Relatively) easy to program (small learning curve)

• Success with several complex applications
❒ At least 7X faster than CPU stand-alone implementations

• Allows us to read and write data at any location in the
device memory

• More fast memory close to the processors (registers +
shared memory)

CUDA-Limitations

• Some hardwired graphic components are hidden
• Better tools are needed

❒ Profiling
❒ Memory blocking and layout
❒ Binary Translation

• Difficult to find optimal values for CUDA execution parameters
❍ Number of thread per block
❍ Dimension and orientation of blocks and grid
❍ Use of on-chip memory resources including registers and shared memory

• Working with GPUs is an active area of research

