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Objective

* To learn the basic concept of data parallel computing

» To learn the basic features of the CUDA C programming
interface



CPU vs. GPU summary

CPU GPU
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« Handles sequential code well
« Latency optimized: do all very fast

« Can’t take advantage of massively parallel
code

« Off-chip bandwidth lower — narrow pipes

» Lower peak computation capability

Cache
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« Requires massively parallel computation

« Bandwidth optimized: do lots concurrently
« Handles some control flow
 Higher off-chip bandwidth — wide pipes

« Higher peak computation capability




Some things are naturally parallel

e.g., image fading...

How do we program an image fader?
I'll introduce three programming models in three slides!



int a[N]; // a is image, N is large
for (1 =0; i < N; i++){
ali1] * fade;
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Data Parallel Execution Model / SIMD

int a[N]; // N is large
for all elements do in parallel {

ali] = al[l1] * fade;
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Single Program Multiple Data / SPMD

int a[N]; // N is large
for all elements do in parallel {

1t | ) a[1]*= fade;
}
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Code is statically identical across all threads

Execution path may differ
The model used in today’s Graphics Processor Units (GPUs)
Y is a mix of SPMD and SIMD



How GPU Acceleration Works

How GPU Acceleration Works

Application Code

Rest of Sequential
CPU Code




CUDA/OpenCL — Execution Model

Integrated host+device app C program
— Serial or modestly parallel parts in host C code
— Highly parallel parts in device SPMD kernel C code

Serial Code (host) g
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My first CUDA Program / Skeleton

__global__ void arradd (float *a, float f, int N)

{
int i = blockldx.x * blockDim.x + threadldx.x;
if (i <N) ali] =ali] +f; GPU
}
int main()
{
float h_a[N]; /* allocate cpu container */
for (int i=0; i < N; i++) h_a[i] = (float) i; /* initialize */ CPU

float *d_a;
cudaMalloc ((void **) &d_a, SIZE);

cudaMemcpy (d_a, h_a, SIZE, cudaMemcpyHostToDevice));

cudaThreadSynchronize ();

cudaMemcpy (h_a, d_a, SIZE, cudaMemcpyDeviceToHost));
CUDA_SAFE_CALL (cudaFree (d_a));

}




Why Use This Hierarchy?

 Threads within a block can share memory (good for local computations).
* Blocks within a grid execute independently (scales across multiple GPU cores).

* Thread hierarchies allow fine-grained control over memory access
and performance optimization.



Execution Timeline

CPU / Host

GPU / Device
"‘ 1. Copy to GPU mem
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Programmer’s view of GPU computation

GPU as a co-processor

CPU 3GB/s — 8GB.s

v

6.4GB/sec — 51.2GB/sec

8B per transfer GPU Memory
Memory

192 GB/sec

16-80 GB (on our systems)




Programmer’s view of GPU computation

 First create data on CPU memory

CPU
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Programmer’s view of GPU computation

 Then Copy to GPU

CPU
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GPU

Memory




Programmer’s view of GPU computation

 GPU starts computation - runs a kernel
 CPU can also continue
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Programmer’s view of GPU computation

« CPU and GPU Synchronize
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Programmer’s view of GPU computation

* Copy results back to CPU

CPU
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Arrays of Parallel Threads

A CUDA kernel is executed by a grid (array) of
threads

— All threads in a grid run the same kernel code
(SPMD)

— Each thread has an index that it uses to compute
memory addresses and make control decisions

ANIEANY

1 = blockldx.x * blockDim.x +
threadldx.x;
C[i]=A[1] + B[1

1Y
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GBT: Grids of Blocks of Threads

Programmers view of data and computation partitioning

Block M Block M Biock |
(010) (0,1) _ _"--____-_‘-
Biock Wl Block W Block Y .
(1,0 (1,1, (1,2)
. Block (1, 1)

Time

Why? Realities of integrated circuits:

need to cluster computation and storage to achieve high speeds
Philosophy is:

We’'ll tell you about the hardware — you figure out how to make the best of it



Programmer’s view: Memory Model
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How is Texture Memory Different from Constant Memory?

Feature

Purpose

Access Type
Cached?
Access Pattern
Size Limit

Binding

Interpolation

Support

Best Use Cases

Constant Memory

Storing small, frequently used constants

Read-only from kernels
Yes, constant cache
Best for all threads reading the same value

64 KB

No need to bind, just declare as

__constant__

X No

Global constants (e.g., physics constants,

lookup tables)
N2

Texture Memory

Storing spatially localized data (e.g.,

images, grids)

Read-only from kernels

Yes, texture cache

Best for spatially coherent access patterns
Depends on global memory

Must bind memory using

cudaBindTexture()

Yes, supports hardware interpolation

2D/3D images, scientific data, volumetric

rendering



Grids of Blocks of Threads: Dimension Limits (Cuda 8.0)

« Grid of Blocks 1D, 2D, or 3D

Device

— Max grid dimensions: Crid 1
231 -1x 65,535 X 65,535 Block = Block = Block
,Bl’ock/ Bt \\\\Bl;ck
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* Block of Threads: 1D, 2D, or 3D
— Max number of threads: 1024

Block (1, 1)

— Max block dimension: L
1024 x 1024 x 64

* Limits apply to Compute Capability
- A100=8.0
— H100 =9.0



Block and Thread IDs

« Threads and blocks have IDs

— So each thread can decide what
data to work on

— Block ID: 1D, 2D, or 3D
— Thread ID: 1D, 2D, or 3D
— Combination is unique

« Simplifies memory
addressing when processing
multidimensional data

— Convenience, not necessity
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» |Ds and dimensions are accessible through

predefined “variables”, e.qg.,

and



1. The CUDA Execution Model

CUDA organizes parallel computation using a hierarchy:
1. Threads — The smallest unit of execution.
2. Thread Blocks — A group of threads that execute together and share resources.

3. Grid of Blocks — A collection of thread blocks that form the entire computation.

Each level allows the GPU to scale execution across thousands of cores efficiently.



2. CUDA Thread Organization

(a) Threads and Thread Blocks

e FEach thread executes an instance of a kernel (a CUDA function that runs on the GPU).

e A thread block is a collection of threads that execute together. Threads within a block:

e Share shared memory.
e (Can synchronize using __syncthreads() .

e Are identified by a thread index ( threadIdx ).

(b) Grids and Blocks

e A grid is a collection of blocks.
e Each block is identified using blockIdx .

e Blocks themselves contain multiple threads.



3. How CUDA Exposes This to Programmers

CUDA provides built-in variables to help programmers manage threads and blocks:

Variable Description

threadIdx.x Thread index within a block (1D)
threadIdx.y Thread index in 2D

threadIdx.z Thread index in 3D

blockIdx.x Block index within a grid (1D)
blockIdx.y Block index in 2D

blockIdx.z Block index in 3D

blockDim. x Number of threads per block in 1D
blockDim.y Number of threads per block in 2D
blockDim.z Number of threads per block in 3D
gridDim. x Number of blocks in a grid (1D)
gridDim.y Number of blocks in a grid (2D)

gridDim.z Number of blocks in a grid (3D)



Thread Blocks: Scalable Cooperation

* Divide thread array into multiple blocks

— Threads within a block cooperate via shared
memory, atomic operations and barrier
synchronization

— Threads 1n different blocks cannot cooperate

Thread Block 0

Thread Block 1

1 = blocklIdx.x * blockDim.x +
threadldx.x;
Cli]=A[i] +B[1

1 = blocklIdx.x * blockDim.x +
threadldx.x;
C[i]=A[i] +B[1

Thread Block N-1

ALIEAERLEATHIAUIEANY

IR
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1 = blocklIdx.x * blockDim.x +
threadldx.x;
C[i]=A[i] +B[1

SHpi




Thread Batching

 AKkernel is executed as a grid
of thread blocks

— All thread blocks share the same data
memory space

 But cannot communicate
through it

 Athread block:

— Threads that can cooperate with
each other by:

» Synchronizing their execution,
for hazard-free shared memory
accesses

« Efficiently sharing data through
a low latency

« Two threads from two different
blocks cannot cooperate

Host Device
Grid 1
Kernel »  Block @ Block @ Block
(0, 0) (1,0) (2, 0)
Block. Block \ Block
(0, 1) (1,1) 1\ (21)
/" Grid 2
Kernel > "
2 ,'I \ \‘\
: /| | | K
Block (1, 1)




Conversion of a color image to grey—scale image

30



The pixels can be calculated
independently of each other

Input Array 1[0] I[1] 1[2] 1[3] 1[4] I[N-1]
I r,g b g, b r,g r,g g

, 8 . 8 . 8 . 8 oo .2 b

Output Array| oy o[1] 0[2] 0[3] O[4] O[N-
o ..




Vector Addition — Conceptual View

vector
A A[0] All] Al2] Al3] Al4] A[N-1]
vector

B[0] B[1] B[2] B[3] B[4] B[N-1]
B

@ @ @ @ @ @
vector | o C[1] C[2] C[3] C[4] C[N-1]




Vector Addition — Traditional C Code

// Compute vector sum C = A+B
volid vecAdd(float* A, float* B, float* C, int n)

{
for (1 = 0, 1 < n, 1++)
Cl[i] = A[i] + B[1];
}

int main ()

{
// Memory allocation for A h, B h, and C h

// I/O to read A h and B h, N elements

vecAdd(A h, B h, C h, N);
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Heterogeneous Computing vecAdd Host Code

#include <cuda.h>
vold vecAdd (float* A, float* B, float* C, int n)

{

int size = n* sizeof(float);
float* A d, B d, C d;

1. //

//
2. //
//

3. //
//

Allocate device memory for A, B, and C
copy A and B to device memory

Kernel launch code - to have the device
to perform the actual vector addition

copy C from the device memory
Free device vectors
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Partial Overview of CUDA Memories

Device code can:
— R/W per-thread registers
— R/W per-grid global memory

Host code can

— Transfer data to/from per grid global
memory
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Programmer’s View: Memory Detail — Thread and Host

» Each thread can:
— R/W per-thread reqgisters
— R/W per-thread local memory
— R/W per-block shared memory
— R/W per-grid global memory
— Read only per-grid constant memory
— Read only per-grid texture memory

* The host can R/W.
— global, constant, and texture memories



CUDA Device Memory Management API functions

» cudaMalloc() Grid

— Allocates object in the device global memory

Block (0, 0) Block (1, 0)

— Two parameters
e Address of a pointer to the allocated object
» Size of of allocated object in terms of bytes

» cudaFree()
— Frees object from device global memory

Thread (0, 0) | | Thread (1, 0) Thread (0, 0) | | Thread (1, 0)

e Pointer to freed object 4 4 - 4

Host

37



Host-Device Data Transter API functions

cudaMemcpy()
— memory data transfer

— Requires four parameters
 Pointer to destination
« Pointer to source
* Number of bytes copied
» Type/Direction of transfer

— Transfer to device 1s
synchronous

(Device) Grid

Block (0, 0)

a2l

Block (1, 0)

v v

Thread (0, 0) || Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

A

A

A

N
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Copy Initialized CPU data to GPU

float *daj;

float *haj;

cudaMemCpy ( (void *) da, // DESTINATION
(void *) ha, // SOURCE
sizeof (float) * N, // #bytes

cudaMemcpyHostToDevice) ; // DIRECTION



Host/Device Data Transfers

* The host initiates all transfers:

e cudaMemcpy (void *dst, wvoid *src,
size t nbytes,
enum cudaMemcpyKind direction)

e enum cudaMemcpyKind
— cudaMemcpyHostToDevice
— cudaMemcpyDeviceToHost
— cudaMemcpyDeviceToDevice



vold vecAdd (float* A, float* B, float* C, int n)
{
int size = n * sizeof(float);
float* A d, B d, C d;

1. // Transfer A and B to device memory
cudaMalloc ( (void **) &A d, size);
cudaMemcpy (A d, A, size, cudaMemcpyHostToDevice)
cudaMalloc ((void **) &B d, size);
cudaMemcpy (B d, B, size, cudaMemcpyHostToDevice) ;

// Allocate device memory for
cudaMalloc ((void **) &C d, size);

2. // Kernel invocation code - to be shown later

3. // Transfer C from device to host
cudaMemcpy (C, C _d, size, cudaMemcpyDeviceToHost) ;
// Free device memory for A, B, C
cudafFree (A d); cudafFree(B d); cudafFree (C d);
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Example: Vector Addition Kernel

Device Code
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global

rnel (float* A d, float* B d, float* C_d, int n1

int vectAdd(float* A, float* B, float* C, int n)
{

// A d, B d, C d allocations and copies omitted
// Run ceil (n/256) blocks of 256 threads each
vecAddKernel<<<ceil (n/256.0), 256>>>(A d, B d, C d, n);

42



Kernel

int 1 = threadIdx.x + blockDim.x * blockIdx.x;

* Blockldx: Unique Block ID.
— Numerically asceding: 0, 1, ...
 BlockDim: Dimensions of Block = how many threads it has
— BlockDim.x, BlockDim.y, BlockDim.z
— Unused dimensions default to 0
 Threadldx: Unique per Block Index
- 0,1, ...
— Per Block



Array Index Calculation Example

int 1 = blockIdx.x * blockDim.x + threadIdx.x;

blockldx.x = 0 blockldx.x =1 blockldx.x =2
a[0] | ... |a[63] [a[64] | ... @a[127]a[128]|... @a[191]@[192]
Q P Q % Q o 0
'S SN & PRl
S S S b\b S b\b S
& & & & & L &L
< S S S
i=0 =63 i =64 =127 =128 i=191 i=192

Assuming blockDim.x = 64



Generic Unique Thread and Block Index Calculations #1

1D Grid / 1D Blocks:

UniqueBlockIndex = blockIdx.x;
UniqueThreadIndex = blockIdx.x * blockDim.x + threadIldx.x;

1D Grid / 2D Blocks:

UniqueBlockIndex = blockIdx.x;

UniqueThreadIndex = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y *
blockDim.x + threadIdx.x;

1D Grid / 3D Blocks:

UniqueBockIndex = blockIdx.x;

UniqueThreadIndex = blockIdx.x * blockDim.x * blockDim.y * blockDim.z +
threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x +
threadIldx.x;

More options:


https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf
https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf
https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf
https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf

Generic Unique Thread and Block Index Calculations #2

2D Grid / 1D Blocks:

UniqueBlockIndex = blockIdx.y * gridDim.x + blockIdx.x;
UniqueThreadIndex = UniqueBlockIndex * blockDim.x + threadIdx.x;

2D Grid / 2D Blocks:

UniqueBlockIndex = blockIdx.y * gridDim.x + blockIdx.x;

UniqueThreadIndex =UniqueBlockIndex * blockDim.y * blockDim.x + threadldx.y *
blockDim.x + threadIdx.x;

2D Grid / 3D Blocks:

UniqueBlockIndex = blockIdx.y * gridDim.x + blockIdx.x;

UniqueThreadIndex = UniqueBlockIndex * blockDim.z * blockDim.y * blockDim.x +
threadIdx.z * blockDim.y * blockDim.z + threadIdx.y * blockDim.x +
threadIdx.x;

UniqueThreadlndex means unique per grid.



Example: Vector Addition Kernel - Launch

~_global
void vecAddkernel (float* A d, float* B d, float* C d, int n)
{
int 1 = threadIdx.x + blockDim.x * blockIdx.x;
1f(i<n) C d[1i] = A d[1] + B d[1];
}

int vecAdd(float* A, float* B, float* C, int n) Host Code
{
// A d, B d, C d allocations and copies omitted
// Run ceil (n/256) blocks of 256 threads each
vecAddKernnel<<<ceil (n/256.0) ,256>>>(A d, B d, C d, n);

}
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CUDA supports 1D, 2D, and 3D thread/block structures. For example:

pp

// 2x2 grid of blocks

dim3 blocks(2, 2);
// Each block has 4x4 threads

dim3 threads(4, 4);
kernelExample<<<blocks, threads>>>();

Threads are then identified as:

cpp

threadIdx.x + blockIdx.x * blockDim.Xx;
threadIdx.y + blockIdx.y * blockDim.y;

int x

int y

@ Copy

@ Copy

2 Edit

2 Edit



Launch a Kernel with Multidimensional Blocks

A kernel function must be called with an
execution configuration:

dim3 DimGrid (100, 50); // 5000 thread blocks

dim3 DimBlock (4, 8, 8); // 256 threads per block
size t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);



vold vecAdd (float* A, float* B, float* C, int n)
{
int size = n * sizeof(float);
float* A d, B d, C d;

1. // Transfer A and B to device memory
cudaMalloc ((void **) &A d, size);
cudaMemcpy (A d, A, size, cudaMemcpyHostToDevice)
cudaMalloc ((void **) &B d, size);
cudaMemcpy (B d, B, size, cudaMemcpyHostToDevice) ;

// Allocate device memory for
cudaMalloc ( (void **) &C d, size);

2. // Kernel invocation code - to be shown later

3. // Transfer C from device to host
cudaMemcpy (C, C _d, size, cudaMemcpyDeviceToHost) ;
// Free device memory for A, B, C
cudafFree (A d); cudaFree(B d); cudaFree (C d);
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GPU Software Stack Overview
1. Application Layer (High-Level Code)
e CUDA C/C++, Fortran, Python (with libraries like Numba, TensorFlow, PyTorch)
e OpenCL, HIP (AMD’s CUDA alternative)
e DirectCompute, Vulkan, OpenGL Compute Shaders
2. Compiler & Intermediate Representation (IR)
e NVCC (NVIDIA CUDA Compiler): Compiles CUDA code into PTX

e PTX (Parallel Thread Execution) Assembly:

e A virtual instruction set that abstracts away GPU hardware detalils.
e Allows compatibility across different NVIDIA GPU architectures.
e (Can be JIT (Just-In-Time) compiled to SASS (machine code) by the CUDA driver.

e LLVM-based Compiler (for OpenCL & HIP)



3. Driver & Runtime Layer
e CUDA Runtime API (e.g., cudaMalloc, cudaMemcpy, cudalLaunchKernel )
e CUDA Driver API (lower-level, more explicit control)
e NVIDIA GPU Drivers (convert PTX to SASS and manage hardware execution)
e OpenCL Runtime (for OpenCL-based GPU programs)
4. Hardware Execution Layer

e SASS (Streaming Assembly)

e Machine code specific to GPU architecture (e.g., Ampere, Ada, Hopper).
e Produced from PTX by JIT compilation in the driver.

e GPU Hardware (SMs, Tensor Cores, Memory Controllers)

e [Executes the final machine instructions.



Compiling A CUDA Program

Integrated C programs with CUDA extensions

\ 4

NVCC Compiler
Host Code ‘ ‘ Device Code (PTX)
Host C Compiler/ Device Just-in-Time

Linker Compiler
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