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Objective

• To learn the basic concept of data parallel computing 
• To learn the basic features of the CUDA C programming 

interface
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CPU vs. GPU summary • Handles sequential code well 
• Latency optimized: do all very fast 

• Can’t take advantage of massively parallel 
code 

• Off-chip bandwidth lower – narrow pipes 
• Lower peak computation capability

CPU:

• Requires massively parallel computation 
• Bandwidth optimized: do lots concurrently 

• Handles some control flow 
• Higher off-chip bandwidth – wide pipes 
• Higher peak computation capability

GPU:



Some things are naturally parallel

e.g., image fading…

How do we program an image fader?
I’ll introduce three programming models in three slides!



Sequential Execution Model

	 int a[N]; // a is image, N is large 
	 for (i =0; i < N; i++){ 

	 a[i] = a[i] * fade; 
} 

              a[i] 
              a[i+1] 

              a[i+2]

tim
e

Flow of control / Thread
One instruction at the time
Optimizations possible at 
the machine level

This is the predominant 
CPU model

Lots of optimizations to 
shorten the time required 
for each individual operation



Data Parallel Execution Model / SIMD

	 int a[N]; // N is large 
	 for all elements do in parallel { 

	 a[i] = a[i] * fade; 
}

tim
e Most modern CPUs 

offer some limited 
support for SIMD



Single Program Multiple Data / SPMD

	 int a[N]; // N is large 
	 for all elements do in parallel { 

	 if (a[i] > threshold) a[i]*= fade; 
}

tim
e

Code is statically identical across all threads
Execution path may differ
The model used in today’s Graphics Processor Units (GPUs) 
is a mix of SPMD and SIMD



How GPU Acceleration Works



CUDA/OpenCL – Execution Model
Integrated host+device app C program 

– Serial or modestly parallel parts in host C code 
– Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device) 
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device) 
KernelB<<< nBlk, nTid >>>(args);
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My first CUDA Program / Skeleton

__global__ void arradd (float *a, float f, int N)
 {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  if (i < N) a[i] = a[i] + f;
}

int main()
{
  float h_a[N]; /* allocate cpu container */
  for (int i=0; i < N; i++) h_a[i] = (float) i; /* initialize */

  float *d_a;
  cudaMalloc ((void **) &d_a, SIZE);

  cudaMemcpy (d_a, h_a, SIZE, cudaMemcpyHostToDevice));

  arradd <<< n_blocks, block_size >>> (d_a, 10.0, N);

  cudaThreadSynchronize ();
  cudaMemcpy (h_a, d_a, SIZE, cudaMemcpyDeviceToHost));
  CUDA_SAFE_CALL (cudaFree (d_a));
}

GPU

CPU



Why Use This Hierarchy? 

• Threads within a block can share memory (good for local computations). 
• Blocks within a grid execute independently (scales across multiple GPU cores). 
• Thread hierarchies allow fine-grained control over memory access  

and performance optimization.



Execution Timeline

tim
e

1. Copy to GPU mem

2. Launch GPU Kernel

GPU / Device

2’. Synchronize with GPU

3. Copy from GPU mem

CPU / Host



Programmer’s view of GPU computation

GPU as a co-processor

CPU

Memory

GPU

GPU Memory

16-80 GB (on our systems)

3GB/s – 8GB.s

6.4GB/sec – 51.2GB/sec
8B per transfer

192 GB/sec



Programmer’s view of GPU computation

• First create data on CPU memory

CPU

Memory

GPU

GPU Memory



Programmer’s view of GPU computation

• Then Copy to GPU

CPU

Memory

GPU

GPU Memory



Programmer’s view of GPU computation

• GPU starts computation  runs a kernel 
• CPU can also continue

CPU

Memory

GPU

GPU Memory



Programmer’s view of GPU computation

• CPU and GPU Synchronize

CPU

Memory

GPU

GPU Memory



Programmer’s view of GPU computation

• Copy results back to CPU

CPU

Memory

GPU

GPU Memory



Arrays of Parallel Threads

A CUDA kernel is executed by a grid (array) of 
threads 

– All threads in a grid run the same kernel code 
(SPMD) 

– Each thread has an index that it uses to compute 
memory addresses and make control decisions

i = blockIdx.x * blockDim.x + 
threadIdx.x; 

C[i] = A[i] + B[i];

…
0 1 2 254 255

…
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GBT: Grids of Blocks of Threads

Why? Realities of integrated circuits:
	  need to cluster computation and storage to achieve high speeds
Philosophy is: 
	 We’ll tell you about the hardware – you figure out how to make the best of it

Programmers view of data and computation partitioning

Ti
m

e



Programmer’s view: Memory Model





Device
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(0, 0)
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Thread
(0, 1)

Thread
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Thread
(2, 1)

Thread
(3, 1)

Thread
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Grids of Blocks of Threads: Dimension Limits (Cuda 8.0)

• Grid of Blocks 1D, 2D, or 3D 
– Max grid dimensions: 

2^31 - 1 x 65,535 x 65,535 

• Block of Threads: 1D, 2D, or 3D 
– Max number of threads: 1024 
– Max block dimension: 

1024 x 1024 x 64 

• Limits apply to Compute Capability  
– A100 = 8.0 
– H100 = 9.0



Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
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Thread
(3,1,0)

Thread
(0,0,0)

Thread
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Thread
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Thread
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(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block and Thread IDs

• Threads and blocks have IDs 
– So each thread can decide what 

data to work on 
– Block ID: 1D, 2D, or 3D 
– Thread ID: 1D, 2D, or 3D  
– Combination is unique 

• Simplifies memory 
addressing when processing 
multidimensional data 
– Convenience, not necessity

• IDs and dimensions are accessible through  
predefined “variables”, e.g., blockDim.x and threadIdx.x 
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Thread Blocks: Scalable Cooperation
• Divide thread array into multiple blocks 

– Threads within a block cooperate via shared 
memory, atomic operations and barrier 
synchronization 

– Threads in different blocks cannot cooperate

i = blockIdx.x * blockDim.x + 
threadIdx.x; 

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x + 
threadIdx.x; 

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x + 
threadIdx.x; 

C[i] = A[i] + B[i];
…

…… … 28



Thread Batching

• A kernel is executed as a grid 
of thread blocks 
– All thread blocks share the same data 

memory space 
• But cannot communicate 

through it 

• A thread block:  
– Threads that can cooperate with 

each other by: 
• Synchronizing their execution, 

for hazard-free shared memory 
accesses 

• Efficiently sharing data through 
a low latency  
shared memory 

• Two threads from two different 
blocks cannot cooperate
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Thread
(4, 0)



Conversion of a color image to grey–scale image
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The pixels can be calculated 
independently of each other



A[0]
vector  
A

vector  
B

vector  
C

A[1] A[2] A[3] A[4] A[N-1]

B[0] B[1] B[2] B[3]

…

B[4] … B[N-1]

C[0] C[1] C[2] C[3] C[4] C[N-1]…

+ + + + + +

Vector Addition – Conceptual View
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Vector Addition – Traditional C Code
// Compute vector sum C = A+B 
void vecAdd(float* A, float* B, float* C, int n) 
{ 
  for (i = 0, i < n, i++) 
    C[i] = A[i] + B[i]; 
} 

int main() 
{ 
    // Memory allocation for A_h, B_h, and C_h 
	   // I/O to read A_h and B_h, N elements 
	   … 
    vecAdd(A_h, B_h, C_h, N); 
}
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#include <cuda.h>
void vecAdd(float* A, float* B, float* C, int n) 
{
   int size = n* sizeof(float); 
   float* A_d, B_d, C_d;
   …
1. // Allocate device memory for A, B, and C
   // copy A and B to device memory 
    
2. // Kernel launch code – to have the device
   // to perform the actual vector addition

3. // copy C from the device memory
   // Free device vectors
}

Heterogeneous Computing vecAdd Host Code
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Partial Overview of CUDA Memories

• Device code can: 
– R/W per-thread registers 
– R/W per-grid global memory 

• Host code can 
– Transfer data to/from per grid global 

memory 

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host
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Programmer’s View: Memory Detail – Thread and Host

• Each thread can: 
– R/W per-thread registers 
– R/W per-thread local memory 
– R/W per-block shared memory 
– R/W per-grid global memory 
– Read only per-grid constant memory 
– Read only per-grid texture memory 

• The host can R/W:  
– global, constant, and texture memories



Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CUDA Device Memory Management API functions

• cudaMalloc() 
– Allocates object in the device global memory 
– Two parameters 

• Address of a pointer to the allocated object 
• Size of of allocated object in terms of bytes 

• cudaFree() 
– Frees object from device global memory 

• Pointer to freed object
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Host

Host-Device Data Transfer API functions

cudaMemcpy() 
– memory data transfer 
– Requires four parameters 

• Pointer to destination  
• Pointer to source 
• Number of bytes copied 
• Type/Direction of transfer 

– Transfer to device is 
synchronous

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers
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Copy Initialized CPU data to GPU

float *da; 
float *ha; 

cudaMemCpy ((void *) da, 	 	 	 // DESTINATION 
	 	 	   (void *) ha, 	 	 	 // SOURCE 
	 	 	   sizeof (float) * N, 	 	 // #bytes 
	 	 	   cudaMemcpyHostToDevice);	 // DIRECTION



Host/Device Data Transfers

• The host initiates all transfers: 
• cudaMemcpy(	void *dst, void *src,  
	 	 size_t nbytes,  
	 	 enum cudaMemcpyKind direction) 

• enum cudaMemcpyKind 
– cudaMemcpyHostToDevice 
– cudaMemcpyDeviceToHost 
– cudaMemcpyDeviceToDevice
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void vecAdd(float* A, float* B, float* C, int n)
{
   int size = n * sizeof(float); 
    float* A_d, B_d, C_d;

1. // Transfer A and B to device memory 
    cudaMalloc((void **) &A_d, size);
    cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice);
    cudaMalloc((void **) &B_d, size);
    cudaMemcpy(B_d, B, size, cudaMemcpyHostToDevice);

   // Allocate device memory for
    cudaMalloc((void **) &C_d, size);

2. // Kernel invocation code – to be shown later
     …
3. // Transfer C from device to host
    cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost); 
   // Free device memory for A, B, C
    cudaFree(A_d); cudaFree(B_d); cudaFree (C_d);
}
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// Compute vector sum C = A+B 
// Each thread performs one pair-wise addition 
__global__ 
void vecAddKernel(float* A_d, float* B_d, float* C_d, int n) 
{ 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    if(i<n) C_d[i] = A_d[i] + B_d[i]; 
} 

int vectAdd(float* A, float* B, float* C, int n) 
{ 
	 	  // A_d, B_d, C_d allocations and copies omitted 
    // Run ceil(n/256) blocks of 256 threads each 
    vecAddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, C_d, n); 

}

Example: Vector Addition Kernel
Device Code



Kernel

 int i = threadIdx.x + blockDim.x * blockIdx.x; 

• BlockIdx: Unique Block ID. 
– Numerically asceding: 0, 1, … 

• BlockDim: Dimensions of Block = how many threads it has 
– BlockDim.x, BlockDim.y, BlockDim.z 
– Unused dimensions default to 0 

• ThreadIdx: Unique per Block Index 
– 0, 1, …  
– Per Block



Array Index Calculation Example

int i = blockIdx.x * blockDim.x + threadIdx.x;

a[0] a[63] a[64] a[127]a[128] a[191]a[192]

blockIdx.x = 0 blockIdx.x  = 1 blockIdx.x  = 2
thr

ea
dId

x.x
 0

thr
ea

dId
x.x

 63
thr

ea
dId

x.x
 0

thr
ea

dId
x.x

 63
thr

ea
dId

x.x
 0

thr
ea

dId
x.x

 63
thr

ea
dId

x.x
 0

i = 0 i = 63 i = 64 i = 127 i = 128 i = 191 i = 192

Assuming blockDim.x = 64

… … …



Generic Unique Thread and Block Index Calculations #1

• 1D Grid / 1D Blocks: 

	 UniqueBlockIndex = blockIdx.x; 
	 UniqueThreadIndex = blockIdx.x * blockDim.x + threadIdx.x; 

• 1D Grid / 2D Blocks: 

	 UniqueBlockIndex = blockIdx.x; 
	 UniqueThreadIndex = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * 

blockDim.x + threadIdx.x; 

• 1D Grid / 3D Blocks: 

	 UniqueBockIndex = blockIdx.x; 
	 UniqueThreadIndex = blockIdx.x * blockDim.x * blockDim.y * blockDim.z + 

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + 
threadIdx.x; 

• More options: https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-
Cheatsheet.pdf

https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf
https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf
https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf
https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf


Generic Unique Thread and Block Index Calculations #2

• 2D Grid / 1D Blocks: 

	 UniqueBlockIndex = blockIdx.y * gridDim.x + blockIdx.x; 
	 UniqueThreadIndex = UniqueBlockIndex * blockDim.x + threadIdx.x; 

• 2D Grid / 2D Blocks: 

	 UniqueBlockIndex = blockIdx.y * gridDim.x + blockIdx.x; 
	 UniqueThreadIndex =UniqueBlockIndex * blockDim.y * blockDim.x + threadIdx.y * 

blockDim.x + threadIdx.x; 

• 2D Grid / 3D Blocks: 

	 UniqueBlockIndex = blockIdx.y * gridDim.x + blockIdx.x; 
	 UniqueThreadIndex = UniqueBlockIndex * blockDim.z * blockDim.y * blockDim.x + 

threadIdx.z * blockDim.y * blockDim.z + threadIdx.y * blockDim.x + 
threadIdx.x; 

• UniqueThreadIndex means unique per grid.



Example: Vector Addition Kernel - Launch
// Compute vector sum C = A+B 
// Each thread performs one pair-wise addition 
__global__ 
void vecAddkernel(float* A_d, float* B_d, float* C_d, int n) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    if(i<n) C_d[i] = A_d[i] + B_d[i]; 
} 

int vecAdd(float* A, float* B, float* C, int n) 
{ 
 // A_d, B_d, C_d allocations and copies omitted  
 // Run ceil(n/256) blocks of 256 threads each 
  vecAddKernnel<<<ceil(n/256.0),256>>>(A_d, B_d, C_d, n); 
}

Host Code
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• A kernel function must be called with an 
execution configuration: 

dim3   DimGrid(100, 50);    // 5000 thread blocks  
dim3   DimBlock(4, 8, 8);   // 256 threads per block  
size_t SharedMemBytes = 64; // 64 bytes of shared memory 
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

Launch a Kernel with Multidimensional Blocks
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void vecAdd(float* A, float* B, float* C, int n)
{
   int size = n * sizeof(float); 
    float* A_d, B_d, C_d;

1. // Transfer A and B to device memory 
    cudaMalloc((void **) &A_d, size);
    cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice);
    cudaMalloc((void **) &B_d, size);
    cudaMemcpy(B_d, B, size, cudaMemcpyHostToDevice);

   // Allocate device memory for
    cudaMalloc((void **) &C_d, size);

2. // Kernel invocation code – to be shown later
     …
3. // Transfer C from device to host
    cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost); 
   // Free device memory for A, B, C
    cudaFree(A_d); cudaFree(B_d); cudaFree (C_d);
}







Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ 
Linker

Host Code Device Code (PTX)

Device Just-in-Time 
Compiler

Heterogeneous Computing Platform with 
CPUs, GPUs

Compiling A CUDA Program
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