
EECS 570
Lecture 15
GPU programming
Winter 2025
Prof. Satish Narayanasamy
http://www.eecs.umich.edu/co4urses/eecs570/

Slides adapted from instructional material with D. Kirk and W. Hwu,
Programming Massively Parallel Processors: A Handson Approach, Third
Edition.
Credits to Nikos Hardavellas (Northwestern), Reetu Das (UM)

Objective

• To learn the basic concept of data parallel computing
• To learn the basic features of the CUDA C programming

interface

2

CPU vs. GPU summary • Handles sequential code well
• Latency optimized: do all very fast

• Can’t take advantage of massively parallel
code

• Off-chip bandwidth lower – narrow pipes
• Lower peak computation capability

CPU:

• Requires massively parallel computation
• Bandwidth optimized: do lots concurrently

• Handles some control flow
• Higher off-chip bandwidth – wide pipes
• Higher peak computation capability

GPU:

Some things are naturally parallel

e.g., image fading…

How do we program an image fader?
I’ll introduce three programming models in three slides!

Sequential Execution Model

	 int a[N]; // a is image, N is large
	 for (i =0; i < N; i++){

	 a[i] = a[i] * fade;
}

 a[i]
 a[i+1]

 a[i+2]

tim
e

Flow of control / Thread
One instruction at the time
Optimizations possible at
the machine level

This is the predominant
CPU model

Lots of optimizations to
shorten the time required
for each individual operation

Data Parallel Execution Model / SIMD

	 int a[N]; // N is large
	 for all elements do in parallel {

	 a[i] = a[i] * fade;
}

tim
e Most modern CPUs

offer some limited
support for SIMD

Single Program Multiple Data / SPMD

	 int a[N]; // N is large
	 for all elements do in parallel {

	 if (a[i] > threshold) a[i]*= fade;
}

tim
e

Code is statically identical across all threads
Execution path may differ
The model used in today’s Graphics Processor Units (GPUs)
is a mix of SPMD and SIMD

How GPU Acceleration Works

CUDA/OpenCL – Execution Model
Integrated host+device app C program

– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

9

My first CUDA Program / Skeleton

__global__ void arradd (float *a, float f, int N)
 {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) a[i] = a[i] + f;
}

int main()
{
 float h_a[N]; /* allocate cpu container */
 for (int i=0; i < N; i++) h_a[i] = (float) i; /* initialize */

 float *d_a;
 cudaMalloc ((void **) &d_a, SIZE);

 cudaMemcpy (d_a, h_a, SIZE, cudaMemcpyHostToDevice));

 arradd <<< n_blocks, block_size >>> (d_a, 10.0, N);

 cudaThreadSynchronize ();
 cudaMemcpy (h_a, d_a, SIZE, cudaMemcpyDeviceToHost));
 CUDA_SAFE_CALL (cudaFree (d_a));
}

GPU

CPU

Why Use This Hierarchy?

• Threads within a block can share memory (good for local computations).
• Blocks within a grid execute independently (scales across multiple GPU cores).
• Thread hierarchies allow fine-grained control over memory access

and performance optimization.

Execution Timeline

tim
e

1. Copy to GPU mem

2. Launch GPU Kernel

GPU / Device

2’. Synchronize with GPU

3. Copy from GPU mem

CPU / Host

Programmer’s view of GPU computation

GPU as a co-processor

CPU

Memory

GPU

GPU Memory

16-80 GB (on our systems)

3GB/s – 8GB.s

6.4GB/sec – 51.2GB/sec
8B per transfer

192 GB/sec

Programmer’s view of GPU computation

• First create data on CPU memory

CPU

Memory

GPU

GPU Memory

Programmer’s view of GPU computation

• Then Copy to GPU

CPU

Memory

GPU

GPU Memory

Programmer’s view of GPU computation

• GPU starts computation  runs a kernel
• CPU can also continue

CPU

Memory

GPU

GPU Memory

Programmer’s view of GPU computation

• CPU and GPU Synchronize

CPU

Memory

GPU

GPU Memory

Programmer’s view of GPU computation

• Copy results back to CPU

CPU

Memory

GPU

GPU Memory

Arrays of Parallel Threads

A CUDA kernel is executed by a grid (array) of
threads

– All threads in a grid run the same kernel code
(SPMD)

– Each thread has an index that it uses to compute
memory addresses and make control decisions

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

…
19

GBT: Grids of Blocks of Threads

Why? Realities of integrated circuits:
	 need to cluster computation and storage to achieve high speeds
Philosophy is:
	 We’ll tell you about the hardware – you figure out how to make the best of it

Programmers view of data and computation partitioning

Ti
m

e

Programmer’s view: Memory Model

Device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Grids of Blocks of Threads: Dimension Limits (Cuda 8.0)

• Grid of Blocks 1D, 2D, or 3D
– Max grid dimensions:

2^31 - 1 x 65,535 x 65,535

• Block of Threads: 1D, 2D, or 3D
– Max number of threads: 1024
– Max block dimension:

1024 x 1024 x 64

• Limits apply to Compute Capability
– A100 = 8.0
– H100 = 9.0

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Block and Thread IDs

• Threads and blocks have IDs
– So each thread can decide what

data to work on
– Block ID: 1D, 2D, or 3D
– Thread ID: 1D, 2D, or 3D
– Combination is unique

• Simplifies memory
addressing when processing
multidimensional data
– Convenience, not necessity

• IDs and dimensions are accessible through
predefined “variables”, e.g., blockDim.x and threadIdx.x

25

26

27

Thread Blocks: Scalable Cooperation
• Divide thread array into multiple blocks

– Threads within a block cooperate via shared
memory, atomic operations and barrier
synchronization

– Threads in different blocks cannot cooperate

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];
…

…… … 28

Thread Batching

• A kernel is executed as a grid
of thread blocks
– All thread blocks share the same data

memory space
• But cannot communicate

through it

• A thread block:
– Threads that can cooperate with

each other by:
• Synchronizing their execution,

for hazard-free shared memory
accesses

• Efficiently sharing data through
a low latency
shared memory

• Two threads from two different
blocks cannot cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Conversion of a color image to grey–scale image

30

The pixels can be calculated
independently of each other

A[0]
vector
A

vector
B

vector
C

A[1] A[2] A[3] A[4] A[N-1]

B[0] B[1] B[2] B[3]

…

B[4] … B[N-1]

C[0] C[1] C[2] C[3] C[4] C[N-1]…

+ + + + + +

Vector Addition – Conceptual View

32

Vector Addition – Traditional C Code
// Compute vector sum C = A+B
void vecAdd(float* A, float* B, float* C, int n)
{
 for (i = 0, i < n, i++)
 C[i] = A[i] + B[i];
}

int main()
{
 // Memory allocation for A_h, B_h, and C_h
	 // I/O to read A_h and B_h, N elements
	 …
 vecAdd(A_h, B_h, C_h, N);
}

33

#include <cuda.h>
void vecAdd(float* A, float* B, float* C, int n)
{
 int size = n* sizeof(float);
 float* A_d, B_d, C_d;
 …
1. // Allocate device memory for A, B, and C
 // copy A and B to device memory

2. // Kernel launch code – to have the device
 // to perform the actual vector addition

3. // copy C from the device memory
 // Free device vectors
}

Heterogeneous Computing vecAdd Host Code

34

Partial Overview of CUDA Memories

• Device code can:
– R/W per-thread registers
– R/W per-grid global memory

• Host code can
– Transfer data to/from per grid global

memory

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

35

Programmer’s View: Memory Detail – Thread and Host

• Each thread can:
– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read only per-grid constant memory
– Read only per-grid texture memory

• The host can R/W:
– global, constant, and texture memories

Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CUDA Device Memory Management API functions

• cudaMalloc()
– Allocates object in the device global memory
– Two parameters

• Address of a pointer to the allocated object
• Size of of allocated object in terms of bytes

• cudaFree()
– Frees object from device global memory

• Pointer to freed object

37

Host

Host-Device Data Transfer API functions

cudaMemcpy()
– memory data transfer
– Requires four parameters

• Pointer to destination
• Pointer to source
• Number of bytes copied
• Type/Direction of transfer

– Transfer to device is
synchronous

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

38

Copy Initialized CPU data to GPU

float *da;
float *ha;

cudaMemCpy ((void *) da, 	 	 	 // DESTINATION
	 	 	 (void *) ha, 	 	 	 // SOURCE
	 	 	 sizeof (float) * N, 	 	 // #bytes
	 	 	 cudaMemcpyHostToDevice);	 // DIRECTION

Host/Device Data Transfers

• The host initiates all transfers:
• cudaMemcpy(void *dst, void *src,
	 	 size_t nbytes,
	 	 enum cudaMemcpyKind direction)

• enum cudaMemcpyKind
– cudaMemcpyHostToDevice
– cudaMemcpyDeviceToHost
– cudaMemcpyDeviceToDevice

41

void vecAdd(float* A, float* B, float* C, int n)
{
 int size = n * sizeof(float);
 float* A_d, B_d, C_d;

1. // Transfer A and B to device memory
 cudaMalloc((void **) &A_d, size);
 cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice);
 cudaMalloc((void **) &B_d, size);
 cudaMemcpy(B_d, B, size, cudaMemcpyHostToDevice);

 // Allocate device memory for
 cudaMalloc((void **) &C_d, size);

2. // Kernel invocation code – to be shown later
 …
3. // Transfer C from device to host
 cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost);
 // Free device memory for A, B, C
 cudaFree(A_d); cudaFree(B_d); cudaFree (C_d);
}

42

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__
void vecAddKernel(float* A_d, float* B_d, float* C_d, int n)
{

 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if(i<n) C_d[i] = A_d[i] + B_d[i];
}

int vectAdd(float* A, float* B, float* C, int n)
{
	 	 // A_d, B_d, C_d allocations and copies omitted
 // Run ceil(n/256) blocks of 256 threads each
 vecAddKernel<<<ceil(n/256.0), 256>>>(A_d, B_d, C_d, n);

}

Example: Vector Addition Kernel
Device Code

Kernel

 int i = threadIdx.x + blockDim.x * blockIdx.x;

• BlockIdx: Unique Block ID.
– Numerically asceding: 0, 1, …

• BlockDim: Dimensions of Block = how many threads it has
– BlockDim.x, BlockDim.y, BlockDim.z
– Unused dimensions default to 0

• ThreadIdx: Unique per Block Index
– 0, 1, …
– Per Block

Array Index Calculation Example

int i = blockIdx.x * blockDim.x + threadIdx.x;

a[0] a[63] a[64] a[127]a[128] a[191]a[192]

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2
thr

ea
dId

x.x
 0

thr
ea

dId
x.x

 63
thr

ea
dId

x.x
 0

thr
ea

dId
x.x

 63
thr

ea
dId

x.x
 0

thr
ea

dId
x.x

 63
thr

ea
dId

x.x
 0

i = 0 i = 63 i = 64 i = 127 i = 128 i = 191 i = 192

Assuming blockDim.x = 64

… … …

Generic Unique Thread and Block Index Calculations #1

• 1D Grid / 1D Blocks:

	 UniqueBlockIndex = blockIdx.x;
	 UniqueThreadIndex = blockIdx.x * blockDim.x + threadIdx.x;

• 1D Grid / 2D Blocks:

	 UniqueBlockIndex = blockIdx.x;
	 UniqueThreadIndex = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y *

blockDim.x + threadIdx.x;

• 1D Grid / 3D Blocks:

	 UniqueBockIndex = blockIdx.x;
	 UniqueThreadIndex = blockIdx.x * blockDim.x * blockDim.y * blockDim.z +

threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x +
threadIdx.x;

• More options: https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-
Cheatsheet.pdf

https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf
https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf
https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf
https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf

Generic Unique Thread and Block Index Calculations #2

• 2D Grid / 1D Blocks:

	 UniqueBlockIndex = blockIdx.y * gridDim.x + blockIdx.x;
	 UniqueThreadIndex = UniqueBlockIndex * blockDim.x + threadIdx.x;

• 2D Grid / 2D Blocks:

	 UniqueBlockIndex = blockIdx.y * gridDim.x + blockIdx.x;
	 UniqueThreadIndex =UniqueBlockIndex * blockDim.y * blockDim.x + threadIdx.y *

blockDim.x + threadIdx.x;

• 2D Grid / 3D Blocks:

	 UniqueBlockIndex = blockIdx.y * gridDim.x + blockIdx.x;
	 UniqueThreadIndex = UniqueBlockIndex * blockDim.z * blockDim.y * blockDim.x +

threadIdx.z * blockDim.y * blockDim.z + threadIdx.y * blockDim.x +
threadIdx.x;

• UniqueThreadIndex means unique per grid.

Example: Vector Addition Kernel - Launch
// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__
void vecAddkernel(float* A_d, float* B_d, float* C_d, int n)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if(i<n) C_d[i] = A_d[i] + B_d[i];
}

int vecAdd(float* A, float* B, float* C, int n)
{
 // A_d, B_d, C_d allocations and copies omitted
 // Run ceil(n/256) blocks of 256 threads each
 vecAddKernnel<<<ceil(n/256.0),256>>>(A_d, B_d, C_d, n);
}

Host Code

47

• A kernel function must be called with an
execution configuration:

dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

Launch a Kernel with Multidimensional Blocks

50

void vecAdd(float* A, float* B, float* C, int n)
{
 int size = n * sizeof(float);
 float* A_d, B_d, C_d;

1. // Transfer A and B to device memory
 cudaMalloc((void **) &A_d, size);
 cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice);
 cudaMalloc((void **) &B_d, size);
 cudaMemcpy(B_d, B, size, cudaMemcpyHostToDevice);

 // Allocate device memory for
 cudaMalloc((void **) &C_d, size);

2. // Kernel invocation code – to be shown later
 …
3. // Transfer C from device to host
 cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost);
 // Free device memory for A, B, C
 cudaFree(A_d); cudaFree(B_d); cudaFree (C_d);
}

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/
Linker

Host Code Device Code (PTX)

Device Just-in-Time
Compiler

Heterogeneous Computing Platform with
CPUs, GPUs

Compiling A CUDA Program

53

