EECS 570 Lecture 15 GPU programming Winter 2025 Prof. Satish Narayanasamy http://www.eecs.umich.edu/co4urses/eecs570/

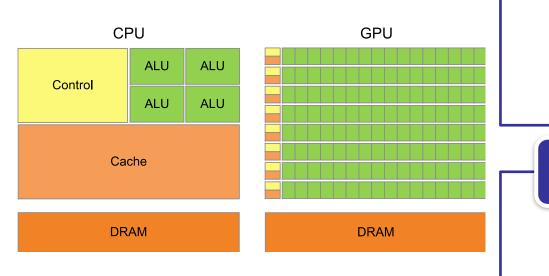
Slides adapted from instructional material with D. Kirk and W. Hwu, Programming Massively Parallel Processors: A Handson Approach, Third Edition.

Credits to Nikos Hardavellas (Northwestern), Reetu Das (UM)

Objective

- To learn the basic concept of data parallel computing
- To learn the basic features of the CUDA C programming interface

CPU vs. GPU summary



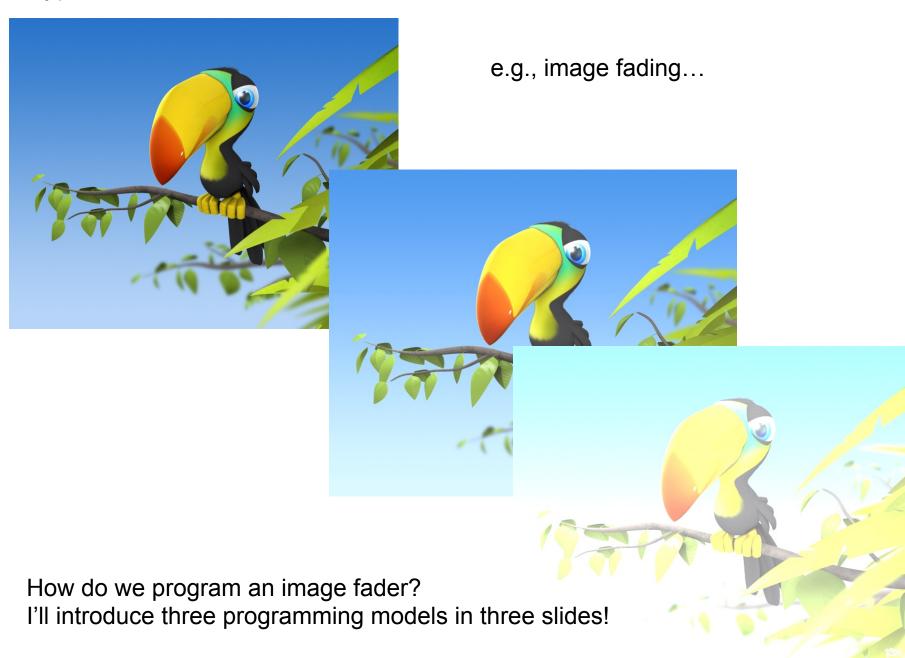
CPU:

- Handles sequential code well
 - Latency optimized: do all very fast
- Can't take advantage of massively parallel code
- Off-chip bandwidth lower narrow pipes
- Lower peak computation capability

GPU:

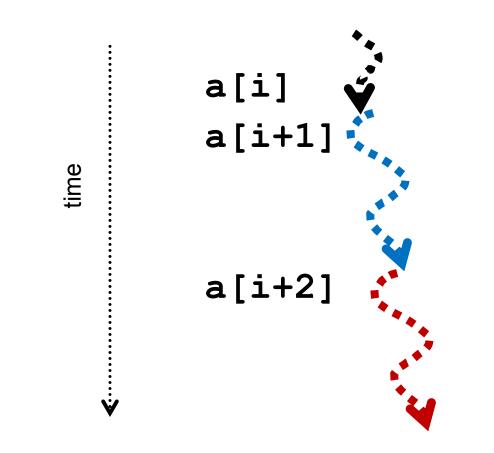
- Requires massively parallel computation
 - Bandwidth optimized: do lots concurrently
- Handles some control flow
- Higher off-chip bandwidth wide pipes
- Higher peak computation capability

Some things are naturally parallel



Sequential Execution Model

int a[N]; // a is image, N is large for (i =0; i < N; i++){ a[i] = a[i] * fade;</pre>

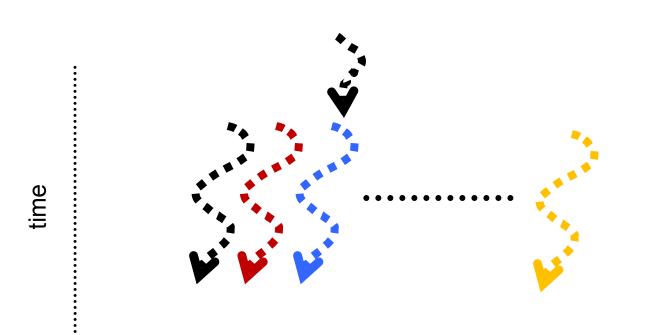


Flow of control / Thread One instruction at the time Optimizations possible at the machine level

This is the predominant CPU model

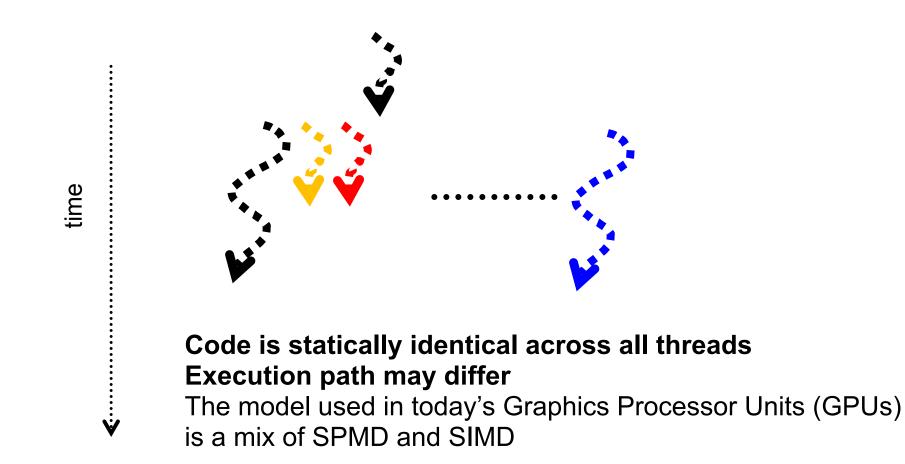
Lots of optimizations to shorten the time required for each individual operation **Data Parallel Execution Model / SIMD**

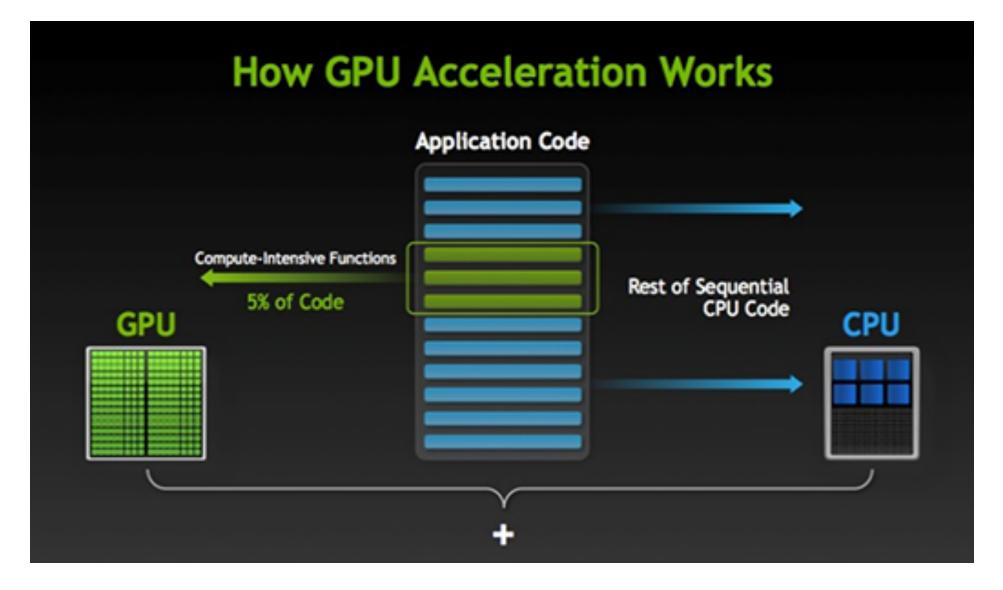
int a[N]; // N is large for all elements do in parallel { a[i] = a[i] * fade;



Most modern CPUs offer some limited support for SIMD Single Program Multiple Data / SPMD

int a[N]; // N is large for all elements do in parallel { if (a[i] > threshold) a[i]*= fade;

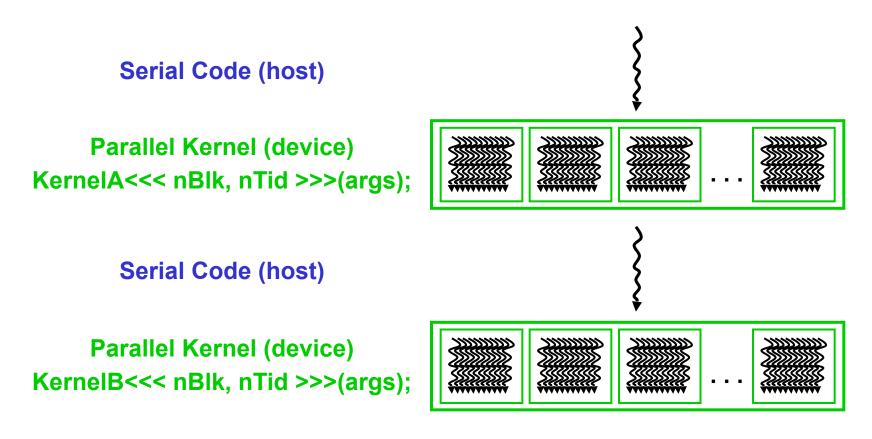




CUDA/OpenCL – Execution Model

Integrated host+device app C program

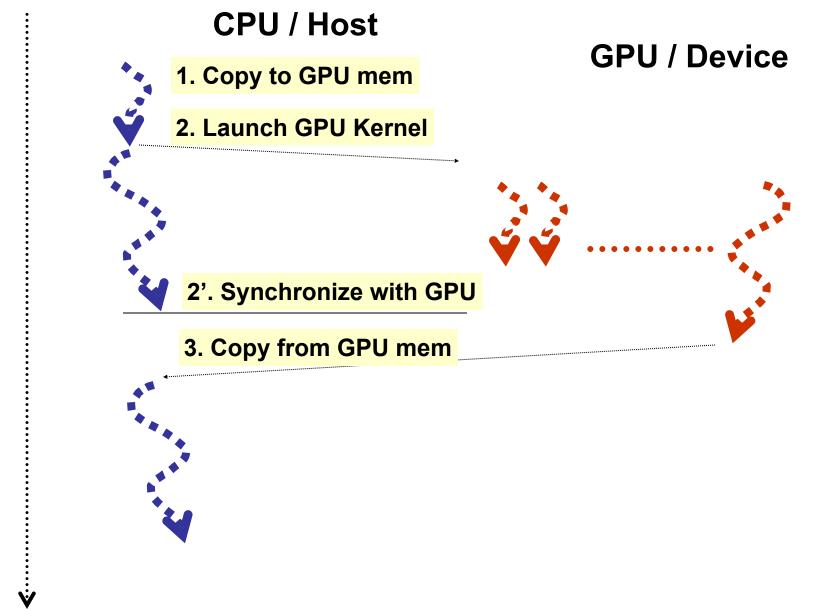
- Serial or modestly parallel parts in host C code
- Highly parallel parts in **device** SPMD kernel C code



```
_global___ void arradd (float *a, float f, int N)
                                                                       GPU
 int i = blockldx.x * blockDim.x + threadldx.x;
 if (i < N) a[i] = a[i] + f;
int main()
 float h a[N]; /* allocate cpu container */
                                                                       CPU
 for (int i=0; i < N; i++) h_a[i] = (float) i; /* initialize */
 float *d a;
 cudaMalloc ((void **) &d a, SIZE);
 cudaMemcpy (d_a, h_a, SIZE, cudaMemcpyHostToDevice));
 arradd \leq < n blocks, block size >> (d a, 10.0, N);
 cudaThreadSynchronize ();
 cudaMemcpy (h_a, d_a, SIZE, cudaMemcpyDeviceToHost));
 CUDA SAFE CALL (cudaFree (d a));
```

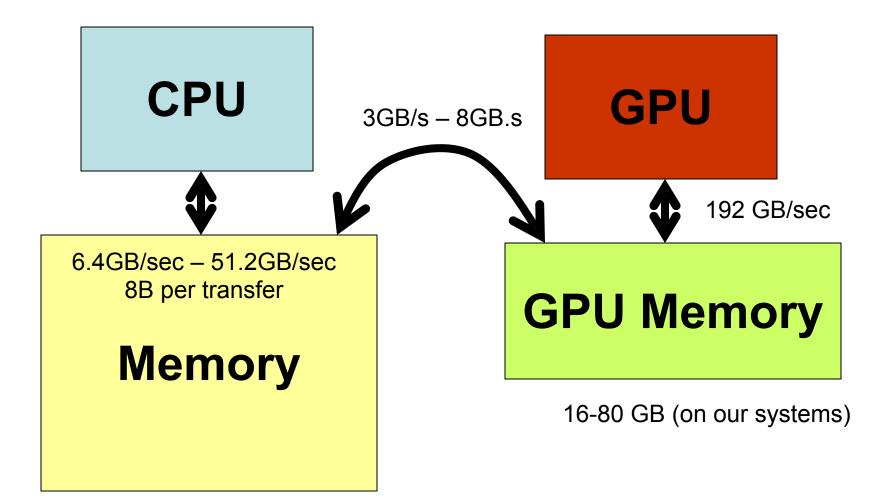
Why Use This Hierarchy?

- Threads within a block can share memory (good for local computations).
- Blocks within a grid execute independently (scales across multiple GPU cores).
- **Thread hierarchies** allow fine-grained control over memory access and performance optimization.

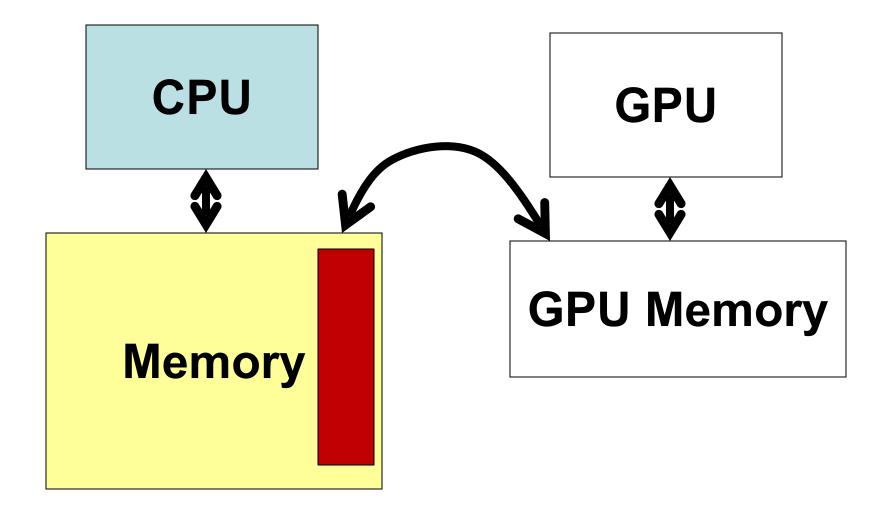


time

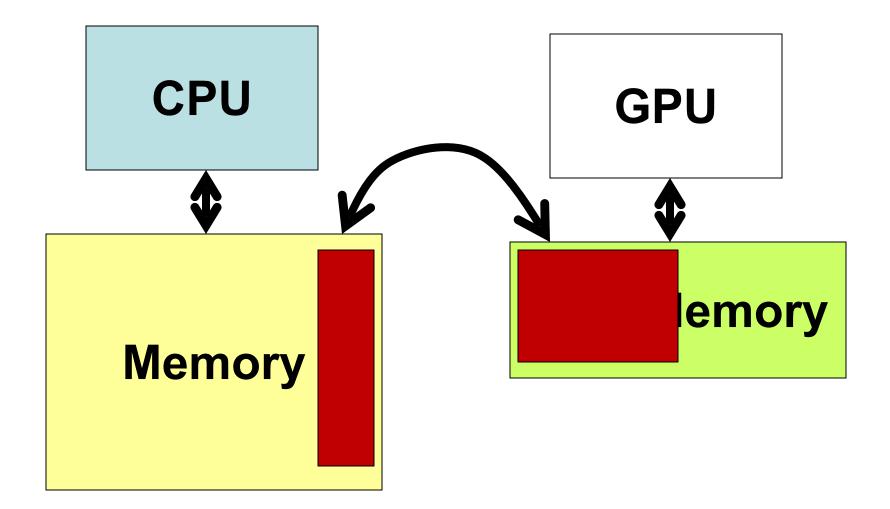
GPU as a co-processor



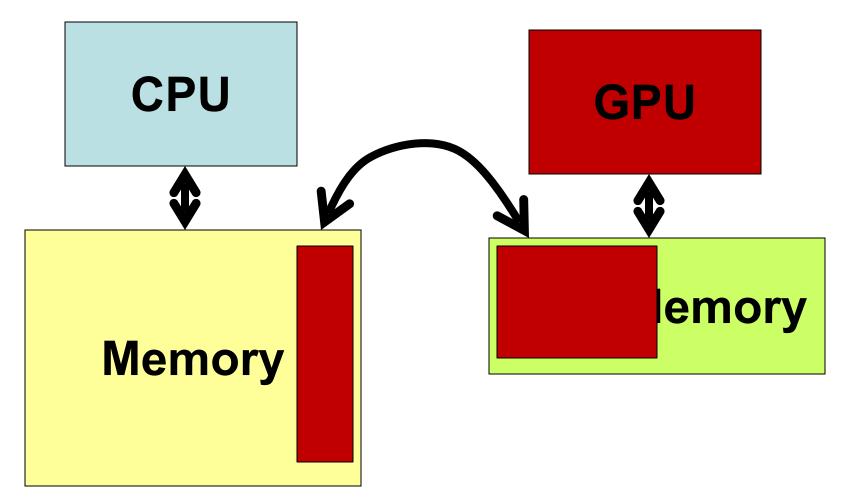
• First create data on CPU memory



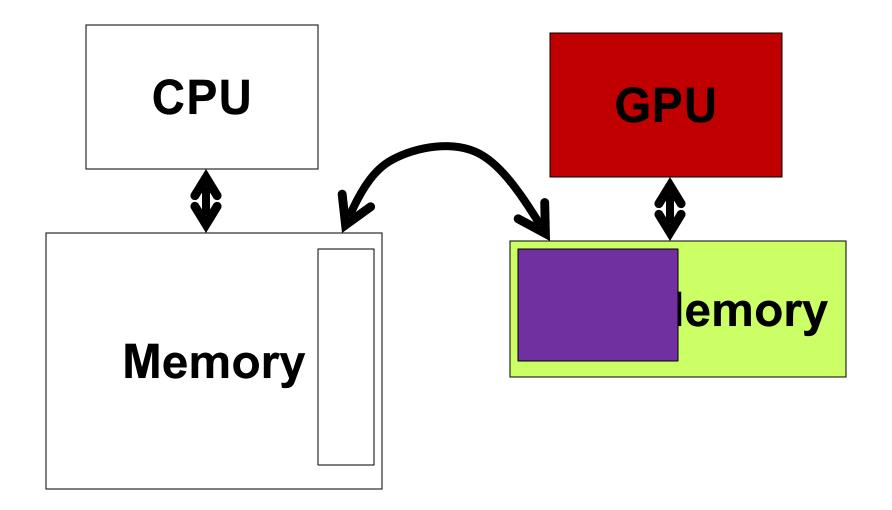
Then Copy to GPU



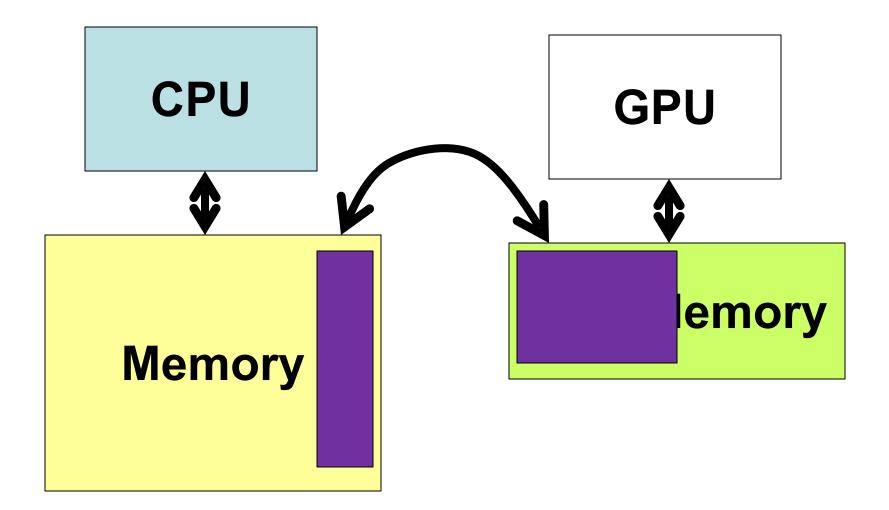
- GPU starts computation → runs a kernel
- CPU can also continue



• CPU and GPU Synchronize



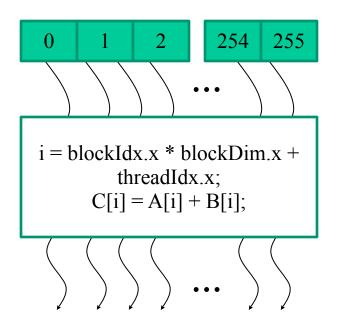
Copy results back to CPU



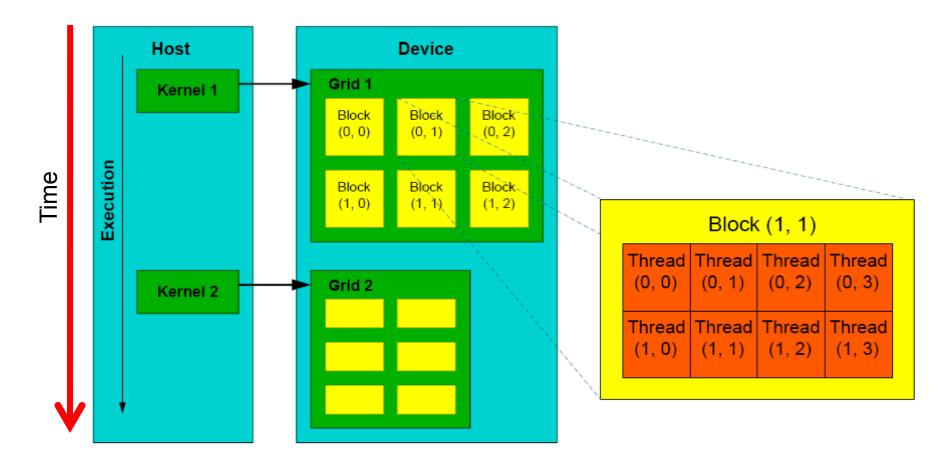
Arrays of Parallel Threads

A CUDA kernel is executed by a grid (array) of threads

- All threads in a grid run the same kernel code (SPMD)
- Each thread has an index that it uses to compute memory addresses and make control decisions



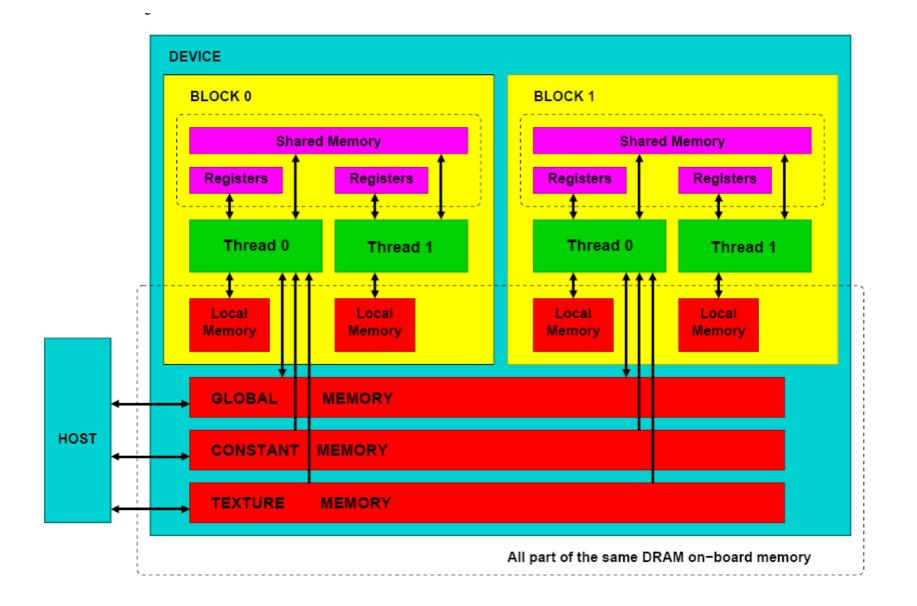
Programmers view of data and computation partitioning



Why? Realities of integrated circuits:

need to cluster computation and storage to achieve high speeds Philosophy is:

We'll tell you about the hardware – you figure out how to make the best of it

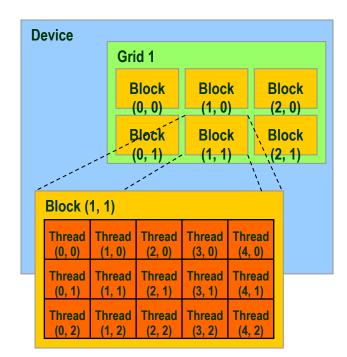


How is Texture Memory Different from Constant Memory?

Feature	Constant Memory	Texture Memory
Purpose	Storing small, frequently used constants	Storing spatially localized data (e.g., images, grids)
Access Type	Read-only from kernels	Read-only from kernels
Cached?	Yes, constant cache	Yes, texture cache
Access Pattern	Best for all threads reading the same value	Best for spatially coherent access patterns
Size Limit	64 KB	Depends on global memory
Binding	No need to bind, just declare asconstant	Must bind memory using <pre>cudaBindTexture()</pre>
Interpolation Support	× No	Yes, supports hardware interpolation
Best Use Cases	Global constants (e.g., physics constants, lookup tables)	2D/3D images, scientific data, volumetric rendering

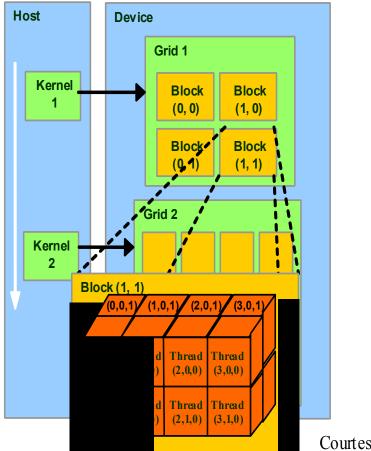
Grids of Blocks of Threads: Dimension Limits (Cuda 8.0)

- Grid of Blocks 1D, 2D, or 3D
 - Max grid dimensions:
 2^31 1 x 65,535 x 65,535
- Block of Threads: 1D, 2D, or 3D
 - Max number of threads: 1024
 - Max block dimension:
 1024 x 1024 x 64



- Limits apply to Compute Capability
 - A100 = 8.0
 - H100 = 9.0

- Threads and blocks have IDs
 - So each thread can decide what data to work on
 - Block ID: 1D, 2D, or 3D
 - Thread ID: 1D, 2D, or 3D
 - Combination is unique
- Simplifies memory addressing when processing multidimensional data
 - Convenience, not necessity



Courtesy: NDVIA

 IDs and dimensions are accessible through predefined "variables", e.g., blockDim.x and threadIdx.x

1. The CUDA Execution Model

CUDA organizes parallel computation using a hierarchy:

- 1. Threads The smallest unit of execution.
- 2. Thread Blocks A group of threads that execute together and share resources.
- 3. Grid of Blocks A collection of thread blocks that form the entire computation.

Each level allows the GPU to scale execution across thousands of cores efficiently.

2. CUDA Thread Organization

(a) Threads and Thread Blocks

- Each thread executes an instance of a kernel (a CUDA function that runs on the GPU).
- A **thread block** is a collection of threads that execute together. Threads within a block:
 - Share shared memory.
 - Can synchronize using ____syncthreads().
 - Are identified by a **thread index** (threadIdx).

(b) Grids and Blocks

- A grid is a collection of blocks.
- Each block is identified using blockIdx .
- Blocks themselves contain multiple threads.

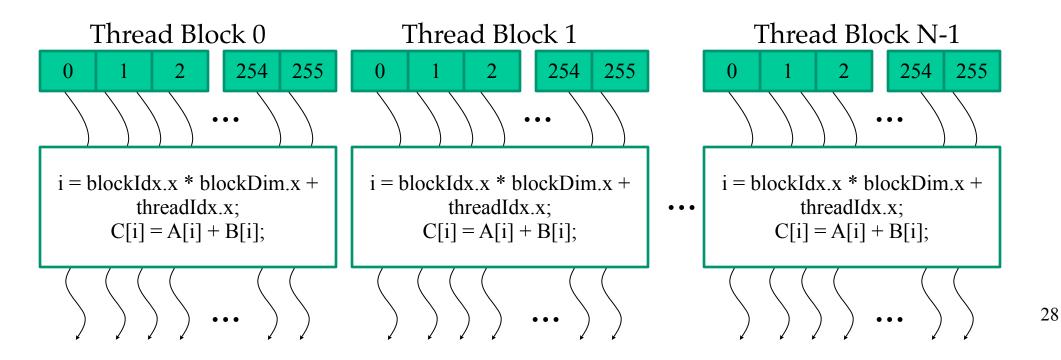
3. How CUDA Exposes This to Programmers

CUDA provides built-in variables to help programmers manage threads and blocks:

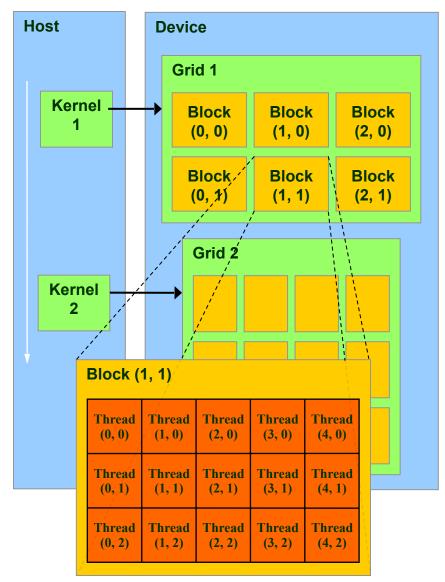
Variable	Description
threadIdx.x	Thread index within a block (1D)
threadIdx.y	Thread index in 2D
threadIdx.z	Thread index in 3D
blockIdx.x	Block index within a grid (1D)
blockIdx.y	Block index in 2D
blockIdx.z	Block index in 3D
blockDim.x	Number of threads per block in 1D
blockDim.y	Number of threads per block in 2D
blockDim.z	Number of threads per block in 3D
gridDim.x	Number of blocks in a grid (1D)
gridDim.y	Number of blocks in a grid (2D)
gridDim.z	Number of blocks in a grid (3D)

Thread Blocks: Scalable Cooperation

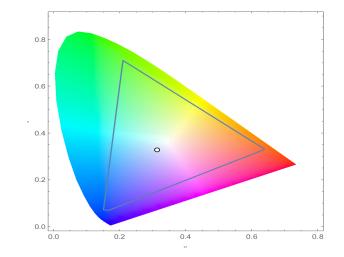
- Divide thread array into multiple blocks
 - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
 - Threads in different blocks cannot cooperate



- A kernel is executed as a grid of thread blocks
 - All thread blocks <u>share</u> the same data memory space
 - But cannot communicate through it
- A thread block:
 - Threads that can cooperate with each other by:
 - Synchronizing their execution, for hazard-free shared memory accesses
 - Efficiently sharing data through a low latency <u>shared memory</u>
- Two threads from two different blocks cannot cooperate

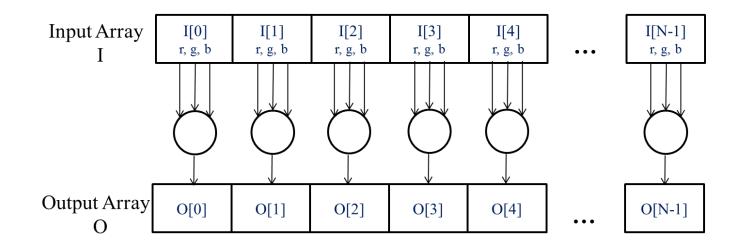


Conversion of a color image to grey-scale image

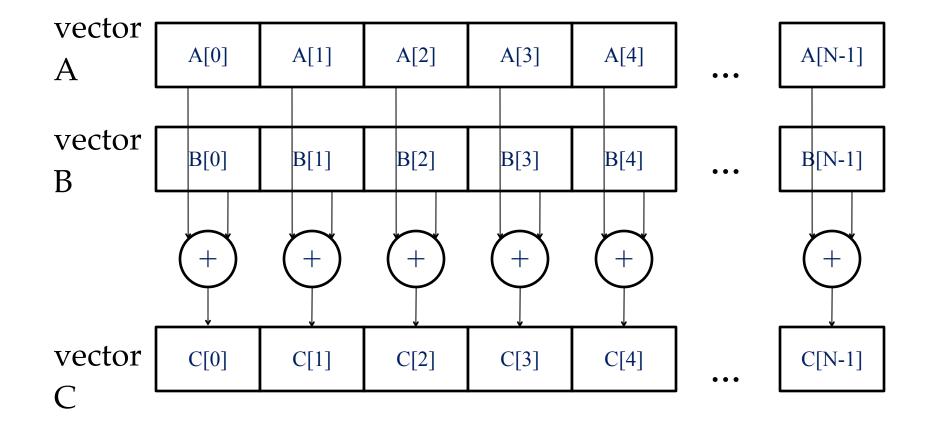


30

The pixels can be calculated independently of each other



Vector Addition – Conceptual View



Vector Addition – Traditional C Code

```
// Compute vector sum C = A+B
void vecAdd(float* A, float* B, float* C, int n)
{
  for (i = 0, i < n, i++)
    C[i] = A[i] + B[i];
}
int main()
{
    // Memory allocation for A h, B h, and C h
    // I/O to read A h and B h, N elements
    ...
    vecAdd(A h, B h, C h, N);
}
```

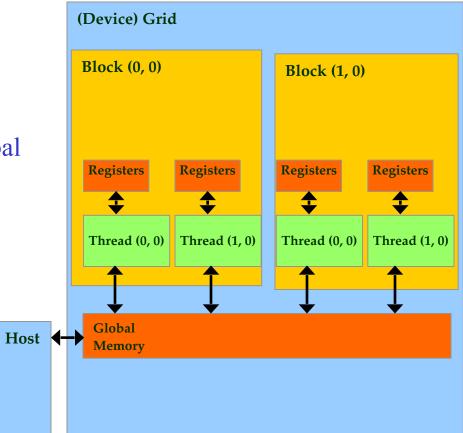
Heterogeneous Computing vecAdd Host Code

```
#include <cuda.h>
void vecAdd(float* A, float* B, float* C, int n)
{
    int size = n* sizeof(float);
    float* A_d, B_d, C_d;
    ...
1. // Allocate device memory for A, B, and C
    // copy A and B to device memory
```

- 2. // Kernel launch code to have the device
 // to perform the actual vector addition
- 3. // copy C from the device memory
 // Free device vectors

Partial Overview of CUDA Memories

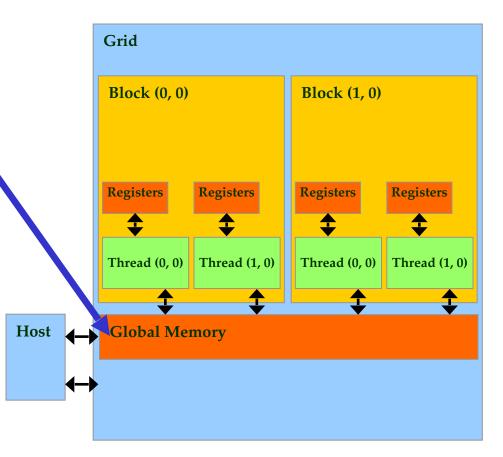
- Device code can:
 - R/W per-thread registers
 - R/W per-grid global memory
- Host code can
 - Transfer data to/from per grid global memory



- Each thread can:
 - R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory
 - R/W per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory
- The host can R/W:
 - global, constant, and texture memories

CUDA Device Memory Management API functions

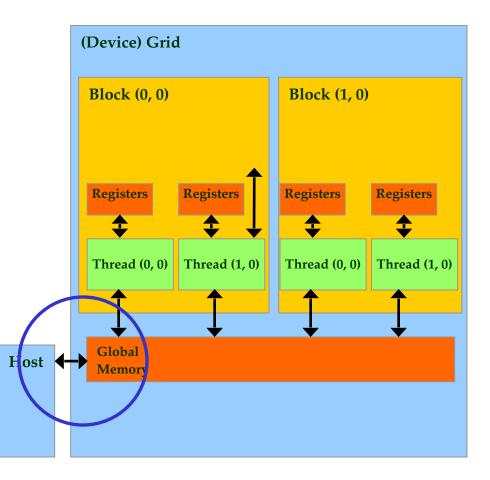
- cudaMalloc()
 - Allocates object in the device <u>global memory</u>
 - Two parameters
 - Address of a pointer to the allocated object
 - Size of of allocated object in terms of bytes
- cudaFree()
 - Frees object from device global memory
 - Pointer to freed object



Host-Device Data Transfer API functions

cudaMemcpy()

- memory data transfer
- Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type/Direction of transfer
- Transfer to device is synchronous



```
float *da;
float *ha;
```

```
cudaMemCpy ((void *) da,
             (void *) ha,
             sizeof (float) * N, // #bytes
             cudaMemcpyHostToDevice); // DIRECTION
```

- // DESTINATION
- // SOURCE

Host/Device Data Transfers

- The host initiates all transfers:
- cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction)
- enum cudaMemcpyKind
 - cudaMemcpyHostToDevice
 - cudaMemcpyDeviceToHost
 - cudaMemcpy**Device**To**Device**

```
void vecAdd(float* A, float* B, float* C, int n)
{
    int size = n * sizeof(float);
    float* A d, B d, C d;
```

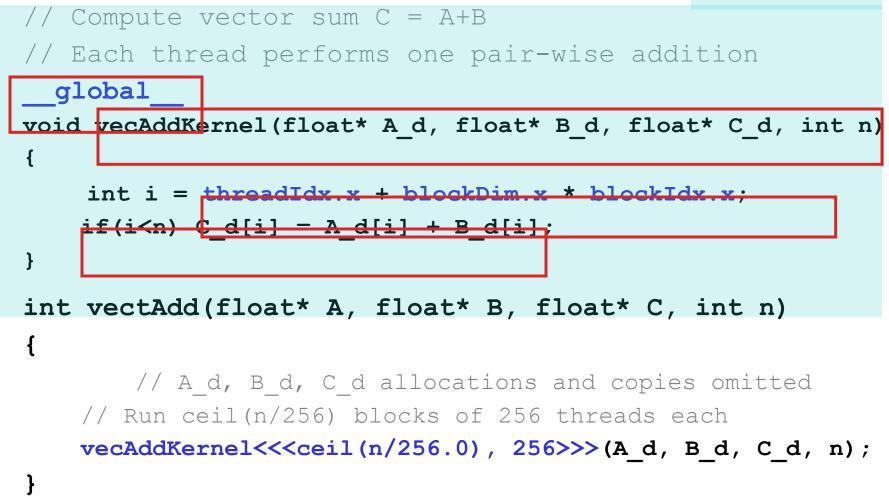
1. // Transfer A and B to device memory
 cudaMalloc((void **) &A_d, size);
 cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice);
 cudaMalloc((void **) &B_d, size);
 cudaMemcpy(B d, B, size, cudaMemcpyHostToDevice);

// Allocate device memory for cudaMalloc((void **) &C d, size);

- 2. // Kernel invocation code to be shown later
- 3. // Transfer C from device to host
 cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost);
 // Free device memory for A, B, C
 cudaFree(A_d); cudaFree(B_d); cudaFree (C_d);
 }

Example: Vector Addition Kernel

Device Code

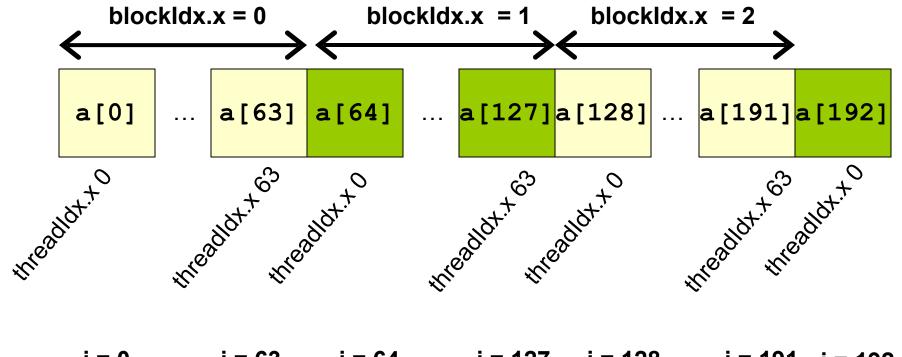


int i = threadIdx.x + blockDim.x * blockIdx.x;

- BlockIdx: Unique Block ID.
 - Numerically asceding: 0, 1, ...
- **BlockDim:** Dimensions of Block = how many threads it has
 - BlockDim.x, BlockDim.y, BlockDim.z
 - Unused dimensions default to 0
- ThreadIdx: Unique per Block Index
 - 0, 1, ...
 - Per Block

Array Index Calculation Example

int i = blockIdx.x * blockDim.x + threadIdx.x;



i = 0 i = 63 i = 64 i = 127 i = 128 i = 191 i = 192

Assuming blockDim.x = 64

• 1D Grid / 1D Blocks:

```
UniqueBlockIndex = blockIdx.x;
UniqueThreadIndex = blockIdx.x * blockDim.x + threadIdx.x;
```

• 1D Grid / 2D Blocks:

```
UniqueBlockIndex = blockIdx.x;
UniqueThreadIndex = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y *
blockDim.x + threadIdx.x;
```

• 1D Grid / 3D Blocks:

```
UniqueBockIndex = blockIdx.x;
UniqueThreadIndex = blockIdx.x * blockDim.x * blockDim.y * blockDim.z +
threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x +
threadIdx.x;
```

More options: <u>https://www.eecs.umich.edu/courses/eecs498-APP/resources/materials/CUDA-Thread-Indexing-Cheatsheet.pdf</u>

• 2D Grid / 1D Blocks:

UniqueBlockIndex = blockIdx.y * gridDim.x + blockIdx.x; UniqueThreadIndex = UniqueBlockIndex * blockDim.x + threadIdx.x;

• 2D Grid / 2D Blocks:

UniqueBlockIndex = blockIdx.y * gridDim.x + blockIdx.x; UniqueThreadIndex =UniqueBlockIndex * blockDim.y * blockDim.x + threadIdx.y * blockDim.x + threadIdx.x;

• 2D Grid / 3D Blocks:

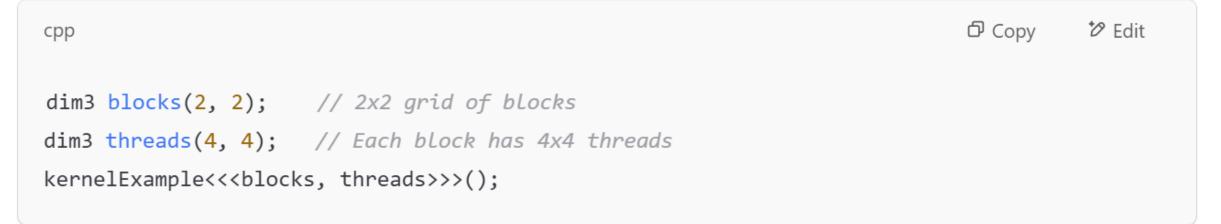
UniqueBlockIndex = blockIdx.y * gridDim.x + blockIdx.x; UniqueThreadIndex = UniqueBlockIndex * blockDim.z * blockDim.y * blockDim.x + threadIdx.z * blockDim.y * blockDim.z + threadIdx.y * blockDim.x + threadIdx.x;

• UniqueThreadIndex means unique per grid.

Example: Vector Addition Kernel - Launch

```
// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
qlobal
void vecAddkernel(float* A d, float* B d, float* C d, int n)
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    if(i<n) C d[i] = A d[i] + B d[i];
int vecAdd(float* A, float* B, float* C, int n) Host Code
 // A d, B d, C d allocations and copies omitted
 // Run ceil (n/256) blocks of 256 threads each
 vecAddKernnel<<<ceil(n/256.0),256>>>(A d, B d, C d, n);
```

CUDA supports 1D, 2D, and 3D thread/block structures. For example:



Threads are then identified as:

```
cpp
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
```

• A kernel function must be called with an execution configuration:

```
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);
```

```
void vecAdd(float* A, float* B, float* C, int n)
{
    int size = n * sizeof(float);
    float* A d, B d, C d;
```

1. // Transfer A and B to device memory
 cudaMalloc((void **) &A_d, size);
 cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice);
 cudaMalloc((void **) &B_d, size);
 cudaMemcpy(B d, B, size, cudaMemcpyHostToDevice);

// Allocate device memory for cudaMalloc((void **) &C d, size);

- 2. // Kernel invocation code to be shown later
- 3. // Transfer C from device to host
 cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost);
 // Free device memory for A, B, C
 cudaFree(A_d); cudaFree(B_d); cudaFree (C_d);
 }

GPU Software Stack Overview

- 1. Application Layer (High-Level Code)
 - CUDA C/C++, Fortran, Python (with libraries like Numba, TensorFlow, PyTorch)
 - OpenCL, HIP (AMD's CUDA alternative)
 - DirectCompute, Vulkan, OpenGL Compute Shaders
- 2. Compiler & Intermediate Representation (IR)
 - NVCC (NVIDIA CUDA Compiler): Compiles CUDA code into PTX
 - PTX (Parallel Thread Execution) Assembly:
 - A virtual instruction set that abstracts away GPU hardware details.
 - Allows compatibility across different NVIDIA GPU architectures.
 - Can be JIT (Just-In-Time) compiled to SASS (machine code) by the CUDA driver.
 - LLVM-based Compiler (for OpenCL & HIP)

- 3. Driver & Runtime Layer
 - CUDA Runtime API (e.g., cudaMalloc , cudaMemcpy , cudaLaunchKernel)
 - CUDA Driver API (lower-level, more explicit control)
 - NVIDIA GPU Drivers (convert PTX to SASS and manage hardware execution)
 - OpenCL Runtime (for OpenCL-based GPU programs)
- 4. Hardware Execution Layer
 - SASS (Streaming Assembly)
 - Machine code specific to GPU architecture (e.g., Ampere, Ada, Hopper).
 - Produced from PTX by JIT compilation in the driver.
 - GPU Hardware (SMs, Tensor Cores, Memory Controllers)
 - Executes the final machine instructions.

