
EECS 570
Lecture 16
GPU Optimizations

Winter 2025
Prof. Satish Narayanasamy
http://www.eecs.umich.edu/co4urses/eecs570/

Slides adapted from instructional material from Simran Arora and Azalia Mirhoseini (Stanford)

Today’s Lecture

● Understanding performance -- Compute Vs Memory Bound

● A Few Principles For Improving Performance

Hardware Overview

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Rising Demand for Compute!

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

 Chinchilla scaling laws - https://arxiv.org/pdf/2203.15556.pdf

The More FLOPS The Better!

https://arxiv.org/pdf/2203.15556.pdf

More Companies Offering Deep Learning Accelerators

https://gradientflow.com/tag/hardware/

https://gradientflow.com/tag/hardware/

CPU vs. GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#

The core building block of deep learning
models are vector and tensor
multiplications and additions.

GPUs are optimized for parallel
execution of these operations.

In CPUs, the majority of the transistors
are used for data caching and flow
control.

In GPUs the vast majority of transistors
are used for data processing.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CPUs are designed to execute a sequence of operations, called a thread, with minimum latency. They can
execute a few tens of threads in parallel.

GPUs are designed to excel at executing thousands of threads in parallel. They have a slower single-thread
performance, but achieve significantly higher throughput.

CPU vs. GPU

CPU GPU
Image by Chen et al.,
2018

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Central Processing Unit (CPU)
For general purpose computation

Control Unit: fetches the next instruction from
memory and directs the arithmetic logic and floating
point units (ALU and FPU)

ALU & FPU: perform the bitwise instructions on
integer and floating point numbers

Registers: for the next instruction, we can read our
input values from the registers and write the
intermediate values back out

Caches, main memory: much larger capacity than
registers, used for storing instructions and data to run
programs

Control Unit

Register 0 (R0)

Register 1 (R1)

Register 8 (RN8)
…

ALU / FPU

Main Memory

Caches

Graphics Processing Unit (GPU)
For parallelizable problems

Streaming Multiprocessors (SMs): each has one
instruction unit that controls many processors that
run the instruction in parallel

Registers, shared memory, caches, device
memory: for reading and writing intermediate valuesProcessors

…
Instruction

Unit

Registers

Streaming Multiprocessor N

Streaming Multiprocessor 1

Shared Memory

Caches

Device Memory

GPU Memory Hierarchy

https://docs.nvidia.com/deeplearning/

Registers

Shared Memory

Caches

GPU HBM DRAM

256 KB / SM

192 KB / SM

40 MB

40 GB

On a 40GB A100

https://docs.nvidia.com/deeplearning/

Programming Nvidia GPUs

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#

● We make use of the Streaming
Multiprocessors (SMs) on the GPU by
organizing our computation into blocks.

● The blocks are organized into a grid.

● The blocks of the grid are enumerated and
distributed to multiprocessors with available
execution capacity.

● Multiple thread blocks can execute
concurrently on one multiprocessor.

● The threads of a block also execute
concurrently on one multiprocessor.

Multithreaded Cuda Program

GPU with 2 SMs GPU with 4 SMs

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

SIMT (Single Instruction, Multiple Thread)

● A multiprocessor is designed to execute
hundreds of threads concurrently.

● To manage such a large number of threads, it
employs a unique architecture called SIMT
(Single Instruction, Multiple Thread).

● The multiprocessor creates, manages,
schedules, and executes threads in groups of
32 parallel threads called warps.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Understanding Performance

How to think about performance

● We can think of algorithms in terms of asymptotics
 e.g., Strassen’s Matrix Multiplication O(N2.8074) vs. naive Matrix Multiplication O(N3), for NxN matrices

● However, the big O notation does not consider:
○ Constants which could make a large difference for different problem sizes
○ Implementation specific details (which matter a lot in real life)

● An algorithm may be asymptotically better but have worse performance if it is not well suited for specific
hardware.

Implementation Matters: Algorithmic Scaling != Real-world Performance

Consider 1 + ELU *: Fancy new linear attn algorithm.

1 + ELU
Linear Attn.

Flash Attn.

Flash Attn, a hardware aware attention
implementation, runs faster in wall-
clock time**

*Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention. Katharopoulos et al., ICML 2020. https://linear-transformers.com/
**Scaling without linear attention cuda kernel. Custom cuda kernel makes linear attention go faster. Credit: Michael Zhang

https://michaelzhang.xyz/

The complexity scales linearly O(N) w.r.t. context
length N, vs. standard O(N2) attention.

https://linear-transformers.com/

How to think about performance

An algorithm may be asymptotically better but not well suited for specific hardware.

Hardware Utilization

● We know the theoretical peak computing performance and memory bandwidth of hardware.
● We can find the fraction of the peak theoretical performance attained by an algorithm and its

implementation.
● We can use this information to decide how to improve the performance.

Theoretical Peak Performance

What happens inside your CPU/GPU is conceptually simple:

● Move items from memory to a processing unit
● Perform some computation
● Move items back to memory

Two key specifications:

● Memory Bandwidth: The maximum number of items
than can be moved from/to memory to/from the
processor per second (4 items/s in the toy example)

● Compute Bandwidth: The maximum number of
operations that can be done on the processor per
second (8 items / second in the toy example)

These are properties of the hardware (not the algorithm).

8 ops (e.g. Floating
Point Operations)/s

Memory

Processor

4 items (e.g. Bytes)/s

Toy Example

Theoretical Peak Performance for Nvidia A100 Processors

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

https://docs.nvidia.com/deeplearning/

https://docs.nvidia.com/deeplearning/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Peak Compute Vs Peak Bandwidth Mismatch

https://www.semianalysis.com/p/nvidiaopenaitritonpytorch

Two properties:

● We can do computation a
lot faster than moving data
to/from the processors.

● Memory is expensive, we
currently cannot improve it
as fast as compute!

What does this mean for
performance?

https://www.semianalysis.com/p/nvidiaopenaitritonpytorch

Compute vs. Memory Bound

● Let Tmem be the time spent accessing memory, and Tmath time is spent performing
math operations.

● If memory and I/O are perfectly overlapped, then the total time of execution is:

max(Tmem, Tmath)

● The longer of the two times demonstrates what limits performance: If math time is
longer, we say that the program is math limited (compute bound), if memory time is
longer then it is memory limited (memory bound).

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-execution

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-execution

Peak Compute vs. Peak Bandwidth Mismatch

8 ops/s

Memory

Processor

4 items/s

Suppose we implement an algorithm to run on this
processor that does the following:

● Load 8 items from memory to the processor
● Compute 1 operation on each item

Assume compute overlaps with I/O. How much time
does the implementation take to run?

Peak Compute vs. Peak Bandwidth Mismatch

Suppose we implement an algorithm to run on this processor that
does the following:

● Load 8 items from memory to the processor.
● Compute 1 operation on each item

Assume compute overlaps with I/O. How much time does the
implementation take to run?

Memory_time = 2s; Compute_time = 1s

 Total Time = max (2s, 1s)

For sufficiently large number of items:

● 4 items arrive at the processor per second at steady state
● The processor can do 8 ops every second
● The processor only does 4 ops (1 per item) every second
● 50% compute utilization and 100% bandwidth utilization!

8 ops/s

Memory

Processor

4 items/s

Peak Compute Vs Peak Bandwidth Mismatch
Increasing Compute Speed to 16 ops/s

What is the new run time?

Memory_time = 2s; Compute_time = 0.5s

 Total Time = max (2s, 0.5s)

● The total run time remains unchanged

For sufficiently large number of items:

● 4 items arrive at the processor per second at steady state
● The processor can do 16 ops every second
● The processor only does 4 ops (1 per item) every second
● 25% compute Utilization and 100% bandwidth utilization!
● Increasing compute speed does not improve performance.

16 ops/s

Memory

Processor

4 items/s

Peak Compute vs. Peak Bandwidth Mismatch

Increasing Memory Bandwidth to 8 items/s

What is the new run time?

Memory_time = 1s ; Compute_time = 1s

Total Time = max (1s, 1s) = 1s

The total run time reduces by 50%!

For sufficiently large number of items:

● 8 items arrive at the processor per second at steady state
● The processor can do 8 ops every second
● The processor only does 8 ops (1 per item) every second
● 100% compute and bandwidth utilization!

Lesson: Memory bandwidth is the main bottleneck and not compute
speed (Memory Bound).

8 ops/s

Memory

Processor

8 items/s

Peak Compute vs. Peak Bandwidth Mismatch

Suppose we now implement a new algorithm to run on this processor that does the
following:

● Load 4 items from memory to the processor.
● Compute 4 operations on each item
● Write output of all 4 items back to Memory

How much time does the implementation take to run?

Memory_time = 1s ; Compute_time = 2s

Total Time = max (1s, 2s) = 2s

For sufficiently large number of items:

● 4 items arrive at the processor per second at steady state
● Processor needs to do 16 ops (4 per item) per second
● Processor can only do 8 ops per second
● 100% compute; But only 50% bandwidth utilization!
 
Lesson: Compute is the main bottleneck and not memory bandwidth (Compute
Bound).

8 ops/s

Memory

Processor

4 items/s

Compute Bound vs. Bandwidth Bound

● Compute bound if Tmath > T mem

● Memory bound if Tmem > Tmath

● Tmath = Tmem =

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-execution

ops

Compute Bandwidth

bytes accessed

Memory Bandwidth

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-execution

Compute Bound vs. Bandwidth Bound

● Compute Bound:

● Memory Bound:

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-execution

ops

Memory Bandwidth # bytes accessed
Compute Bandwidth

>

ops

Memory Bandwidth # bytes accessed
Compute Bandwidth

<

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-execution

Arithmetic (Operational) Intensity

● Sometimes referred to as operational intensity

● How many operations we perform for each byte moved from memory

Number Of Bytes To and From Memory 
(Write + Read)

Arithmetic Intensity = Total Number Of Operations

Compute Bandwidth to Memory Bandwidth Ratio

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

The A100, a currently-popular GPU
from NVidia supports:

● 1,935 GB/s memory bandwidth
● 312 TFLOPS for FP16

(compute bandwidth)

Peak FLOPS (compute bandwidth)
to memory bandwidth:

= (312 TFLOPS)/(1,935 GB/s)

= 161 (FLOPs/Byte)

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

We can compute the arithmetic intensity of common algorithms…

Example: Matrix Multiplication

Compute

The matrix C has N x M entries, and each is obtained by taking the dot product of
vectors (Ai, Bj) of dimension K

Dot product is K additions and K multiplications, totalling 2K FLOPs:

Cij = Ai1B1j + … + AikBkj
 

For every element in C, we perform:
 k multiplications (one for each term in the sum)
 k−1 additions (to sum up the products)
 Roughly, 2K FLOPS

The total number of FLOPs for matmul is: 2MNK

B
(KxM)

A
(NxK)

C
(N x M)

Example: Matrix Multiplication

Memory

I/O includes:

● Read A: N x K
● Read B: K x M
● Write to C: N x M

Suppose each value is in FP16, i.e. 2 bytes.

Total byte accesses: 2 bytes * (K x M + N x K + N x M)

B
(KxM)

A
(NxK)

C
(N x M)

Example: Matrix Multiplication

The total number of FLOPs for matmul is: 2MNK

The total number of byte accesses is: 2 (K x M + N x K + N x M)

So:

Arithmetic Intensity of MatMul = (2 MNK)/(2 (KM + NK + NM))

Example: Matrix Multiplication

We saw the A100’s arithmetic ratio is 161 FLOPs/Byte

If M = K = 8192, N = 128: (2 MNK) / (2 (KM + NK + NM)) = 124.1

Here 124.1 < 161 so we are memory bound.

Example: Matrix Multiplication

We saw the A100’s arithmetic ratio is 161 FLOPs/Byte

If M = K = 8192, N = 128: (2 MNK) / (2 (KM + NK + NM)) = 124.1

Here 124.1 < 161 so we are memory bound.

If M = K = N = 8192: (2 MNK) / (2 (KM + NK + NM)) = 2730.6

Here 2730.6 > 161 so we are compute bound.

Roofline Diagrams

https://en.wikipedia.org/wiki/Roofline_model

Operational Intensity:
FLOPs/Byte

Performance: GFLOPs

https://en.wikipedia.org/wiki/Roofline_model

Simple Principles for High Performance

Simple Principles For Achieving High Performance

We want to make maximum use of compute and bandwidth capability of our device.

● Fusion
○ Save trips to/from memory by performing composite operations on data on processing units.

● Parallelization
○ Expose as much work as possible to saturate all parallel processing units.

● Blocking/Tiling
○ Assign tiles/blocks of work to parallel processing units to exploit as much locality as possible.

● Caching Vs Recomputation
○ For compute bound workloads, it makes sense to cache, for memory bound workloads it makes sense to

recompute.
● Pipelining

○ Overlap computation with memory reads/writes to avoid stalls.
● Hardware Specific Optimizations

○ Intrinsics, New instructions, etc.

Simple Principles For Achieving High Performance

We want to make maximum use of compute and bandwidth capability of our device.

● Fusion
○ Save trips to/from memory by performing composite operations on data on processing units.

● Parallelization
○ Expose as much work as possible to saturate all parallel processing units.

● Blocking/Tiling
○ Assign tiles/blocks of work to parallel processing units to exploit as much locality as possible.

● Caching Vs Recomputation
○ For compute bound workloads, it makes sense to cache, for memory bound workloads it makes sense to

recompute.
● Pipelining

○ Overlap computation with memory reads/writes to avoid stalls.
● Hardware Specific Optimizations

○ Intrinsics, New instructions, etc.

Fusion

Memory

f(x) g(x)

Memory

f(x) g(x)

 Input - Fusion prevents unnecessary trips to
memory
 Intermediate output - This is critically for memory bound applications
 Output

Processor Processor

Fusion for attention

FlashAttention: Fast and Memory-
Efficient Exact Attention with IO-

Awareness

Q K V

Mat. Mul.

Scale

Causal
Mask

Softmax

Matmul

https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135

Simple Principles For Achieving High Performance

We want to make maximum use of compute and bandwidth capability of our device. Solve useful techniques to achieve
this:

● Fusion
○ Save trips to/from memory by performing composite operations on data on processing units.

● Parallelization
○ Expose as much work as possible to saturate all parallel processing units.

● Blocking/Tiling
○ Assign tiles/blocks of work to parallel processing units to exploit as much locality as possible.

● Caching Vs Recomputation
○ For compute bound workloads, it makes sense to cache, for memory bound workloads it makes sense to

recompute.
● Pipelining

○ Overlap computation with memory reads/writes to avoid stalls.
● Hardware Specific Optimizations

○ Intrinsics, New instructions, etc.

Parallelization

● An A100 Tensor core GPU has 108 Streaming
Multiprocessors (https://developer.nvidia.com/blog/nvidia-
ampere-architecture-in-depth/)

● We would like to make sure that each SM has as much
work as possible!

● We can parallelize across the output.

● We need at least 108 output items for all Streaming
Multiprocessors to be in use on the A100!

B
(KxN)

A
(MxK)

C
(N x M)

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Blocking/Tiling: Matrix Multiplication (Naive)

Consider a naive implementation where each thread computes a
single value in the output C.

Compute:

Dot product of a row of A and a column of B (2K total FLOPS)

Memory:

● Read a row of A and column of B
● Write a single element of C
● Suppose each value is in FP16, i.e. 2 bytes.

Total byte accesses: 2(2K + 1)

Arithmetic intensity = 2k / (2(2k + 1))!!

B
(KxN)

A
(MxK)

C
(N x M)

Blocking/Tiling: Matrix Multiplication (1D-Tiling)

In a 1D tiling version, each thread computes a tile two items in the
output C.

Compute:

Dot product of a row of A and 2 columns of B (4K total FLOPS)

Memory:

● Read a row of A and 2 columns of B
● Write 2 elements of C
● Suppose each value is in FP16, i.e. 2 bytes.

Total byte accesses: 2(3K + 2)

Arithmetic intensity = 4k / ((3k + 2))!!

B
(KxN)

A
(MxK)

C
(N x M)

Blocking/Tiling: Matrix Multiplication (2D-Tiling)

In a 2D tiling version, each thread computes a 2D tile of the output C.

Compute:

Dot product of 2 rows of A and 2 columns of B (8K total FLOPS)

Memory:

● Read 2 rows of A and 2 columns of B
● Write a 2x2 tile of elements of C
● Suppose each value is in FP16, i.e. 2 bytes.

Total byte accesses: 2(4K + 2*2)

Arithmetic intensity = 8k / (2(4k + 2*2))!!

B
(KxN)

A
(MxK)

C
(N x M)

Simple Principles For Achieving High Performance

We want to make maximum use of compute and bandwidth capability of our device.

● Fusion
○ Save trips to/from memory by performing composite operations on data on processing units.

● Parallelization
○ Expose as much work as possible to saturate all parallel processing units.

● Blocking/Tiling
○ Assign tiles/blocks of work to parallel processing units to exploit as much locality as possible.

● Caching Vs Recomputation
○ For compute bound workloads, it makes sense to cache, for memory bound workloads it makes sense to

recompute.
● Pipelining

○ Overlap computation with memory reads/writes to avoid stalls.
● Hardware Specific Optimizations

○ Intrinsics, New instructions, etc.

Given the current prompt sequence, the model predicts the next word:

Caching vs Recomputaton: Autoregressive Generation

Transformer

P(t0 | t21, t10, t5)

Prefix

Probability distribution over
vocabulary of size |V|

Sampling

P(t1 | t21, t10, t5)

P(t2 | t21, t10, t5)

P(t|v| | t21, t10,
t5)

P(t3 | t21, t10, t5)

P(t4 | t21, t10, t5)

P(t5 | t21, t10, t5)

Predicted
Token

I
Am
very

Embedding

happy

:

t2

1t1

0
t5

Token ID

t1

3

dmodel

Given the current prompt sequence, the model predicts the next word:

Caching vs Recomputaton: Autoregressive Generation

Transformer

P(t0 | t21, t10, t5,
t13)

Prefix

Probability distribution over
vocabulary of size |V|

Sampling

P(t1 | t21, t10, t5,
t13)P(t2 | t21, t10, t5,
t13)

P(t|v| | t21, t10, t5,
t13)

P(t3 | t21, t10, t5,
t13)P(t4 | t21, t10, t5,
t13)P(t5 | t21, t10, t5,
t13)

Predicted
Token

I
Am
very

Embedding

to

:

t2

1t1

0
t5

Token ID

t1

dmodel

t1

3
happy

Given the current prompt sequence, the model predicts the next word:

Caching vs Recomputaton: Autoregressive Generation

Transformer

P(t0 | t21, t10, t5, t13, t1)

Prefix

Probability distribution over
vocabulary of size |V|

Sampling

P(t1 | t21, t10, t5, t13, t1)

P(t2 | t21, t10, t5, t13, t1)

P(t|v| | t21, t10, t5, t13, t1)

P(t3 | t21, t10, t5, t13, t1)

P(t4 | t21, t10, t5, t13, t1)

P(t5 | t21, t10, t5, t13, t1)

Predicted
Token

I
Am
very

Embedding

be

:

t2

1t1

0
t5

Token ID

t3

dmodel

t1

3
happy

to t1

Prompt

I
Am
very

Embedding

t2

1t1

0
t5

Token ID

dmodel

WV

WK

WQ

dmodel

d m
od

el

V

K

Q

Matrix
 M

atrix
 M

ultip
ly

Matrix Matrix Multiply

Matrix Matrix Multiply

dmodel

First we compute
attention scores using
the input prompt
tokens.

We obtain our Q, K, V
vectors for each token
embedding.

Attention Layer During Autoregressive Generation

Prompt

I
Am
very

Embedding

t2

1t1

0
t5

Token ID

dmodel

WV

WK

V

KMatrix
 M

atrix
 M

ultip
ly

Matrix Matrix Multiply

dmodel

WQ

dmodel

d m
od

el

QVector Matrix Multiply

dmodel

happy
t1

3

happy
t1

3

Now we want to
compute the next set of
probabilities,
conditioned on the new
sequence:

P(ti | t21, t10, t5, t13) = ?

Attention Layer During Autoregressive Generation

Prompt

I
Am
very

Embedding

t2

1t1

0
t5

Token ID

dmodel

WV

WK

V

KMatrix
 M

atrix
 M

ultip
ly

Matrix Matrix Multiply

dmodel

WQ

dmodel

d m
od

el

QVector Matrix Multiply

dmodel

to t9

happy
t1

3

Now we want to
compute the next set of
probabilities,
conditioned on the new
sequence:

P(ti | t21, t10, t5, t13, t9) = ?

Attention Layer During Autoregressive Generation

to t9

Attention FLOPS

For each token we generate (N = sequence length so far):

1. Computing K, V for the full sequence: 2x(2Nd2)
2. Computing Q for our current token: (2d2)
3. Multiplying S = QKT: (2Nd)
4. Letting A = Softmax(S) , multiplying AV: (2Nd)

But there’s a ton of repeated processing if we generate one token at a time…

KV Caching for Autoregressive Models

Key idea: the keys (K) and values (V) for the pre-existing tokens in the sequence are not changing – their
values are only impacted by the tokens that come before them — so we can reuse them every time we
sample a new token.

For each token we generate, letting N be the length of the current sequence:

1. Computing K, V for the full sequence: 2x(2Nd2)
2. Computing K, Q, V for our current token: 3x(2d2)
3. Multiplying S = QKT: (2Nd)
4. Letting A = Softmax(S) , multiplying AV: (2Nd)

Attention Layer During Autoregressive Generation

Prompt

I

Am

very

Embedding

t2
1t1
0
t5

Token ID

dmodel

WV

WK

WQ

dmodel
d m

od
el

V

K

Q

Matr
ix

Matr
ix

Multip
ly

Matrix Matrix Multiply

Matrix Matrix Multiply

dmodel

V

K

KV Cache

Update kv cache

Update kv cache

Attention Layer During Autoregressive Generation

WV

WK

WQ

dmodel
d m

od
el

V

K

Q

Vec
tor M

atr
ix

Multip
ly

Vector Matrix Multiply

Vector Matrix Multiply

dmodel

to t9

V

K

KV Cache

V

K

KV Cache

Update kv cache

Update kv cache

Simple Principles For Achieving High Performance

We want to make maximum use of compute and bandwidth capability of our device.

● Fusion
○ Save trips to/from memory by performing composite operations on data on processing units.

● Parallelization
○ Expose as much work as possible to saturate all parallel processing units.

● Blocking/Tiling
○ Assign tiles/blocks of work to parallel processing units to exploit as much locality as possible.

● Caching Vs Recomputation
○ For compute bound workloads, it makes sense to cache, for memory bound workloads it makes sense to

recompute.
● Pipelining

○ Overlap computation with memory reads/writes to avoid stalls.
● Hardware Specific Optimizations

○ Intrinsics, New instructions, etc.

DPX

 DPX Instructions accelerate dynamic programming algorithms by up to 7x over the A100 GPU.

 Examples:
Smith-Waterman algorithm for genomics processing
 
Floyd-Warshall algorithm used to find optimal routes

for a fleet of robots through a dynamic warehouse environment.

DSM

NVIDIA H100 Spacial Locality Thread Block Clusters - ServeTheHome

https://www.servethehome.com/nvidia-h100-hopper-details-at-hc34-as-it-waits-for-next-gen-cpus/nvidia-h100-spacial-locality-thread-block-clusters/
https://www.servethehome.com/nvidia-h100-hopper-details-at-hc34-as-it-waits-for-next-gen-cpus/nvidia-h100-spacial-locality-thread-block-clusters/
https://www.servethehome.com/nvidia-h100-hopper-details-at-hc34-as-it-waits-for-next-gen-cpus/nvidia-h100-spacial-locality-thread-block-clusters/
https://www.servethehome.com/nvidia-h100-hopper-details-at-hc34-as-it-waits-for-next-gen-cpus/nvidia-h100-spacial-locality-thread-block-clusters/

