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What is Moore’s Law?
CPU performance will double every two 
years, following the pattern predicted by 
Moore's Law.

Chip performance is expected to double 
every two years, highlighting ongoing 
enhancements in microchip technology.

The speed of transistors will double 
every two years, contributing to faster 
processing capabilities.

Transistors will shrink to half their size 
every two years, allowing for more 
compact and efficient designs.

Gate width will shrink every two years, 
enabling more transistors to fit on a chip.

The number of transistors per die will 
double every two years, boosting 
computational power.
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Number of transistors has been doubling



Moore’s (Performance) Law

[Leiserson et al., There's Plenty of Room at the Top, Science]
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L10-28
The End of Historic Scaling

[Leiserson et al., There's Plenty of Room at the Top, Science]

Sze and Emer

Voltage scaling slowed down  Power density increasing!



During the Moore + Dennard’s Law Era

• Instruction-level parallelism (ILP) was largely mined out by early 2000s 

• Voltage (Dennard) scaling ended in 2005 

• Hit the power limit wall in 2005 

• Performance is coming from parallelism using more transistors since ~2007 

• But….



Moore’s Law in DRAMs

Image source: John Hennessy

After multi-core, specialization (i.e., accelerators) seems to be 
the most attractive architectural option to cope with the end of Moore’s Law



The High Cost of Data Movement

Fetching operands more expensive than computing on them

Image source: Bill Dally 
Data movement energy comparison among memory hierarchies [14] | Download Scientific Diagram

Now the key is how we use our transistors most effectively.

https://www.researchgate.net/figure/Data-movement-energy-comparison-among-memory-hierarchies-14_fig5_328091476


Accelerator Design Attributes

• Integration into system 
– How is the accelerator integrated into the system? 

• Operation specification/sequencing 
– How is activity managed within the accelerator? 

• Data management 
– How is data movement orchestrated in the accelerator?



System Integration
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Accelerator Integration Taxonomy
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Accelerator Architectural Choices

• State 
– Local state – Is there local state? (i.e. context)
– Global state – e.g., main memory shared with CPU

• Data Operations 
– Custom data operations in the accelerator 

• Memory Access Operations 
– Operations to access shared global memory – 

• Control Flow Operations

Do they exist?

– How is accelerator sequenced relative to CPU?



How to Sequence Accelerator Logic?

• Synchronous 
– Accelerated operations inside processor pipeline 

• E.g., as a separate function unit 
– Control handled by standard control instructions 

• Asynchronous 
– A standalone logical machine 

• Accelerator started by processor that continues running

What factors mitigate for one form 
or the other?

Latency of operation 
Existence of concurrent activity 
Size of logic and operands



Eight Alternatives
Architectural semantics

Asynchronous Access 
memory

Has 
context

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Characteristics of “no 
memory access” choice?

Good for smaller operands 
Simpler, e.g., no virtual memory 

No ‘Little’s Law’ storage requirement



Eight Alternatives
Architectural semantics

Asynchronous Accesses 
memory

Has context

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Characteristics of “no 
context” choice?

Simpler, no context switch mechanism 
Long operations run to completion More 
limited reuse opportunities



	 Accelerator Architectural Alternatives	
Architectural semantics

ExampleAsynchronous Accesses 
memory

Has 
context

0 0 0 New function unit, like tensor core in GPU

0 0 1 Accumulating data reduction instruction

0 1 0 Memory-to-memory vector unit

0 1 1 Register-based vector unit including load store ops

1 0 0 Complex function calculator?

1 0 1 Security co-processor (TPM)

1 1 0 Network adapter

1 1 1 GPU with virtual memory



Operation Sequencing
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Multiprocessor
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L3 L3

Memory (DRAM)

Inter-processing element 
communication is through 
cache hierarchy



Highly-Parallel Compute Paradigms
Temporal Architecture 

(SIMD/SIMT)
Spatial Architecture 

(Dataflow Processing)
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Spatial Architecture for DNN

Processing 
Element (PE)

Global Buffer (100 –  500 kB)
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DRAM
Local Memory Hierarchy 
• Global Buffer 
• Direct inter-PE network 
• PE-local memory (RF)

Control

Reg File 0.5 –  1.0 kB



Accelerator Taxonomy
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Accelerator Taxonomy
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Field Programmable Gate Arrays
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Configurable Logic Blocks (CLB)
• CLB used to implement sequential and combinational logic 
• CLB are comprised of several Basic Logic Elements (BLE) 
• Each BLE contains: 

– Look up tables (LUT) are used to implement logic function 
– Registers to store data 
– Multiplexer to select desired output

As number of inputs grow (k), increase size of LUT by 2^k and routing

Kuon, Ian, Russell Tessier, and Jonathan Rose. ”FPGA architecture: Survey and challenges." Foundations and Trends in Electronic Design 
Automation 2.2 (2008): 135-253.



Area Trade-off (Size of LUT)

LUT Size (inputs)
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Kuon, Ian, Russell Tessier, and Jonathan Rose. ”FPGA architecture: Survey and challenges." Foundations and Trends in Electronic Design 
Automation 2.2 (2008): 135-253.

As functionality increases, fewer blocks 
are required, but block size increases 
and fewer blocks per area



Size of LUT (Speed Trade-off)
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Kuon, Ian, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and Trends in Electronic Design 
Automation 2.2 (2008): 135-253.

As functionality increases, fewer blocks 
are in critical path, fewer logic levels 
and inter-block routing, but internal 
delay increases



Microsoft Project Catapult
Configurable Cloud (MICRO 2016) for Azure

Accelerate and reduce latency for 
• Bing search 
• Software defined network 
• Encryption and Decryption



Microsoft Brainwave Neural Processor

Source: Microsoft



Heterogeneous Blocks

• Add specific purpose logic on FPGA 
– Efficient if used (better area, speed, power), wasted if not 

• Soft fabric 
– LUT, flops, addition, subtraction, carry logic 
– Convert LUT to memories or shift registers 

• Memory block (BRAM) 
– Configure word and address size (aspect ratio) 
– Combine memory blocks to large blocks 
– Significant part for FPGA area 
– Dual port memories (FIFO) 

• Multipliers /MACs  DSP 

• CPUs and processing elements
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Programmable Accelerators

Many Programmable Accelerators look like an array of 
PEs, but have dramatically different architectures, 

programming models and capabilities

PE PEPE PE

PE PEPE PE

PE PEPE PE

PE PEPE PE

Processing 
Element

... ... ... ...
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Fixed Operation - Systolic Array
• Each PE hard-wired to one operation 
• Purely pipelined operation 

– no backpressure in pipeline 

• Attributes 
– High-concurrency 
– Regular design, but 
– Regular parallelism only!



Configurable Systolic Array - WARP

Source: WARP Architecture and Implementation, ISCA 1986



Fixed Operation - Google TPU

Systolic array does 8-bit 256x256 matrix-multiply accumulate
Source: Google

accelerates matrix multiplications, reducing data movement and maximizing throughput.

Where is TPU Used?

Google AI workloads 
(e.g., Google Search, Translate, Photos)

TensorFlow-based models (TPUs are optimized for TensorFlow)

Large-scale deep learning training and inference
 (e.g., BERT, Vision Transformers)
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Single Configured Operation - Dyser

Source: Dynamically Specialized Datapaths for Energy Efficient Computing. HPCA11



Dyser Architecture Overview

Dyser can dynamically reconfigure its 
execution units to match different 
computational tasks, focusing on specific 
workloads like matrix multiplications, 
convolutions, or encryption.

Contains a network of small execution 
units (e.g., ALUs or Multiply-Accumulate 
units) that can connect dynamically to 
form larger computational structures.

Dyser accelerates tasks such as matrix 
multiplications, convolutions, or 
encryption by tailoring its execution units.

The execution units in Dyser provide 
flexibility, dynamically connecting to 
perform complex operations efficiently, 
optimizing resource use.

Dyser is tightly coupled with a 
conventional CPU pipeline and acts as a 
co-processor, offloading computation-
heavy tasks from the main processor.

By acting as a co-processor, Dyser 
alleviates the main processor's workload, 
enhancing system performance and 
efficiency.

Coarse-Grained Reconfigurability Acceleration of Specific Workloads Integration with CPU Pipeline

Offloading Computation TasksFunctional Unit FlexibilityNetwork of Execution Units



Dyser

41

Efficient Dataflow Processing: 

The architecture is optimized for dataflow computing, meaning it minimizes unnecessary data movement.  

Reduces memory access overhead, improving energy efficiency.  

Application-Specific Speedup: 

Dyser provides significant speedup for workloads like:  
•Cryptography (AES, SHA)  
•Signal Processing (FFT, DCT)  
•Machine Learning (Matrix operations)  
•Scientific Computing (Graph algorithms, Linear Algebra) 
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PC-based Control – Wave Computing


