
EECS 570
Lecture 17
Accelerators - Intro

Winter 2025
Prof. Satish Narayanasamy
http://www.eecs.umich.edu/co4urses/eecs570/

Slides adapted from instructional material from Joel Emer and Vivienne Sze (MIT)

What is Moore’s Law?
CPU performance will double every two
years, following the pattern predicted by
Moore's Law.

Chip performance is expected to double
every two years, highlighting ongoing
enhancements in microchip technology.

The speed of transistors will double
every two years, contributing to faster
processing capabilities.

Transistors will shrink to half their size
every two years, allowing for more
compact and efficient designs.

Gate width will shrink every two years,
enabling more transistors to fit on a chip.

The number of transistors per die will
double every two years, boosting
computational power.

CPU
Performance

Chip
Performance

Transistor
Speed

Transistor Size

Gate Width

Transistors Per
Die

Moore’s (Transistor) Law
1.00E+10

1.00E+09

1.00E+08

1.00E+07

1.00E+06

1.00E+05

1.00E+04

1.00E+03

1970 1975 1980 1985 1995 2000 2005 2010

1O

9

8

7

6

5

4

3

lo
g 1

O
(t
ra

ns
is
to
rs
)

Intel processor chips

1990

Year
[Moore, Progress in digital integrated electronics, IEDM 1975]

Number of transistors has been doubling

Moore’s (Performance) Law

[Leiserson et al., There's Plenty of Room at the Top, Science]

March 6, 2024

L10-28
The End of Historic Scaling

[Leiserson et al., There's Plenty of Room at the Top, Science]

Sze and Emer

Voltage scaling slowed down  Power density increasing!

During the Moore + Dennard’s Law Era

• Instruction-level parallelism (ILP) was largely mined out by early 2000s

• Voltage (Dennard) scaling ended in 2005

• Hit the power limit wall in 2005

• Performance is coming from parallelism using more transistors since ~2007

• But….

Moore’s Law in DRAMs

Image source: John Hennessy

After multi-core, specialization (i.e., accelerators) seems to be
the most attractive architectural option to cope with the end of Moore’s Law

The High Cost of Data Movement

Fetching operands more expensive than computing on them

Image source: Bill Dally
Data movement energy comparison among memory hierarchies [14] | Download Scientific Diagram

Now the key is how we use our transistors most effectively.

https://www.researchgate.net/figure/Data-movement-energy-comparison-among-memory-hierarchies-14_fig5_328091476

Accelerator Design Attributes

• Integration into system
– How is the accelerator integrated into the system?

• Operation specification/sequencing
– How is activity managed within the accelerator?

• Data management
– How is data movement orchestrated in the accelerator?

System Integration

11

L10-34
Accelerator Integration Taxonomy

Accel

Inst cache

Decod
e

Core
Core

Core
CoreCore Core

Acce
l

Chi
p

Accel

Credit: Angshuman Parashar

Accelerator Architectural Choices

• State
– Local state – Is there local state? (i.e. context)
– Global state – e.g., main memory shared with CPU

• Data Operations
– Custom data operations in the accelerator

• Memory Access Operations
– Operations to access shared global memory –

• Control Flow Operations

Do they exist?

– How is accelerator sequenced relative to CPU?

How to Sequence Accelerator Logic?

• Synchronous
– Accelerated operations inside processor pipeline

• E.g., as a separate function unit
– Control handled by standard control instructions

• Asynchronous
– A standalone logical machine

• Accelerator started by processor that continues running

What factors mitigate for one form
or the other?

Latency of operation
Existence of concurrent activity
Size of logic and operands

Eight Alternatives
Architectural semantics

Asynchronous Access
memory

Has
context

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Characteristics of “no
memory access” choice?

Good for smaller operands
Simpler, e.g., no virtual memory

No ‘Little’s Law’ storage requirement

Eight Alternatives
Architectural semantics

Asynchronous Accesses
memory

Has context

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Characteristics of “no
context” choice?

Simpler, no context switch mechanism
Long operations run to completion More
limited reuse opportunities

	 Accelerator Architectural Alternatives	
Architectural semantics

ExampleAsynchronous Accesses
memory

Has
context

0 0 0 New function unit, like tensor core in GPU

0 0 1 Accumulating data reduction instruction

0 1 0 Memory-to-memory vector unit

0 1 1 Register-based vector unit including load store ops

1 0 0 Complex function calculator?

1 0 1 Security co-processor (TPM)

1 1 0 Network adapter

1 1 1 GPU with virtual memory

Operation Sequencing

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

CPU
 GPU

Multiprocessor

L2 L2 L2 L2

L3 L3

Memory (DRAM)

Inter-processing element
communication is through
cache hierarchy

Highly-Parallel Compute Paradigms
Temporal Architecture

(SIMD/SIMT)
Spatial Architecture

(Dataflow Processing)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Spatial Architecture for DNN

Processing
Element (PE)

Global Buffer (100 – 500 kB)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

DRAM
Local Memory Hierarchy
• Global Buffer
• Direct inter-PE network
• PE-local memory (RF)

Control

Reg File 0.5 – 1.0 kB

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

FPGA
TRIPS
WaveScalar
DySER TTA

RAW
AsAP
P i c o C h i p

T r i g g e r e d
Instructions

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

FPGA

Field Programmable Gate Arrays

LUT
Latch

RAM
.....

And
00 0

01 0

10 0

11 1

Or

00 0

01 0

10 1

11 1

Look Up Table (LUT)

Configurable Logic Blocks (CLB)
• CLB used to implement sequential and combinational logic
• CLB are comprised of several Basic Logic Elements (BLE)
• Each BLE contains:

– Look up tables (LUT) are used to implement logic function
– Registers to store data
– Multiplexer to select desired output

As number of inputs grow (k), increase size of LUT by 2^k and routing

Kuon, Ian, Russell Tessier, and Jonathan Rose. ”FPGA architecture: Survey and challenges." Foundations and Trends in Electronic Design
Automation 2.2 (2008): 135-253.

Area Trade-off (Size of LUT)

LUT Size (inputs)

A
re

a/
B

LE

N
um

be
r o

f B
LE

Kuon, Ian, Russell Tessier, and Jonathan Rose. ”FPGA architecture: Survey and challenges." Foundations and Trends in Electronic Design
Automation 2.2 (2008): 135-253.

As functionality increases, fewer blocks
are required, but block size increases
and fewer blocks per area

Size of LUT (Speed Trade-off)

B
LE

 in
 c

rit
ic

al
 p

at
h

D
el

ay
 o

f B
LE

LUT Size (inputs)

Kuon, Ian, Russell Tessier, and Jonathan Rose. "FPGA architecture: Survey and challenges." Foundations and Trends in Electronic Design
Automation 2.2 (2008): 135-253.

As functionality increases, fewer blocks
are in critical path, fewer logic levels
and inter-block routing, but internal
delay increases

Microsoft Project Catapult
Configurable Cloud (MICRO 2016) for Azure

Accelerate and reduce latency for
• Bing search
• Software defined network
• Encryption and Decryption

Microsoft Brainwave Neural Processor

Source: Microsoft

Heterogeneous Blocks

• Add specific purpose logic on FPGA
– Efficient if used (better area, speed, power), wasted if not

• Soft fabric
– LUT, flops, addition, subtraction, carry logic
– Convert LUT to memories or shift registers

• Memory block (BRAM)
– Configure word and address size (aspect ratio)
– Combine memory blocks to large blocks
– Significant part for FPGA area
– Dual port memories (FIFO)

• Multipliers /MACs  DSP

• CPUs and processing elements

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA

Triggered
Instructions

RAW

PicoChip

TRIPS

WaveScalar AsAP
DySER
TTA

Programmable Accelerators

Many Programmable Accelerators look like an array of
PEs, but have dramatically different architectures,

programming models and capabilities

PE PEPE PE

PE PEPE PE

PE PEPE PE

PE PEPE PE

Processing
Element

...

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

FPGA

Fixed-operation

TPU
NVDLA

Fixed Operation - Systolic Array
• Each PE hard-wired to one operation
• Purely pipelined operation

– no backpressure in pipeline

• Attributes
– High-concurrency
– Regular design, but
– Regular parallelism only!

Configurable Systolic Array - WARP

Source: WARP Architecture and Implementation, ISCA 1986

Fixed Operation - Google TPU

Systolic array does 8-bit 256x256 matrix-multiply accumulate
Source: Google

accelerates matrix multiplications, reducing data movement and maximizing throughput.

Where is TPU Used?

Google AI workloads
(e.g., Google Search, Translate, Photos)

TensorFlow-based models (TPUs are optimized for TensorFlow)

Large-scale deep learning training and inference
 (e.g., BERT, Vision Transformers)

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

W A R P
DySER
TRIPS

WaveScalar
TTA

Configured-operation

FPGA

Fixed-operation
TPU

NVDLA

Single Configured Operation - Dyser

Source: Dynamically Specialized Datapaths for Energy Efficient Computing. HPCA11

Dyser Architecture Overview

Dyser can dynamically reconfigure its
execution units to match different
computational tasks, focusing on specific
workloads like matrix multiplications,
convolutions, or encryption.

Contains a network of small execution
units (e.g., ALUs or Multiply-Accumulate
units) that can connect dynamically to
form larger computational structures.

Dyser accelerates tasks such as matrix
multiplications, convolutions, or
encryption by tailoring its execution units.

The execution units in Dyser provide
flexibility, dynamically connecting to
perform complex operations efficiently,
optimizing resource use.

Dyser is tightly coupled with a
conventional CPU pipeline and acts as a
co-processor, offloading computation-
heavy tasks from the main processor.

By acting as a co-processor, Dyser
alleviates the main processor's workload,
enhancing system performance and
efficiency.

Coarse-Grained Reconfigurability Acceleration of Specific Workloads Integration with CPU Pipeline

Offloading Computation TasksFunctional Unit FlexibilityNetwork of Execution Units

Dyser

41

Efficient Dataflow Processing:

The architecture is optimized for dataflow computing, meaning it minimizes unnecessary data movement.

Reduces memory access overhead, improving energy efficiency.

Application-Specific Speedup:

Dyser provides significant speedup for workloads like:
•Cryptography (AES, SHA)
•Signal Processing (FFT, DCT)
•Machine Learning (Matrix operations)
•Scientific Computing (Graph algorithms, Linear Algebra)

Accelerator Taxonomy
Accelerator
Architecture

Temporally
Programmed

Spatially
Programmed

CPU
GPU

Fine (logic)
Grained

Coarse (ALU)
Grained

Wave
R A W
AsAP

PicoChip

PC-based

W A R P
DySER
TRIPS

WaveScalar
TTA

Configured-operation

FPGA

Fixed-operation
TPU

NVDLA

PC-based Control – Wave Computing

