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Institutional partners
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DNA Sequencing

5
3/24/2025 Tim Dunn

CAGAGCTATCTAGCGACTATTATATCGTATATAGC

Cleveland Clinic. “DNA, Genes, and Chromosomes”, 2022.
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Exploding Applications

Cancer
Antibiotic 
resistance

Liquid Biopsy 

Pathogen 
detection

Agriculture Food Safety 

Pandemic 
prevention

Precision health

Human

WGS
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https://www.genome.gov/genetics-glossary/DNA-Sequencing


Dunn and Sadasivan et al.       SquiggleFilter:  An Accelerator for Portable Virus Detection                        University of Michigan

DNA Sequencing: Long reads are the future

93/24/2025 Tim Dunn

Chromosome: 50 to 300 Million bases
CAGAGCTATCTAGCGACTATTATATCGTATATAGCCTATTATATCGTATATAGCTTATATCGTATATAGC

Short Reads: 100 - 1,000 bases TAATATCG
• inexpensive
• currently dominate the market
• 99.9% accurate

Long Reads: 1,000 - 1,000,000 bases​ AGCCTATTATATCGTATATAGCTTATATCGTATAT
• more expensive
• niche industry applications
• 90% -> 99.9% accurate

Illumina NovaSeq 
6000, 2021

3 Tbases/per day

$10-35 per Gb

$30-90 per Gigabase

400 bases/sec

per flow-cell
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Oxford Nanopore Sequencers
10

K. Goepfrich and K. Judge, "Decoding DNA with a pocket-sized sequencer," 2018.



Precision Health Platform

Electronic 

Health 

Records

Data Sources

Genome

Epigenome

Microbiome

Metabolome

Credits: Created from BioRender.com

Decision Support Tools

GATK 
Haplotype Caller

ATCGTGCAGTTT

CGTGAAG
GAAGTTT

ATCGTGA
CGTAAAGT

Variant Calling

Aligned reads

Reference genome

Big Data Analytics

Sequencing 

Analysis 

Clinical Decisions

Diagnosis and Prevention

Treatment and Management



Computing System Design Considerations
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Electronic 
Health 

Records

Data Sources

Genome
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GATK 
Haplotype Caller

ATCGTGCAGTTT

CGTGAAG
GAAGTTT
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Aligned reads

Reference genome

Big Data Analytics

Sequencing 
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Efficiency Security and Privacy Form Factor

$$$

Credits: Created from BioRender.com
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Homomorphic encryption, Intel SGX



CS Challenges and opportunities
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Abundant data parallelism

Irregular memory accesses; Memory bandwidth bound

Diverse constantly evolving kernels

Credits: Created from BioRender.com

Reference Genome

Read

Index table
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AACACAAACACACCTGACAGCGGACTACACAGGGTTT
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Highlights: Custom computing solutions for genomics

SillaX ASIC 
fabricated 
(55nm)

Pruning 
pairHMM ASIC 

(40nm)

Intra-operative cancer 
diagnosis

Pathogen detection

Whole Genome Sequencing 
(WGS)

Privacy

using trusted hardware



Nanopore Sequencing 
Lab at UM EECS

• Biosafety Level -2 Certification for tissue and RNA work

• Standard molecular biology equipment

• Small -20C freezer

• Enables tight coupling of informatics with nanopore sequencer



Whole 
Genome 
Sequencing



Acceleration Study: Whole Genome Sequencing
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Human Genome
6 G bases

ATCGTGCAGT
GTGCATCTAC

CAGTACATCG
ATCGTGCTAC

Sequenced reads 
(~billions)

ATCGTGCAGTTT

CGTGAAG
GAAGTTT

ATCGTGA
CGTAAAGT

Variant Calling

Aligned reads

Reference genome

DiagnosisRead Alignment

Reference genome

Read

Seed Extension

0 5 10 15

Baseline 13.9 hr (445 CPU hrs)
Time (hr)

m5.8xlarge
32 vCPUs Seeding Sorting / Mark Duplicates

pairHMM Other



Seeding: Memory Bandwidth Bottleneck

18

Problem 

Seeds

Seeding

Reference

Read

FM-index → widely used seeding data structure

FM-index

4.2 GB 

human!
Memory-

bandwidth 

bottleneck

[Subramanian et al. ISCA’21]



Seeding: ERT    [ISCA’21]

Problem 
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Read
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FM-index

4.2 GB 

human!
Memory-
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Results 

2.3x over BWA-MEM2      

   with SeedEx

Open-source: https://github.com/bwa-mem2/bwa-mem2/tree/ert
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https://github.com/bwa-mem2/bwa-mem2/tree/ert


ERT software integration with 
Broad Institute / Intel’s BWA-MEM 2
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BWA-MEM is the gold standard read aligner used worldwide



Read Alignment: SeedEx   [MICRO’20]
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Variant Calling: pairHMM Acceleration
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Pruning Algorithm
Pruning pairHMM 

ASIC (40nm)
Accelerator Architecture

fewer cells computed in precise floating point43x

8.3x higher throughput (GCUPS) than floating-point ASIC of the same area

Bit equivalent 

output

[VLSI Circuits’20]



Summary:
Accelerating Short-Read WGS
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0 5 10 15

Baseline

Time (hr)

m5.8xlarge
32 vCPUs

Seeding
Seed Extension

Sorting / Mark Duplicates
pairHMM Other

13.9 hr

2.5 hrFPGA system
f1.4xlarge

+ 16 vCPUs

~5.5x

ASIC system 1.9 hr

~1.3x

ERT integrated with 

Heng Li’s 

BWA-MEM2 open-source 



mm2-gb: GPU Accelerated Minimap2 
for Long Read DNA Mapping

Juechu Dong*1,  Xueshen Liu*1,  Harisankar Sadasivan2, Sriranjani 
Sitaraman2,  Satish Narayanasamy1

1.  University of Michigan  2.  AMD Inc. 

∗Both authors contributed equally to this research.

@BioSys Workshop’24
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Long Read Mapping is slow

Aligner / Mapper 

Illustrations: ClevaLab, Youtube *https://www.youtube.com/watch?v=WKAUtJQ69n8

/ reads

Sequencer

BWA-MEM <1kb
Minimap2 1kb-100kb

25

Illumina:  150b
PacBio:  15-
20kb
Oxford Nanopore 10-
100kb



Long Read Mapping is slow

Aligner / Mapper 

Illustrations: ClevaLab, Youtube *https://www.youtube.com/watch?v=WKAUtJQ69n8

/ reads

Challenging to map: 
Irregular, noisy, long Reads. 

Illumina:  150b
PacBio:  15-
20kb
Oxford Nanopore 10-
100kb

BWA-MEM <1kb
Minimap2 1kb-100kb

Sequencer

26

SOA, runs on CPU, 
slow. 



Accelerating minimap2 on GPU

Build / Load 

Ref Index

Load Query 

Sequence

Bases

Anchors
Score 

Generation

Range 

Selection

Ranges Back-

tracking

Optimal 

ScoresSeeding

Chaining

Base Level 

Alignment

Primary

Chains

Mapping 

Output 

(.paf)

Mapping 

Output 

(.sam)performed on GPU

Segment 

Cutting 

Split 

Kernels

Auto-Load 

Balancing

Our optimizations

Segments

27



mm2-gb offers 5.33x faster chaining

28
Read Length

No accuracy loss
Open sourced



Real-Time 
Pathogen 
Detection

Dunn et al. MICRO 2021

ACM/IEEE MICRO 
Top Picks Award Honorable Mention
Artifact badges



Viral Pandemics & Rise of Superbugs

Superbugs will kill more 
than cancer by 2050
 2019 UN report: “No Time To Wait”

Coronavirus Cases:
30,862,212

Deaths:
561,225

https://www.who.int/docs/default-source/documents/no-time-to-wait-securing-the-future-from-drug-resistant-infections-en.pdf?sfvrsn=5b424d7_6
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Custom primers time-consuming to

• Design

• Verify

• Manufacture

• Distribute

It Took Months For Mass COVID Testing Capabilities

31

nasal 

swab PCR +     -
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How can we be ready for the next pandemic?

Portable Virus Detector

• Digitally programmable using the target virus’s genome

distribute detectors
when novel pathogen is 

identified
digitally distribute 

pathogen’s genome

32
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MinION: Portable Nanopore Sequencer

• Recent-to-market

• Portable

• Fast (real-time)
• 512 sequencing channels

• 450 bases per second, each

• Relatively Low Cost

• Long Reads

[3] Jain et al. “Improved data analysis for the MinION nanopore sequencer”. Nature Methods, 2015. 33
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Portable Virus Detection

nasal swab sequence identify the 
variant

compare to 
reference

isolate DNA

ATTAAAGTT

ACGTT
ATTA

ATTAACGTT

[4] Tyson et al. “Improvements to the ARTIC multiplex PCR method for SARS-CoV-2 genome sequencing using nanopore”. bioRxiv, 2020. 34

https://www.google.com/url?sa=i&url=https%3A%2F%2Fpgc.up.edu.ph%2Findex.php%2Fservices%2Fdna-extraction%2F&psig=AOvVaw2ldShjXH9TRmZW6vdYstRw&ust=1611098250168000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKCSmJG6p-4CFQAAAAAdAAAAABAK
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Problem: >99% of a sample is non-viral DNA

[5] Greninger et al. “Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis”. 
Genome Medicine, 2015. 35
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Problem: >99% of a sample is non-viral DNA

• PCR amplification

[5] Greninger et al. “Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis”. 
Genome Medicine, 2015. 36
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Problem: >99% of a sample is non-viral DNA

• PCR amplification

• Sequencing

ACTTGGAC
CAGCGGC
TTAGCACCA
CACAATTGG
AGCCCGATAA
AACGTT
AATCGCA
GGAGAAACT

[5] Greninger et al. “Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis”. 
Genome Medicine, 2015. 37
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Solution: Read Until - skip sequencing non-viral reads

sequence

If not viral DNA, 
skip sequencing

potential sequencing and compute savings

[6] Payne et al. “Nanopore adaptive sequencing for mixed samples, whole exome capture, and targeted panels”. Nature Biotechnology, 2020. 38
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Challenge: Requires low latency computing

sequence potential sequencing and compute savings

decision latency actual savings

39
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Challenge: Requires high throughput computing

512 channels

40
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Challenge: Portability

Problem: No compute capability

Goal: Efficient data analysis for portable detection

41
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Read Until pipeline

squiggles bases

AC
GT

basecaller aligner

DNA

sequencer

decision

target virus
genome

99% filtered

1% virus
A

A

C A

A
C

C T TT
T
G

G G

[6] Payne et al. “Nanopore adaptive sequencing for mixed samples, whole exome capture, and targeted panels”. Nature Biotechnology, 2020. 42
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Read Until pipeline
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[6] Payne et al. “Nanopore adaptive sequencing for mixed samples, whole exome capture, and targeted panels”. Nature Biotechnology, 2020. 43
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[6] Payne et al. “Nanopore adaptive sequencing for mixed samples, whole exome capture, and targeted panels”. Nature Biotechnology, 2020. 44
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Read Until pipeline
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[6] Payne et al. “Nanopore adaptive sequencing for mixed samples, whole exome capture, and targeted panels”. Nature Biotechnology, 2020. 45
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Read Until pipeline
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[6] Payne et al. “Nanopore adaptive sequencing for mixed samples, whole exome capture, and targeted panels”. Nature Biotechnology, 2020. 46
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Read Until pipeline
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[6] Payne et al. “Nanopore adaptive sequencing for mixed samples, whole exome capture, and targeted panels”. Nature Biotechnology, 2020. 47
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Read Until pipeline
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[6] Payne et al. “Nanopore adaptive sequencing for mixed samples, whole exome capture, and targeted panels”. Nature Biotechnology, 2020. 48
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Read Until pipeline
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[6] Payne et al. “Nanopore adaptive sequencing for mixed samples, whole exome capture, and targeted panels”. Nature Biotechnology, 2020. 49
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Read Until pipeline
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[6] Payne et al. “Nanopore adaptive sequencing for mixed samples, whole exome capture, and targeted panels”. Nature Biotechnology, 2020. 50
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Read Until pipeline
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[6] Payne et al. “Nanopore adaptive sequencing for mixed samples, whole exome capture, and targeted panels”. Nature Biotechnology, 2020. 51
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Problem: Basecalling is compute-intensive

52

1% Virus 0.1% Virus

Dunn et al. “SquiggleFilter: an accelerator for portable virus detection”. MICRO, 2021.

3/24/2025 Tim Dunn
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Idea: Skip basecalling, align squiggles

squiggles bases

AC
GT

basecaller aligner

DNA

sequencer

decision

target virus
genome

99% filtered

1% virus

[7] Loose et al. “Real-time selective sequencing using nanopore technology”. Nature Methods, 2016. 53
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Contribution: Accelerated squiggle-level non-viral filter

squigglesDNA

sequencer

decision

target virus
genome

SquiggleFilter

Hardware accelerated
Dynamic Time 
Warping (DTW)

1% virus

99% filtered

54
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Filtering: Alignment Cost Threshold

55

Read Until: alignment cost < threshold?

NO YES

Eject Sequence

3/24/2025 Tim Dunn
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Results: SquiggleFilter Throughput

SARS-CoV-2

Reference: 29,970 bases
 NCBI Database

Sequence pathogens < 30 min
2,725x higher throughput/area



Ultra Rapid 
Cancer 
Diagnosis

Wadden et al.
Communications Biology 2022



Intra-operative sequencing for accurate cancer diagnostics

• Intra-operative histology can help 
guide surgical decision making and 
combine surgeries

• Histology is subjective, and does not 
contain molecular information

• Genetic information is becoming 
increasingly important for diagnosis 
and targeted, personalized treatment!

“For the first time, the WHO classification of CNS 

tumors uses molecular parameters in addition to 

histology to define many tumor entities, thus 

formulating a concept for how CNS tumor diagnoses 

should be structured in the molecular era.”

Frozen Section Histology can return a diagnosis in ~20-40 min

Can we sequence a tumor’s DNA within the intra-operative time frame? (i.e. <1hr)



How does a sequencing-based molecular diagnostic work?

PCR amplifies a small cancer gene target 
Amplified targets are sequenced to detect cancer mutation

Target amplification is the obvious bottleneck. How can we attack this?

0  0 20  0  0  0  0  0  0  0  00

  se ine
 r t c  

 i e   inutes 

      tr cti n   rget     i ic ti n Li r r   re  r ti n Se uencing  n   sis



Threshold Sequencing

Co-optimization allowed for a world-first demonstration of a sub-1 hour sequencing-based diagnostic

Co-optimize amplification time and sequencing time to minimize time-to-result

but target amplification is still a large bottleneck…

1) Build a model to estimate  
total diagnostic time

2) Augment model with 
experimentally derived parameters

3) Run diagnostic with final 
optimal parameters



Loop-Mediated Isothermal Amplification (LAMP) Technology

Benefits

• LAMP amplifies targets much more 
rapidly than PCR (14min vs 26min)

• LAMP generates concatemeric 
reads that contain redundant, and 
complementary information

We leverage LAMP’s rapid amplification 
and redundant information to further 
reduce diagnostic time

Downsides
• Difficult to analyze and reason 

about complex product

• No LAMP specific bioinformatics 
tools

https://doi.org/10.1016/j.trac.2019.01.015

N=6 concatemer

N=1 target



LAMPrey: a new bioinformatics tool to analyze 
and “polish” LAMP concatemer product

LAMPrey identifies concatemer 
“sub-reads” in noisy amplicons

Information from each sub-read can 
be combined to form a more 
confident base call (polishing) 
resulting in a more rapid and 
accurate diagnostic

LAMPrey is able to recover about 
50% more information than 
traditional informatics tools 



LAMPrey + Threshold Sequencing = <30min Sequencing-based Diagnostic

Experimentally informed 
LAMP diagnostic model

Final LAMP diagnostic result LAMPrey benefit

LAMPrey and other optimizations allowed for a world-first demonstration 
of a sub-30 minute sequencing-based diagnostic

Open source: https//www.github.com/jackwadden/lamprey



LAMPrey + Threshold Sequencing = <30min Sequencing-based Diagnostic

LAMPrey and other optimizations allowed for a world-first demonstration 
of a sub-30 minute sequencing-based diagnostic

Sets record for fastest time-to-result



vcfDist – 
A new tool to 
analyze 
variant callers

Dunn and Narayanasamy

Nature Communications 2023



Which variant caller is better?

Many ways to represent adjacent variants

(SNP <-> INDEL)

Challenge:

Same sequencing output (query)

with different representation (w.r.t reference)

yields different conclusions.

Solution: 

Representation independent alignment for 

comparing variant caller accuracy

Tim Dunn, Satish Narayanasamy; 2023



Result

3/24/2025 Tim Dunn 67

Users

https://github.com/timd1/vcfdist

Same sequencing output, but  different 

representations (A, B, C, D)

Before:

accuracy is artificially dependent on

variant representation 

After: 

vcfDist yields same accuracy for same output,

Independent of variant representation



Privacy-
preserving
collaborative 
genomics



Powerful analysis on 
aggregated large data sets

Privacy wall
(e.g., GDPR)

~70,000 patients

69

~10,000 patients

Azure Confidential Computing

Privacy-preserving 

collaborative analysis 

in cloud



≅ 100s GB
Enclave 
Memory100-200 MB≫

70

Small Enclave Memory

Background → Design → Evaluation → Future

GWAS Dataset

Main Memory
(few GB)

Patient A Patient B …

Var. 1

Var. 2

Var. 3

…

Diabetes Yes No No

Smoker No No Yes

…



Optimizations

Background → Design → Evaluation → Future 71

Streaming

Batching

Data parallelism

Compression



Artifact

for

72

Genomic data (VCF)

Privacy-preserving Hail

 Supports linear and logistic regression

Open-source end-to-end GWAS system

Scales to >1000 cores on Azure

Efficient: < 1 min for a regression analysis

Azure Confidential Computing

on

>4 million variants, 1 million patients, 12 cov. (≅ 150 GB)



How Can You 
Kick-Start 
Genomics 
Research?
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Open-source:

https://github.com/arun-sub/genomicsbench 

12 computationally intensive 
kernels drawn from well 
maintained software tools

Covers the major steps of 
modern sequence analysis 
pipelines

Includes both short and long read 
analysis algorithms

Small/large input datasets

[ISPASS 21]

https://github.com/arun-sub/genomicsbench


How Benchmarks
Leads to Ideas



Pipelines

76

Subramaniyan, Arun, et al. "GenomicsBench: A Benchmark Suite for Genomics." 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, 2021.
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Dynamic Programming Kernels in GenomicsBench

Subramaniyan, Arun, et al. "GenomicsBench: A Benchmark Suite for Genomics." 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, 2021.

Dynamic programming is the fundamental algorithm in genome 

sequencing analysis and motivates a domain specific accelerator
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Genomics DP Kernels

Kernel Application Dimension and Size Dependency Data Type

bsw Read Alignment 2D ~120 × 60 Last 2 Wave-fronts Int 8/16

pairHMM Variant Calling 2D ~100 × 60 Last 2 Wave-fronts Floating

Point

poa Error Correction 2D ~1000 × 500 Graph Structure Int 32

chain Read Alignment 1D  ~20000 Last N (~25) Anchors Int 32

The divergence of dynamic programming kernels make it 

challenging to design a domain specific acceleratorCustomization Programmability

Similarity Difference
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GenDP: A Framework of Dynamic Programming 
Acceleration for Genome Sequencing Analysis

• DPAx: programmable dynamic programming (DP) accelerator.

• DPMap: map the objective function of DP algorithm to DPAx accelerator.

DP Kernel
Kernel

Analysis

Inter-Cell 

Dependenc

y Pattern

Configure DPAx

Interconnection and

generate control instructions

Inter-Cell Analysis

DPAx

Accelerator

Intra-Cell 

Objective

Function

DPMap: Map Data-flow 

Graph to Compute Units

and generate compute

instructions

Intra-Cell Analysis

Gu, Yufeng, et al. "GenDP: A Framework of Dynamic Programming Acceleration for Genome Sequencing Analysis." Proceedings of the 50th Annual International Symposium on Computer 

Architecture. ISCA 2023.

ISCA 2023

CACM

Research Highlights
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Design Choice Take Away

M
ax

0

F(i, j)

E(i, j)
H(i, j)

H(i-1, j-1) +𝑆

(b) Reduction Data-Flow in BSW

(a) Reduction Data-Flow in PairHMM

𝑓𝐼(i, j)𝑓𝐼(i-1, j)

𝑓𝑀(i-1, j) × 𝑎𝑚𝑖

× 𝑎𝑖𝑖

Su
m

➢ Precision requirement ✓ 16 Integer PE array (SIMD compute unit) and 1 FP PE array

➢ Local dependency ✓ 1-Dimension systolic PE array with FIFO

➢ Dependency patterns ✓ PE arrays could execute separately or combined

➢ Reduction tree data path ✓ Compute unit – 2-level reduction tree

➢ Long dependency ✓ Software managed scratchpad memory

➢ Objective func. and datapath ✓ Custom ISA for control and computation

in[0:3] in[4:5]

out

ALU
MUL

ALU ALU

Similarity 

Difference 



81

GenDP Performance

• Metrics: Throughput/Area – Million Cell Updates per Second/mm2 (MCUPS/mm2) 

• GenDP achieves 157.8× throughput/mm2 over GPU

• GenDP has 2.8x slowdown when compared to custom accelerators

• Generality on DP algorithms in other domains
• Dynamic time warping – speech recognition

• Bellman-Ford – Robot motion planning

1
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GenDP Custom Accelerator
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Open-source:

https://github.com/arun-sub/genomicsbench 

12 computationally intensive kernels 
drawn from well maintained software 
tools

Covers the major steps of modern 
sequence analysis pipelines

Includes both short and long read 
analysis algorithms

Small/large input datasets

[ISPASS 21]

https://github.com/arun-sub/genomicsbench


Acknowledgements

UM Medicine

Oxford Nanopore Technologies community

Kahn Foundation

National Science Foundation (NSF)
83


	Default Section
	Slide 1
	Slide 2: Team – Part of University of Michigan Precision Health Initiative
	Slide 3: Work from Awesome Group of Fantastic Students!!
	Slide 4: Institutional partners
	Slide 5: DNA Sequencing
	Slide 6
	Slide 7: Exploding Applications
	Slide 8
	Slide 9: DNA Sequencing: Long reads are the future
	Slide 10: Oxford Nanopore Sequencers
	Slide 11: Precision Health Platform
	Slide 12: Computing System Design Considerations
	Slide 13: CS Challenges and opportunities
	Slide 14
	Slide 15
	Slide 16: Whole Genome Sequencing
	Slide 17: Acceleration Study: Whole Genome Sequencing
	Slide 18: Seeding: Memory Bandwidth Bottleneck
	Slide 19: Seeding: ERT    [ISCA’21]
	Slide 20: ERT software integration with  Broad Institute / Intel’s BWA-MEM 2
	Slide 21: Read Alignment: SeedEx   [MICRO’20]
	Slide 22: Variant Calling: pairHMM Acceleration
	Slide 23: Summary: Accelerating Short-Read WGS
	Slide 24: mm2-gb: GPU Accelerated Minimap2 for Long Read DNA Mapping
	Slide 25: Long Read Mapping is slow
	Slide 26: Long Read Mapping is slow
	Slide 27: Accelerating minimap2 on GPU
	Slide 28: mm2-gb offers 5.33x faster chaining
	Slide 29: Real-Time Pathogen Detection
	Slide 30: Viral Pandemics & Rise of Superbugs
	Slide 31: It Took Months For Mass COVID Testing Capabilities
	Slide 32: How can we be ready for the next pandemic?
	Slide 33: MinION: Portable Nanopore Sequencer
	Slide 34: Portable Virus Detection
	Slide 35: Problem: >99% of a sample is non-viral DNA
	Slide 36: Problem: >99% of a sample is non-viral DNA
	Slide 37: Problem: >99% of a sample is non-viral DNA
	Slide 38: Solution: Read Until - skip sequencing non-viral reads
	Slide 39: Challenge: Requires low latency computing
	Slide 40: Challenge: Requires high throughput computing
	Slide 41: Challenge: Portability
	Slide 42: Read Until pipeline
	Slide 43: Read Until pipeline
	Slide 44: Read Until pipeline
	Slide 45: Read Until pipeline
	Slide 46: Read Until pipeline
	Slide 47: Read Until pipeline
	Slide 48: Read Until pipeline
	Slide 49: Read Until pipeline
	Slide 50: Read Until pipeline
	Slide 51: Read Until pipeline
	Slide 52: Problem: Basecalling is compute-intensive
	Slide 53: Idea: Skip basecalling, align squiggles
	Slide 54: Contribution: Accelerated squiggle-level non-viral filter
	Slide 55: Filtering: Alignment Cost Threshold
	Slide 56: Results: SquiggleFilter Throughput
	Slide 57: Ultra Rapid Cancer Diagnosis
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: vcfDist –  A new tool to analyze variant callers
	Slide 66
	Slide 67: Result
	Slide 68: Privacy-preserving collaborative genomics
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: How Can You  Kick-Start Genomics Research?
	Slide 74
	Slide 75: How Benchmarks Leads to Ideas
	Slide 76: Pipelines
	Slide 77: Dynamic Programming Kernels in GenomicsBench
	Slide 78: Genomics DP Kernels
	Slide 79: GenDP: A Framework of Dynamic Programming Acceleration for Genome Sequencing Analysis
	Slide 80: Design Choice Take Away
	Slide 81: GenDP Performance
	Slide 82
	Slide 83: Acknowledgements


