EECS 570

Interconnect - Intro

Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/

Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin, Narayanasamy, Nowatzyk, Reinhardt, Singh, Smith, Torrellas and Wenisch. Special acknowledgement to Prof. Jerger of U. Toronto.

EECS 570

Interconnection Networks Introduction

- How to connect individual devices together into a group of communicating devices?
- Device:
 - Component within a computer
 - Single computer
 - System of computers
- Types of elements:
 - end nodes (device + interface)
 - Iinks
 - interconnection network
- Internetworking: interconnection of multiple networks

Interconnection Networks Introduction

- Interconnection networks should be designed
 - to transfer the <u>maximum amount of information</u>
 - within the <u>least amount of time</u> (and cost, power constraints)
 - so as not to bottleneck the system

Types of Interconnection Networks

- Four different domains:
 - Depending on number & proximity of connected devices
- On-Chip networks (OCNs or NoCs)
 - Devices are microarchitectural elements (functional units, register files), caches, directories, processors
 - Latest systems: dozens, hundreds of devices
 - Ex: Intel TeraFLOPS research prototypes 80 cores
 - Xeon Phi 60 cores
 - Proximity: millimeters

System/Storage Area Networks (SANs)

- Multiprocessor and multicomputer systems
 - Interprocessor and processor-memory interconnections
- Server and data center environments
 - □ Storage and I/O components
- Hundreds to thousands of devices interconnected
 - IBM Blue Gene/L supercomputer (64K nodes, each with 2 processors)
- Maximum interconnect distance
 - tens of meters (typical)
 - a few hundred meters (some)
 - InfiniBand: 120 Gbps over a distance of 300m
- Examples (standards and proprietary)
 - InfiniBand, Myrinet, Quadrics, Advanced Switching Interconnect

Local Area Network (LANs)

- Interconnect autonomous computer systems
- Machine room or throughout a building or campus
- Hundreds of devices interconnected (1,000s with bridging)
- Maximum interconnect distance
 - **few kilometers**
 - few tens of kilometers (some)
- Example (most popular): Ethernet, with 10 Gbps over 40Km

Wide Area Networks (WANs)

- Interconnect systems distributed across the globe
- Internetworking support is required
- Many millions of devices interconnected
- Maximum interconnect distance
 many thousands of kilometers
- Example: ATM (asynchronous transfer mode)

Interconnection Network Domains

EECS 570 Focus: On-Chip Networks

On-Chip Networks (OCN or NoCs)

- Why On-Chip Network?
 - Ad-hoc wiring does not scale beyond a small number of cores
 - O Prohibitive area
 - Long latency
- OCN offers
 - scalability
 - efficient multiplexing of communication
 - often modular in nature (eases verification)

Differences between on-chip and off-chip networks

- Significant research in multi-chassis interconnection networks (off-chip)
 - Supercomputers
 - Clusters of workstations
 - Internet routers
- Leverage research and insight but...
 - Constraints are different

Off-chip vs. on-chip

- Off-chip: I/O bottlenecks
 - Pin-limited bandwidth
 - Inherent overheads of off-chip I/O transmission
- On-chip
 - Wiring constraints
 - Metal layer limitations
 - Horizontal and vertical layout
 - Short, fixed length
 - Repeater insertion limits routing of wires
 - Avoid routing over dense logic
 - Impact wiring density
 - Power
 - Consume 10-15% or more of die power budget
 - Latency and bandwidth
 - Different order of magnitude
 - Routers consume significant fraction of latency

On-Chip Network Evolution

- Ad hoc wiring
 - Small number of nodes
- Buses and Crossbars
 - Simplest variant of on-chip networks
 - Low core counts
 - Like traditional multiprocessors
 - Bus traffic quickly saturates with a modest number of cores
 - **Crossbars:** higher bandwidth
 - Poor area and power scaling

Multicore Examples (1)

Sun Niagara

- Niagara 2: 8x9 crossbar (area ~= core)
- Rock: Hierarchical crossbar (5x5 crossbar connecting clusters of 4 cores)

Multicore Examples (2)

- IBM Cell
- Element Interconnect Bus
 - 12 elements
 - 4 unidirectional rings
 - 16 Bytes wide
 - Operates at 1.6 GHz

Many Core Example

- Intel TeraFLOPS
 - □ 80 core prototype
 - **5** GHz
 - Each tile:
 - Processing engine + on-chip network router

Many-Core Example (2): Intel SCC

 Intel's Single-chip Cloud Computer (SCC) uses a 2D mesh with state of the art routers

Performance and Cost

EECS 570

Topics to be covered

- Interfaces
- Topology
- Routing
- Flow Control
- Router Microarchitecture

System Interfaces

Systems and Interfaces

- Look at how systems interact and interface with network
- Types of multi-processors
 - Shared-memory
 - From high end servers to embedded products
 - Message passing
 - Multiprocessor System on Chip (MPSoC)
 - Mobile consumer market
 - Clusters
- We focus on on-chip networks for shared-memory multi-core

Shared Memory CMP Architecture

EECS 570

Impact of Coherence Protocol on Network Performance

- Coherence protocol shapes communication needed by system
- Single writer, multiple reader invariant
- Requires:
 - Data requests
 - Data responses
 - Coherence permissions

Broadcast vs. Directory

Coherence Protocol Requirements

- Different message types
 - Unicast, multicast, broadcast
- Directory protocol
 - Majority of requests: Unicast
 - O Lower bandwidth demands on network
 - More scalable due to point-to-point communication
- Broadcast protocol
 - Majority of requests: Broadcast
 Higher bandwidth demands
 - Often rely on network ordering

Protocol Level Deadlock

- Request-Reply Dependency
 - Network becomes flooded with requests that cannot be consumed until the network interface has generated a reply
- Deadlock dependency between multiple message classes
- Virtual channels can prevent protocol level deadlock (to be discussed later)

Home Node/Memory Controller Issues

- Heterogeneity in network
 - Some tiles are memory controllers
 - **Co-located** with processor/cache or **separate** tile
 - Share injection/ejection bandwidth?
- Home node
 - Directory coherence information
 - <= number of tiles</p>
- Potential hot spots in network?

Network Interface

Network Interface: Miss Status Handling Registers

Transaction Status Handling Registers (for centralized directory)

Synthesized NoCs for MPSoCs

- System-on-Chip (SoC)
 - Chips tailored to specific applications or domains
 - Designed quickly through composition of IP blocks
- Fundamental NoC concepts applicable to both CMP and MPSoC
- Key characteristics
 - Applications known a priori
 - Automated design process
 - Standardized interfaces
 - Area/power constraints tighter

Design Requirements

- Less aggressive
 - **CMPs:** GHz clock frequencies
 - □ MPSoCs: MHz clock frequencies
 - Pipelining may not be necessary
 - Standardizes interfaces add significant delay
- Area and power
 - **CMPs: 100W for server**
 - MPSoC: several watts only
- Time to market
 - Automatic composition and generation

Area, power characterization

NoC Synthesis

- Tool chain
 - Requires accurate power and area models
 - Quickly iterate through many designs
 - Library of soft macros for all NoC building blocks
 - Floorplanner
 - Determine router locations
 - Determine link lengths (delay)

NoC Network Interface Standards

- Standardized protocols
 - Plug and play with different IP blocks
- Bus-based semantics
 - Widely used
- Out of order transactions
 - Relax strict bus ordering semantics
 - Migrating MPSoCs from buses to NoCs.

Summary

• Architecture

- Impacts communication requirements
- Coherence protocol: Broadcast vs. Directory
- Shared vs. Private Caches
- CMP vs. MPSoC
 - General vs. Application specific
 - Custom interfaces vs. standardized interfaces

Topics to be covered

- Interfaces
- Topology
- Routing
- Flow Control
- Router Microarchitecture

Types of Topologies

Types of Topologies

- Focus on switched topologies
 - Alternatives: bus and crossbar
 - Bus
 - Connects a set of components to a single shared channel
 - Effective broadcast medium
 - Crossbar
 - Directly connects *n* inputs to *m* outputs without intermediate stages
 - Fully connected, single hop network
 - Component of routers

Types of Topologies

Direct

- **T** Each router is associated with a terminal node
- □ All routers are sources and destinations of traffic

Indirect

- Routers are distinct from terminal nodes
- Terminal nodes can source/sink traffic
- Intermediate nodes switch traffic between terminal nodes
- Most on-chip network use direct topologies

Torus (1)

- K-ary n-cube: kⁿ network nodes
- n-Dimensional grid with k nodes in each dimension

2,3,4-ary 3-mesh

Torus (2)

- 1D or 2D torus map well to planar substrate for on-chip
- Topologies in Torus Family
 - **Ex:** Ring -- k-ary 1-cube
- Edge Symmetric
 - Good for load balancing
 - Removing wrap-around links for mesh loses edge symmetry
 More traffic concentrated on center channels
- Good path diversity
- Exploit locality for near-neighbor traffic

Torus (3)

- Degree = 2n, 2 channels per dimension
 All nodes have same degree
- Total channels = 2nN
 - N is total number of nodes

Mesh

- A torus with end-around connection removed
- Same max node degree

Higher demand for central channels
 Load imbalance

Butterfly

- Indirect network
- K-ary n-fly: kⁿ network nodes
- Every source-dest pair has the same hop count
- Routing from 000 to 010
 - Dest address used to directly route packet
 - Bit n used to select output port at stage n

Butterfly (2)

- No path diversity
 - Can add extra stages for diversity
 - Increase network diameter

Butterfly (3)

- Hop Count
 - □ $Log_kN + 1 = n + 1$ (N = kⁿ = total number of terminal nodes)
 - Does not exploit locality
 - Hop count same regardless of location
- Switch Degree = 2k
- Requires long wires to implement

Clos network

- 3-stage networks where all input/output nodes are connected to all middle routers
- Key attribute: path diversity
 - Input node can select any middle router
 - Can enable non-blocking routing algorithms
- (m, n, r)
 - m = Number of middle stage switches
 - n = input/output ports per input/output switch
- r = number of input/output
 switches

(5,3,4) Clos network

Fat Tree

- Bandwidth remains constant at each level
- Regular Tree: Bandwidth decreases closer to root

Fat Tree (2)

- Can be constructed from folded Clos
- Provides path diversity

Irregular Topologies

Irregular Topologies

- MPSoC design leverages wide variety of IP blocks
 - Regular topologies may not be appropriate given heterogeneity
 - Customized topology
 - Often more power efficient and deliver better performance
- Customize based on traffic characterization

Irregular Topology Example

Topology Customization

- Merging
 - **Start with large number of switches**
 - Merge adjacent routers to reduce area and power
- Splitting
 - Large crossbar connecting all nodes
 - Iteratively split into multiple small switches
 - O Accommodate design constraints