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Interconnection Networks Introduction

• How to connect individual devices together into a group 
of communicating devices? 

• Device: 
❒ Component within a computer 
❒ Single computer 
❒ System of computers 

• Types of elements: 
❒ end nodes (device + interface) 
❒ links 
❒ interconnection network 

• Internetworking: interconnection of multiple networks
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Interconnection Networks Introduction

• Interconnection networks should be designed  
• to transfer the maximum amount of information  
• within the least amount of time (and cost, power 

constraints) 
• so as not to bottleneck the system
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Types of Interconnection Networks

• Four different domains: 
❒ Depending on number & proximity of connected devices 

• On-Chip networks (OCNs or NoCs) 
❒ Devices are microarchitectural elements (functional units, 

register files), caches, directories, processors 
❒ Latest systems: dozens, hundreds of devices 

❍ Ex: Intel TeraFLOPS research prototypes – 80 cores 
❍ Xeon Phi – 60 cores 

❒ Proximity: millimeters
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System/Storage Area Networks (SANs)

• Multiprocessor and multicomputer systems 
❒ Interprocessor and processor-memory interconnections 

• Server and data center environments 
❒ Storage and I/O components 

• Hundreds to thousands of devices interconnected  
❒ IBM Blue Gene/L supercomputer  

(64K nodes, each with 2 processors) 
• Maximum interconnect distance  

❒ tens of meters (typical) 
❒ a few hundred meters (some) 

❍ InfiniBand: 120 Gbps over a distance of 300m 

• Examples (standards and proprietary) 
❒ InfiniBand, Myrinet, Quadrics, Advanced Switching Interconnect
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Local Area Network (LANs)

• Interconnect autonomous computer systems  

• Machine room or throughout a building or campus 

• Hundreds of devices interconnected (1,000s with bridging) 

• Maximum interconnect distance 
❒ few kilometers 
❒ few tens of kilometers (some) 

• Example (most popular): Ethernet, with 10 Gbps over 40Km
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Wide Area Networks (WANs)

• Interconnect systems distributed across the globe 

• Internetworking support is required 

• Many millions of devices interconnected 

• Maximum interconnect distance   
❒ many thousands of kilometers 

• Example: ATM (asynchronous transfer mode)
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Interconnection Network Domains
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EECS 570 Focus:  
On-Chip Networks
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On-Chip Networks (OCN or NoCs)

• Why On-Chip Network? 
❒ Ad-hoc wiring does not scale 

beyond a small number of cores 
❍ Prohibitive area 
❍ Long latency 

• OCN offers  
❒ scalability 
❒ efficient multiplexing of 

communication  
❒ often modular in nature  

(eases verification)
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Differences between  
on-chip and off-chip networks

• Significant research in multi-chassis interconnection 
networks (off-chip) 
❒ Supercomputers 
❒ Clusters of workstations 
❒ Internet routers 

• Leverage research and insight but… 
❒ Constraints are different
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Off-chip vs. on-chip
• Off-chip: I/O bottlenecks 

❒ Pin-limited bandwidth 
❒ Inherent overheads of off-chip I/O transmission 

• On-chip 
❒ Wiring constraints 

❍ Metal layer limitations 
❍ Horizontal and vertical layout 
❍ Short, fixed length 
❍ Repeater insertion limits routing of wires 

❑ Avoid routing over dense logic 
❑ Impact wiring density 

❒ Power 
❍ Consume 10-15% or more of die power budget 

❒ Latency and bandwidth 
❍ Different order of magnitude 
❍ Routers consume significant fraction of latency
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On-Chip Network Evolution

• Ad hoc wiring 
❒ Small number of nodes 

• Buses and Crossbars 
❒ Simplest variant of on-chip networks 
❒ Low core counts 
❒ Like traditional multiprocessors 

❍ Bus traffic quickly saturates with a modest number of cores 
❒ Crossbars: higher bandwidth 

❍ Poor area and power scaling
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Multicore Examples (1)

• Niagara 2: 8x9 crossbar (area ~= core) 
• Rock: Hierarchical crossbar (5x5 crossbar connecting 

clusters of 4 cores)
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Multicore Examples (2)

• IBM Cell 
• Element Interconnect Bus 

❒ 12 elements 
❒ 4 unidirectional rings 

❍ 16 Bytes wide 
❍ Operates at 1.6 GHz

IBM Cell

RING



EECS 570

Many Core Example

• Intel TeraFLOPS 
❒ 80 core prototype 
❒ 5 GHz 
❒ Each tile: 

❍ Processing engine + 
on-chip network router2D MESH
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Many-Core Example (2): Intel SCC

• Intel’s Single-chip Cloud Computer (SCC) 
uses a 2D mesh with state of the art routers
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Performance and Cost

• Performance: latency and throughput 

• Cost: area and power
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Topics to be covered

• Interfaces 
• Topology 
• Routing 
• Flow Control 
• Router Microarchitecture
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System Interfaces
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Systems and Interfaces

• Look at how systems interact and interface with network 

• Types of multi-processors 
❒ Shared-memory 

❍ From high end servers to embedded products 
❒ Message passing 

❍ Multiprocessor System on Chip (MPSoC) 
❑ Mobile consumer market 

❍ Clusters 

• We focus on on-chip networks for shared-memory multi-core
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Shared Memory CMP Architecture
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L2: 
• Private or distributed shared 

cache
• Centralized shared cache will 

have a different organization; a 
tile could be a core or L2 bank
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Impact of Coherence Protocol on Network Performance

• Coherence protocol shapes communication needed by system 

• Single writer, multiple reader invariant 

• Requires:  
❒ Data requests 
❒ Data responses 
❒ Coherence permissions
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Coherence Protocol Requirements

• Different message types 
❒ Unicast, multicast, broadcast 

• Directory protocol 
❒ Majority of requests: Unicast 

❍ Lower bandwidth demands on network 
❒ More scalable due to point-to-point communication 

• Broadcast protocol 
❒ Majority of requests: Broadcast 

❍ Higher bandwidth demands 
❒ Often rely on network ordering
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Protocol Level Deadlock

• Request-Reply Dependency 
❒ Network becomes flooded with requests that cannot be 

consumed until the network interface has generated a reply 
• Deadlock dependency between multiple message classes 

• Virtual channels can prevent protocol level deadlock  
(to be discussed later)

Request Q

Reply Q

Memory / Cache
Controller

Interconnection NetworkNetwork End Node
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Home Node/Memory Controller Issues

• Heterogeneity in network 
❒ Some tiles are memory controllers 

❍ Co-located with processor/cache or separate tile 
❍ Share injection/ejection bandwidth? 

• Home node 
❒ Directory coherence information 
❒ <= number of tiles 

• Potential hot spots in network?
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Network Interface
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Network Interface: Miss Status Handling Registers
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Transaction Status Handling Registers 
(for centralized directory)

Src RdReq Addr

Src Writeback Addr Data

Dest RdReply Addr Data

Dest WriteAck Addr
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MPSoCs
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Synthesized NoCs for MPSoCs

• System-on-Chip (SoC)  
❒ Chips tailored to specific applications or domains 
❒ Designed quickly through composition of IP blocks 

• Fundamental NoC concepts applicable to both CMP and 
MPSoC 

• Key characteristics 
❒ Applications known a priori 
❒ Automated design process 
❒ Standardized interfaces 
❒ Area/power constraints tighter
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Design Requirements

• Less aggressive 
❒ CMPs: GHz clock frequencies 
❒ MPSoCs: MHz clock frequencies 
❒ Pipelining may not be necessary 
❒ Standardizes interfaces add significant delay 

• Area and power 
❒ CMPs: 100W for server 
❒ MPSoC: several watts only 

• Time to market 
❒ Automatic composition and generation
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NoC Synthesis
Application
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NoC Synthesis

• Tool chain 
❒ Requires accurate power and area models 
❒ Quickly iterate through many designs 
❒ Library of soft macros for all NoC building blocks 
❒ Floorplanner 

❍ Determine router locations 
❍ Determine link lengths (delay)
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NoC Network Interface Standards

• Standardized protocols 
❒ Plug and play with different IP blocks 

• Bus-based semantics 
❒ Widely used 

• Out of order transactions 
❒ Relax strict bus ordering semantics 
❒ Migrating MPSoCs from buses to NoCs.  
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Summary

• Architecture 
❒ Impacts communication requirements 
❒ Coherence protocol: Broadcast vs. Directory 
❒ Shared vs. Private Caches 

• CMP vs. MPSoC 
❒ General vs. Application specific 
❒ Custom interfaces vs. standardized interfaces
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Topics to be covered

• Interfaces 
• Topology 
• Routing 
• Flow Control 
• Router Microarchitecture
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Types of Topologies
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Types of Topologies

• Focus on switched topologies 
❒ Alternatives: bus and crossbar 

❒ Bus 
❍ Connects a set of components to a single shared channel 
❍ Effective broadcast medium 

❒ Crossbar 
❍ Directly connects n inputs to m outputs without intermediate 

stages 
❍ Fully connected, single hop network 
❍ Component of routers 
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Types of Topologies

• Direct 
❒ Each router is associated with a terminal node 
❒ All routers are sources and destinations of traffic 

• Indirect 
❒ Routers are distinct from terminal nodes 
❒ Terminal nodes can source/sink traffic 
❒ Intermediate nodes switch traffic between terminal nodes 

• Most on-chip network use direct topologies
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Torus (1)

• K-ary n-cube:  kn network nodes 

• n-Dimensional grid with k nodes in each dimension

3-ary 2-cube3-ary 2-mesh 2,3,4-ary 3-mesh
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Torus (2)

• 1D or 2D torus map well to planar substrate for on-chip 

• Topologies in Torus Family 
❒ Ex: Ring -- k-ary 1-cube 

• Edge Symmetric 
❒ Good for load balancing 
❒ Removing wrap-around links for mesh loses edge symmetry 

❍ More traffic concentrated on center channels 

• Good path diversity 

• Exploit locality for near-neighbor traffic
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Torus (3)

• Degree = 2n, 2 channels per dimension 
❒ All nodes have same degree 

• Total channels = 2nN 
❒ N is total number of nodes
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Mesh

• A torus with end-around connection removed 

• Same max node degree 

• Higher demand for central channels 
❒ Load imbalance
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Butterfly

• Indirect network 

• K-ary n-fly: kn network 
nodes 

• Every source-dest pair has 
the same hop count 

• Routing from 000 to 010 
❒ Dest address used to 

directly route packet 
❒ Bit n used to select output 

port at stage n
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Butterfly (2)

• No path diversity 
❒ Can add extra stages for diversity 

❍ Increase network diameter
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Butterfly (3)
• Hop Count 

❒ LogkN + 1 = n + 1 (N = kn = total number of terminal nodes) 

❒ Does not exploit locality 
❍ Hop count same regardless of location  

• Switch Degree = 2k 

• Requires long wires to implement
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Clos network

• 3-stage networks where all 
input/output nodes are 
connected to all middle 
routers 

• Key attribute: path diversity 
❒ Input node can select any 

middle router 
❒ Can enable non-blocking 

routing algorithms 
• (m, n, r) 

❒ m = Number of middle 
stage switches 

❒ n = input/output ports per 
input/output switch 

❒ r = number of input/output 
switches

(5,3,4) Clos network
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Fat Tree

• Bandwidth remains constant at each level 
• Regular Tree: Bandwidth decreases closer to root
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Fat Tree (2)

• Can be constructed from folded Clos 
• Provides path diversity
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Irregular Topologies
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Irregular Topologies

• MPSoC design leverages wide variety of IP blocks 
❒ Regular topologies may not be appropriate given 

heterogeneity 
❒ Customized topology 

❍ Often more power efficient and deliver better performance 

• Customize based on traffic characterization
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Irregular Topology Example

VLD
Run 

length 
decoder

Inverse 
scan

iDCT iQuant
AC/DC 
predict

Stripe 
Memory

VOP 
reconstr

up samp

ARM core VOP 
Memory

Padding

R R R

R R R

R R
R

R R R

VLD
Run 

length 
decoder

Inverse 
scan

iDCT iQuant
AC/DC 
predict

Stripe 
Memory

VOP 
reconstr

up samp

ARM core VOP 
Memory Padding

R R

RR R



EECS 570

Topology Customization

• Merging 
❒ Start with large number of switches 
❒ Merge adjacent routers to reduce area and power 

• Splitting 
❒ Large crossbar connecting all nodes 
❒ Iteratively split into multiple small switches 

❍ Accommodate design constraints


