
EECS 570

EECS 570
Interconnect - Intro
Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/

Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin,
Narayanasamy, Nowatzyk, Reinhardt, Singh, Smith, Torrellas and Wenisch.
Special acknowledgement to Prof. Jerger of U. Toronto.

EECS 570

Interconnection Networks Introduction

• How to connect individual devices together into a group
of communicating devices?

• Device:
❒ Component within a computer
❒ Single computer
❒ System of computers

• Types of elements:
❒ end nodes (device + interface)
❒ links
❒ interconnection network

• Internetworking: interconnection of multiple networks

Interconnection Network

End NodeEnd NodeEnd NodeEnd Node

…

Li
nk

Li
nk

Li
nk

Li
nk…

HW Interface HW Interface HW Interface HW Interface

SW Interface SW Interface SW Interface SW Interface

Device Device Device Device

…

EECS 570

Interconnection Networks Introduction

• Interconnection networks should be designed
• to transfer the maximum amount of information
• within the least amount of time (and cost, power

constraints)
• so as not to bottleneck the system

EECS 570

Types of Interconnection Networks

• Four different domains:
❒ Depending on number & proximity of connected devices

• On-Chip networks (OCNs or NoCs)
❒ Devices are microarchitectural elements (functional units,

register files), caches, directories, processors
❒ Latest systems: dozens, hundreds of devices

❍ Ex: Intel TeraFLOPS research prototypes – 80 cores
❍ Xeon Phi – 60 cores

❒ Proximity: millimeters

EECS 570

System/Storage Area Networks (SANs)

• Multiprocessor and multicomputer systems
❒ Interprocessor and processor-memory interconnections

• Server and data center environments
❒ Storage and I/O components

• Hundreds to thousands of devices interconnected
❒ IBM Blue Gene/L supercomputer

(64K nodes, each with 2 processors)
• Maximum interconnect distance

❒ tens of meters (typical)
❒ a few hundred meters (some)

❍ InfiniBand: 120 Gbps over a distance of 300m

• Examples (standards and proprietary)
❒ InfiniBand, Myrinet, Quadrics, Advanced Switching Interconnect

EECS 570

Local Area Network (LANs)

• Interconnect autonomous computer systems

• Machine room or throughout a building or campus

• Hundreds of devices interconnected (1,000s with bridging)

• Maximum interconnect distance
❒ few kilometers
❒ few tens of kilometers (some)

• Example (most popular): Ethernet, with 10 Gbps over 40Km

EECS 570

Wide Area Networks (WANs)

• Interconnect systems distributed across the globe

• Internetworking support is required

• Many millions of devices interconnected

• Maximum interconnect distance
❒ many thousands of kilometers

• Example: ATM (asynchronous transfer mode)

EECS 570

Interconnection Network Domains

LANs

Di
st

an
ce

 (m
et

er
s)

5 x 10-3

5 x 100

5 x 103

5 x 106

Number of devices interconnected
1 10 100 1,000 10,000 >100,000

OCNs

SANs

WANs

EECS 570

EECS 570 Focus:
On-Chip Networks

EECS 570

On-Chip Networks (OCN or NoCs)

• Why On-Chip Network?
❒ Ad-hoc wiring does not scale

beyond a small number of cores
❍ Prohibitive area
❍ Long latency

• OCN offers
❒ scalability
❒ efficient multiplexing of

communication
❒ often modular in nature

(eases verification)

EECS 570

Differences between
on-chip and off-chip networks

• Significant research in multi-chassis interconnection
networks (off-chip)
❒ Supercomputers
❒ Clusters of workstations
❒ Internet routers

• Leverage research and insight but…
❒ Constraints are different

EECS 570

Off-chip vs. on-chip
• Off-chip: I/O bottlenecks

❒ Pin-limited bandwidth
❒ Inherent overheads of off-chip I/O transmission

• On-chip
❒ Wiring constraints

❍ Metal layer limitations
❍ Horizontal and vertical layout
❍ Short, fixed length
❍ Repeater insertion limits routing of wires

❑ Avoid routing over dense logic
❑ Impact wiring density

❒ Power
❍ Consume 10-15% or more of die power budget

❒ Latency and bandwidth
❍ Different order of magnitude
❍ Routers consume significant fraction of latency

EECS 570

On-Chip Network Evolution

• Ad hoc wiring
❒ Small number of nodes

• Buses and Crossbars
❒ Simplest variant of on-chip networks
❒ Low core counts
❒ Like traditional multiprocessors

❍ Bus traffic quickly saturates with a modest number of cores
❒ Crossbars: higher bandwidth

❍ Poor area and power scaling

EECS 570

Multicore Examples (1)

• Niagara 2: 8x9 crossbar (area ~= core)
• Rock: Hierarchical crossbar (5x5 crossbar connecting

clusters of 4 cores)

Sun Niagara

XBAR

0

1

2

3

0 1 2 3

4

5

4 5

EECS 570

Multicore Examples (2)

• IBM Cell
• Element Interconnect Bus

❒ 12 elements
❒ 4 unidirectional rings

❍ 16 Bytes wide
❍ Operates at 1.6 GHz

IBM Cell

RING

EECS 570

Many Core Example

• Intel TeraFLOPS
❒ 80 core prototype
❒ 5 GHz
❒ Each tile:

❍ Processing engine +
on-chip network router2D MESH

EECS 570

Many-Core Example (2): Intel SCC

• Intel’s Single-chip Cloud Computer (SCC)
uses a 2D mesh with state of the art routers

EECS 570

Performance and Cost

• Performance: latency and throughput

• Cost: area and power

La
te

nc
y

(s
ec

)

Offered Traffic (bits/sec)

Zero load
latency

Sa
tu

ra
tio

n
th

ro
ug

hp
ut

EECS 570

Topics to be covered

• Interfaces
• Topology
• Routing
• Flow Control
• Router Microarchitecture

EECS 570

System Interfaces

EECS 570

Systems and Interfaces

• Look at how systems interact and interface with network

• Types of multi-processors
❒ Shared-memory

❍ From high end servers to embedded products
❒ Message passing

❍ Multiprocessor System on Chip (MPSoC)
❑ Mobile consumer market

❍ Clusters

• We focus on on-chip networks for shared-memory multi-core

EECS 570

Shared Memory CMP Architecture

Core L1 I/D
Cache

L2 Cache Route
r

Tags Data

Controller
Logic

L2:
• Private or distributed shared

cache
• Centralized shared cache will

have a different organization; a
tile could be a core or L2 bank

EECS 570

Impact of Coherence Protocol on Network Performance

• Coherence protocol shapes communication needed by system

• Single writer, multiple reader invariant

• Requires:
❒ Data requests
❒ Data responses
❒ Coherence permissions

EECS 570

Broadcast vs. Directory
M

em
or

y
Co

nt
ro

lle
r 1

Read Cache
miss

2
Request

broadcast

3
Send
Data

1
Read Cache

miss
2

Directory
receives
request

3
Send
Data

Di
re

ct
or

y

EECS 570

Coherence Protocol Requirements

• Different message types
❒ Unicast, multicast, broadcast

• Directory protocol
❒ Majority of requests: Unicast

❍ Lower bandwidth demands on network
❒ More scalable due to point-to-point communication

• Broadcast protocol
❒ Majority of requests: Broadcast

❍ Higher bandwidth demands
❒ Often rely on network ordering

EECS 570

Protocol Level Deadlock

• Request-Reply Dependency
❒ Network becomes flooded with requests that cannot be

consumed until the network interface has generated a reply
• Deadlock dependency between multiple message classes

• Virtual channels can prevent protocol level deadlock
(to be discussed later)

Request Q

Reply Q

Memory / Cache
Controller

Interconnection NetworkNetwork End Node

EECS 570

Home Node/Memory Controller Issues

• Heterogeneity in network
❒ Some tiles are memory controllers

❍ Co-located with processor/cache or separate tile
❍ Share injection/ejection bandwidth?

• Home node
❒ Directory coherence information
❒ <= number of tiles

• Potential hot spots in network?

EECS 570

Network Interface

EECS 570

Network Interface: Miss Status Handling Registers

Core

Cache

Protocol Finite State
Machine

Status Addr Data

Message Format and Send Message Receive

Dest RdReq Addr

Dest Writeback Addr Data

RdReply Addr Data

WriteAck Addr

To network From network

MSHRs

Type Addr DataCache Request Type Addr DataReply

Request Addr

Dest Reply Addr Data

EECS 570

Transaction Status Handling Registers
(for centralized directory)

Src RdReq Addr

Src Writeback Addr Data

Dest RdReply Addr Data

Dest WriteAck Addr

Message Receive
Message Format and

Send

From network To network

Directory Cache

Status Src Addr Data

TSHRs

Memory Controller

Off-chip memory

EECS 570

MPSoCs

EECS 570

Synthesized NoCs for MPSoCs

• System-on-Chip (SoC)
❒ Chips tailored to specific applications or domains
❒ Designed quickly through composition of IP blocks

• Fundamental NoC concepts applicable to both CMP and
MPSoC

• Key characteristics
❒ Applications known a priori
❒ Automated design process
❒ Standardized interfaces
❒ Area/power constraints tighter

EECS 570

Design Requirements

• Less aggressive
❒ CMPs: GHz clock frequencies
❒ MPSoCs: MHz clock frequencies
❒ Pipelining may not be necessary
❒ Standardizes interfaces add significant delay

• Area and power
❒ CMPs: 100W for server
❒ MPSoC: several watts only

• Time to market
❒ Automatic composition and generation

EECS 570

NoC Synthesis
Application

Codesign
simulation

Constraint
graph

Comm graph

NoC Area
models

NoC Power
models

User
objectives:
power, hop

delay

Constraints:
area, power,
hop delay,
wire length

Topology
Synthesis

Includes:
Floorplanner
NoC Router

System
specs:

Platform
Generation

(xpipes-
Compiler)

NoC
Component

library

SystemC
code

IP Core
models

RTL
Architectural
Simulation

Synthesis
Placement

and
Routing

To fab

FPGA
Emulation

SunFloor
Floorplanning specifications

Area, power characterization

Input traffic
model

EECS 570

NoC Synthesis

• Tool chain
❒ Requires accurate power and area models
❒ Quickly iterate through many designs
❒ Library of soft macros for all NoC building blocks
❒ Floorplanner

❍ Determine router locations
❍ Determine link lengths (delay)

EECS 570

NoC Network Interface Standards

• Standardized protocols
❒ Plug and play with different IP blocks

• Bus-based semantics
❒ Widely used

• Out of order transactions
❒ Relax strict bus ordering semantics
❒ Migrating MPSoCs from buses to NoCs.

EECS 570

Summary

• Architecture
❒ Impacts communication requirements
❒ Coherence protocol: Broadcast vs. Directory
❒ Shared vs. Private Caches

• CMP vs. MPSoC
❒ General vs. Application specific
❒ Custom interfaces vs. standardized interfaces

EECS 570

Topics to be covered

• Interfaces
• Topology
• Routing
• Flow Control
• Router Microarchitecture

EECS 570

Types of Topologies

EECS 570

Types of Topologies

• Focus on switched topologies
❒ Alternatives: bus and crossbar

❒ Bus
❍ Connects a set of components to a single shared channel
❍ Effective broadcast medium

❒ Crossbar
❍ Directly connects n inputs to m outputs without intermediate

stages
❍ Fully connected, single hop network
❍ Component of routers

EECS 570

Types of Topologies

• Direct
❒ Each router is associated with a terminal node
❒ All routers are sources and destinations of traffic

• Indirect
❒ Routers are distinct from terminal nodes
❒ Terminal nodes can source/sink traffic
❒ Intermediate nodes switch traffic between terminal nodes

• Most on-chip network use direct topologies

EECS 570

Torus (1)

• K-ary n-cube: kn network nodes

• n-Dimensional grid with k nodes in each dimension

3-ary 2-cube3-ary 2-mesh 2,3,4-ary 3-mesh

EECS 570

Torus (2)

• 1D or 2D torus map well to planar substrate for on-chip

• Topologies in Torus Family
❒ Ex: Ring -- k-ary 1-cube

• Edge Symmetric
❒ Good for load balancing
❒ Removing wrap-around links for mesh loses edge symmetry

❍ More traffic concentrated on center channels

• Good path diversity

• Exploit locality for near-neighbor traffic

EECS 570

Torus (3)

• Degree = 2n, 2 channels per dimension
❒ All nodes have same degree

• Total channels = 2nN
❒ N is total number of nodes

EECS 570

Mesh

• A torus with end-around connection removed

• Same max node degree

• Higher demand for central channels
❒ Load imbalance

EECS 570

Butterfly

• Indirect network

• K-ary n-fly: kn network
nodes

• Every source-dest pair has
the same hop count

• Routing from 000 to 010
❒ Dest address used to

directly route packet
❒ Bit n used to select output

port at stage n

0
00

1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

01

02

03

10

11

12

13

20

21

22

23

0 1 0

2-ary 3-fly
2 input switch, 3 stages

EECS 570

Butterfly (2)

• No path diversity
❒ Can add extra stages for diversity

❍ Increase network diameter

0
x0

1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

x1

x2

x3

10

11

12

13

20

21

22

23

00

01

02

03

EECS 570

Butterfly (3)
• Hop Count

❒ LogkN + 1 = n + 1 (N = kn = total number of terminal nodes)

❒ Does not exploit locality
❍ Hop count same regardless of location

• Switch Degree = 2k

• Requires long wires to implement

EECS 570

Clos network

• 3-stage networks where all
input/output nodes are
connected to all middle
routers

• Key attribute: path diversity
❒ Input node can select any

middle router
❒ Can enable non-blocking

routing algorithms
• (m, n, r)

❒ m = Number of middle
stage switches

❒ n = input/output ports per
input/output switch

❒ r = number of input/output
switches

(5,3,4) Clos network

EECS 570

Fat Tree

• Bandwidth remains constant at each level
• Regular Tree: Bandwidth decreases closer to root

EECS 570

Fat Tree (2)

• Can be constructed from folded Clos
• Provides path diversity

EECS 570

Irregular Topologies

EECS 570

Irregular Topologies

• MPSoC design leverages wide variety of IP blocks
❒ Regular topologies may not be appropriate given

heterogeneity
❒ Customized topology

❍ Often more power efficient and deliver better performance

• Customize based on traffic characterization

EECS 570

Irregular Topology Example

VLD
Run

length
decoder

Inverse
scan

iDCT iQuant
AC/DC
predict

Stripe
Memory

VOP
reconstr

up samp

ARM core VOP
Memory

Padding

R R R

R R R

R R
R

R R R

VLD
Run

length
decoder

Inverse
scan

iDCT iQuant
AC/DC
predict

Stripe
Memory

VOP
reconstr

up samp

ARM core VOP
Memory Padding

R R

RR R

EECS 570

Topology Customization

• Merging
❒ Start with large number of switches
❒ Merge adjacent routers to reduce area and power

• Splitting
❒ Large crossbar connecting all nodes
❒ Iteratively split into multiple small switches

❍ Accommodate design constraints

