
Lecture 2
Slide 1EECS 570

EECS 570

Lecture 2

Message Passing &
Shared Memory
Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/

Slides developed in part by Drs. Adve, Falsafi, Martin, Musuvathi, Narayanasamy, Nowatzyk,

Wenisch, Sarkar, Mikko Lipasti, Jim Smith, John Shen, Mark Hill, David Wood, Guri Sohi, Jim

Smith, Natalie Enright Jerger, Michel Dubois, Murali Annavaram, Per Stenström, and probably

others

Intel Paragon XP/S

Lecture 2
Slide 2 EECS 570

Announcements

Programming 1 assignment

 Discussion on this - Friday, Jan 17th

 Released this week

Jan 20th: No class (MLK Holiday)

Jan 21st : Quiz 2 is due on Canvas

 Released tomorrow along with reading list

Lecture 2
Slide 3 EECS 570

Readings

For today
 David Wood and Mark Hill. “Cost-Effective Parallel

Computing,” IEEE Computer, 1995.
 Mark Hill et al. “21st Century Computer Architecture.”

CCC White Paper, 2012.

Lecture 2
Slide 4 EECS 570

Lecture 2
Slide 5 EECS 570

Lecture 2
Slide 6 EECS 570

Lecture 2
Slide 7 EECS 570

Lecture 2
Slide 8 EECS 570

Lecture 2
Slide 9 EECS 570

Lecture 2
Slide 10 EECS 570

Lecture 2
Slide 11 EECS 570

Sequential Merge Sort

16MB input (32-bit integers)

Recurse(left)

Recurse(right)

Copy back to input array

Merge to scratch array

Time

Sequential
Execution

Lecture 2
Slide 12 EECS 570

Parallel Merge Sort
(as Parallel Directed Acyclic Graph)

16MB input (32-bit integers)

Recurse(left) Recurse(right)

Copy back to input array

Merge to scratch array

Time Parallel
Execution

Lecture 2
Slide 13 EECS 570

Parallel DAG for Merge Sort
(2-core)

Sequential Sort

Merge

Sequential Sort

Time

Lecture 2
Slide 14 EECS 570

Parallel DAG for Merge Sort
(4-core)

Lecture 2
Slide 15 EECS 570

Parallel DAG for Merge Sort
(8-core)

Lecture 2
Slide 16 EECS 570

The DAG Execution Model of a
Parallel Computation

• Given an input, dynamically create a DAG

• Nodes represent sequential computation
 Weighted by the amount of work

• Edges represent dependencies:
 Node A → Node B means that B cannot be scheduled unless

A is finished

Lecture 2
Slide 17 EECS 570

Sorting 16 elements in four cores

Lecture 2
Slide 18 EECS 570

Sorting 16 elements in four cores
(4 element arrays sorted in constant time)

1 16

1 8

1

1

1 8

1

1

Lecture 2
Slide 19 EECS 570

Performance Measures

• Given a graph G, a scheduler S, and P processors

• Tp(S) : Time on P processors using scheduler S

• Tp : Time on P processors using best scheduler

• T1 : Time on a single processor (sequential cost)

• T∞ : Time assuming infinite resources

Lecture 2
Slide 20 EECS 570

Work and Depth

• T1 = Work
 The total number of operations executed by a computation

• T∞ = Depth
 The longest chain of sequential dependencies (critical path)

in the parallel DAG

Lecture 2
Slide 21 EECS 570

T∞ (Depth): Critical Path Length
(Sequential Bottleneck)

Lecture 2
Slide 22 EECS 570

T1 (work): Time to Run Sequentially

Lecture 2
Slide 23 EECS 570

Sorting 16 elements in four cores
(4 element arrays sorted in constant time)

1 16

1 8

1

1

1 8

1

1

Work =
Depth =

Lecture 2
Slide 24 EECS 570

Some Useful Theorems

Lecture 2
Slide 25 EECS 570

Work Law

• “You cannot avoid work by parallelizing”

T1 / P ≤ TP

Lecture 2
Slide 26 EECS 570

Work Law

• “You cannot avoid work by parallelizing”

T1 / P ≤ TP

Speedup = T1 / TP

Lecture 2
Slide 27 EECS 570

Work Law

• “You cannot avoid work by parallelizing”

• Can speedup be more than 2 when we go from 1-core to 2-
core in practice?

T1 / P ≤ TP

Speedup = T1 / TP

Lecture 2
Slide 28 EECS 570

Depth Law

• More resources should make things faster

• You are limited by the sequential bottleneck

TP ≥ T∞

Lecture 2
Slide 29 EECS 570

Amount of Parallelism

Parallelism = T1 / T∞

Lecture 2
Slide 30 EECS 570

Maximum Speedup Possible

Parallelism

“speedup is bounded above
by available parallelism”

Speedup T1 / TP ≤ T1 / T∞

Lecture 2
Slide 31 EECS 570

Greedy Scheduler

• If more than P nodes can be scheduled,
pick any subset of size P

• If less than P nodes can be scheduled,
schedule them all

Lecture 2
Slide 35 EECS 570

Work/Depth of Merge Sort
(Sequential Merge)

• Work T1 : O(n log n)

• Depth T∞ : O(n)
 Takes O(n) time to merge n elements

• Parallelism:
 T1 / T∞ = O(log n) → really bad!

Lecture 2
Slide 36 EECS 570

Main Message

• Analyze the Work and Depth of your algorithm

• Parallelism is Work/Depth

• Try to decrease Depth
 the critical path
 a sequential bottleneck

• If you increase Depth
 better increase Work by a lot more!

Lecture 2
Slide 37 EECS 570

Amdahl’s law

• Sorting takes 70% of the execution time of a sequential
program

• You replace the sorting algorithm with one that scales
perfectly on multi-core hardware

• How many cores do you need to get a 4x speed-up on the
program?

Lecture 2
Slide 38 EECS 570

Amdahl’s law, 𝑓 = 70%

f = the parallel portion of execution

1 - f = the sequential portion of execution

c = number of cores used

Speedup(f, c) = 1 / (1 – f) + f / c

Lecture 2
Slide 39 EECS 570

Amdahl’s law, 𝑓 = 70%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
e

ed
u

p

#cores

Desired 4x
speedup

Speedup achieved
(perfect scaling on 70%)

Lecture 2
Slide 40 EECS 570

Amdahl’s law, 𝑓 = 70%

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
e

ed
u

p

#cores

Desired 4x
speedup

Speedup achieved
(perfect scaling on 70%)

Limit as c→∞ = 1/(1-f) = 3.33

Lecture 2
Slide 41 EECS 570

Amdahl’s law, 𝑓 = 10%

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
e

ed
u

p

#cores

Speedup achieved
with perfect scaling

Amdahl’s law limit,
just 1.11x

Lecture 2
Slide 42 EECS 570

Amdahl’s law, 𝑓 = 98%

0

10

20

30

40

50

60

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

Sp
ee

d
u

p

#cores

Lecture 2
Slide 43 EECS 570

Lesson

• Speedup is limited by sequential code

• Even a small percentage of sequential code can greatly limit
potential speedup

Lecture 2
Slide 44 EECS 570

Parallel Programming
Models and Interfaces

Lecture 2
Slide 45 EECS 570

Programming Models
• High level paradigm for expressing an algorithm

Examples:

Functional

Sequential, procedural

Shared memory

Message Passing

• Embodied in languages that support concurrent execution
 Incorporated into language constructs

 Incorporated as libraries added to existing sequential language

• Top level features:
(For conventional models – shared memory, message passing)

Multiple threads are conceptually visible to programmer

Communication/synchronization are visible to programmer
 Somewhat implicit for shared memory

Lecture 2
Slide 46 EECS 570

An Incomplete Taxonomy

• VLIW
• SIMD
• Vector
• Data Flow
• GPU
• MapReduce / WSC
• Systolic Array
• Reconfigurable / FPGA
• …

MP Systems

Shared Memory

Bus-based

Switching
Fabric-based

Incoherent Coherent

Message Passing

COTS-based

Switching
Fabric-based

Emerging &
Lunatic Fringe

Lecture 2
Slide 47 EECS 570

Programming Model Elements

• For both Shared Memory and Message Passing

• Processes and threads
Process: A shared address space and one or more threads of control

Thread: A sequence of instructions

Task: Less formal term – part of an overall job

Created, terminated, scheduled, etc.

• Communication
Passing of data

• Synchronization
Communicating control information

To assure reliable, correct communication

Lecture 2
Slide 48 EECS 570

Historical View

Join at:

Program with:

P P P

M M M

IO IO IO

I/O (Network)

Message passing

P P P

M M M

IO IO IO

Memory

Shared Memory

P P P

M M M

IO IO IO

Processor

Dataflow, SIMD,
VLIW, CUDA,

other data parallel

Lecture 2
Slide 49 EECS 570

Message Passing
Programming Model

Lecture 2
Slide 50 EECS 570

Message Passing Programming Model

• User level send/receive abstraction
 Match via local buffer (x,y), process (Q,P), and tag (t)
 Need naming/synchronization conventions

Process P
local address space

Process Q
local address space

match

Address x

Address y

send x, Q, t

recv y, P, t

Lecture 2
Slide 51 EECS 570

Message Passing Architectures

• Cannot directly access
memory of another node

• IBM SP-2, Intel Paragon,
Myrinet Quadrics QSW

• Cluster of workstations
(e.g., MPI on flux cluster)

CPU($)
Mem

Interconnect

Nic
CPU($)

Mem Nic
CPU($)

Mem Nic
CPU($)

Mem Nic

Lecture 2
Slide 52 EECS 570

MPI –Message Passing Interface API

• A widely used standard
For a variety of distributed memory systems

• SMP Clusters, workstation clusters, MPPs, heterogeneous systems

• Also works on Shared Memory MPs
Easy to emulate distributed memory on shared memory HW

• Can be used with a number of high level languages

• Available in the Flux cluster at Michigan

Lecture 2
Slide 53 EECS 570

Processes and Threads in Message
Passing

• Common: multiple threads/processes with different address spaces
 No shared memory
 Communication has to be explicit through sending and receiving of

messages

• Processes may also be running on different OSes
Process creation often external to execution environment; e.g. shell script

Hard for user process on one system to create process on another OS

• Lots of flexibility (advantage of message passing). Could have:
1. Multiple threads sharing an address space

2. Multiple processes sharing an address space

• 1 and 2 easily implemented on shared memory HW (with single OS)
Process and thread creation/management similar to shared memory

Lecture 2
Slide 54 EECS 570

Communication and Synchronization

• Combined in the message passing paradigm
Synchronization of messages part of communication semantics

• Point-to-point communication
From one process to another

• Collective communication
Involves groups of processes
e.g., broadcast

Lecture 2
Slide 55 EECS 570

Message Passing: Send()

• Send(<what>, <where-to>, <how>)

• What:
 A data structure or object in user space
 A buffer allocated from special memory
 A word or signal

• Where-to:
 A specific processor
 A set of specific processors
 A queue, dispatcher, scheduler

• How:
 Asynchronously vs. synchronously
 Typed
 In-order vs. out-of-order
 Prioritized

Lecture 2
Slide 56 EECS 570

Message Passing: Receive()

• Receive(<data>, <info>, <what>, <how>)

• Data: mechanism to return message content
 A buffer allocated in the user process
 Memory allocated elsewhere

• Info: meta-info about the message
 Sender-ID
 Type, Size, Priority
 Flow control information

• What: receive only certain messages
 Sender-ID, Type, Priority

• How:
 Blocking vs. non-blocking

Lecture 2
Slide 57 EECS 570

Synchronous vs Asynchronous

• Synchronous Send
Stall until message has actually been received

Implies a message acknowledgement from receiver to sender

• Synchronous Receive
Stall until message has actually been received

• Asynchronous Send and Receive
Sender and receiver can proceed regardless

Returns request handle that can be tested for message receipt

Request handle can be tested to see if message has been
sent/received

Lecture 2
Slide 58 EECS 570

Deadlock

• Blocking communications may deadlock

• Requires careful (safe) ordering of sends/receives

<Process 0> <Process 1>

Send(Process1, Message); Receive (Process0, Message);

Receive(Process1, Message); Send (Process0, Message);

<Process 0> <Process 1>

Send(Process1, Message); Send(Process0, Message);

Receive(Process1, Message); Receive(Process0, Message);

Lecture 2
Slide 59 EECS 570

Message Passing Paradigm Summary

Programming Model (Software) point of view:

• Disjoint, separate name spaces

• “Shared nothing”

• Communication via explicit, typed messages: send & receive

Lecture 2
Slide 60 EECS 570

Message Passing Paradigm Summary

Computer Engineering (Hardware) point of view:

• Treat inter-process communication as I/O device

• Critical issues:

 How to optimize API overhead

 Minimize communication latency

 Buffer management: how to deal with early/unsolicited messages,
message typing, high-level flow control

 Event signaling & synchronization

 Library support for common functions (barrier synchronization, task
distribution, scatter/gather, data structure maintenance)

Lecture 2
Slide 61 EECS 570

Shared Memory
Programming Model

Lecture 2
Slide 62 EECS 570

Shared-Memory Model

P1 P2 P3 P4

Memory System

 Multiple execution contexts sharing a single address space
 Multiple programs (MIMD)
 Or more frequently: multiple copies of one program (SPMD)

 Implicit (automatic) communication via loads and stores
 Theoretical foundation: PRAM model

Lecture 2
Slide 63 EECS 570

Global Shared Physical Address Space

• Communication,
sharing, synchronization
via loads/stores to
shared variables

• Facilities for address
translation between
local/global address
spaces

• Requires OS support to
maintain this mapping

Shared
portion of

address space

Private
portion of

address space

Common
physical

address space

Pn private

P2 private

P1 private

P0 private

store P0

load Pn

Lecture 2
Slide 64 EECS 570

Why Shared Memory?

Pluses
 For applications looks like multitasking uniprocessor
 For OS only evolutionary extensions required
 Easy to do communication without OS

Minuses
 Proper synchronization is complex
 Communication is implicit so harder to optimize
 Hardware designers must implement shared mem abstraction

 This is hard

Result
 Traditionally bus-based Symmetric Multiprocessors (SMPs), and

now CMPs are the most success parallel machines ever
 And the first with multi-billion-dollar markets

Lecture 2
Slide 65 EECS 570

Thread-Level Parallelism

• Thread-level parallelism (TLP)

 Collection of asynchronous tasks: not started and stopped together

 Data shared loosely, dynamically

• Example: database/web server (each query is a thread)

 accts is shared, can’t register allocate even if it were scalar

 id and amt are private variables, register allocated to r1, r2

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id,amt;

if (accts[id].bal >= amt)

{

 accts[id].bal -= amt;

 spew_cash();

}

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Lecture 2
Slide 66 EECS 570

Synchronization

• Mutual exclusion : locks, …

• Order : barriers, signal-wait, …

• Implemented using read/write/RMW to shared location
 Language-level:

 libraries (e.g., locks in pthread)
 Programmers can write custom synchronizations

 Hardware ISA
 E.g., test-and-set

• OS provides support for managing threads
 scheduling, fork, join, futex signal/wait

We’ll cover synchronization in more detail in a couple of weeks

Lecture 2
Slide 67 EECS 570

Cache Coherence

• Two $100 withdrawals from account #241 at two ATMs
 Each transaction maps to thread on different processor
 Track accts[241].bal (address is in r3)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

CPU0 MemCPU1

Lecture 2
Slide 68 EECS 570

No-Cache, No-Problem

• Scenario I: processors have no caches
 No problem

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

500

400

400

300

Lecture 2
Slide 69 EECS 570

Cache Incoherence

• Scenario II: processors have write-back caches
 Potentially 3 copies of accts[241].bal: memory, p0$, p1$
 Can get incoherent (out of sync)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

V:500 500

D:400 500

D:400 500V:500

D:400 500D:400

Lecture 2
Slide 70 EECS 570

Paired vs. Separate Processor/Memory?
• Separate processor/memory

 Uniform memory access (UMA): equal latency to all memory

+ Simple software, doesn’t matter where you put data

– Lower peak performance

 Bus-based UMAs common: symmetric multi-processors (SMP)

• Paired processor/memory
 Non-uniform memory access (NUMA): faster to local memory

– More complex software: where you put data matters

+ Higher peak performance: assuming proper data placement

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
MemR RRR

Lecture 2
Slide 71 EECS 570

Shared vs. Point-to-Point Networks

• Shared network: e.g., bus (left)
+ Low latency

– Low bandwidth: doesn’t scale beyond ~16 processors

+ Shared property simplifies cache coherence protocols (later)

• Point-to-point network: e.g., mesh or ring (right)
– Longer latency: may need multiple “hops” to communicate

+ Higher bandwidth: scales to 1000s of processors

– Cache coherence protocols are complex

CPU($)
Mem

CPU($)
Mem R

CPU($)
Mem R

CPU($)
MemR

CPU($)
MemR

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem RRRR

Lecture 2
Slide 72 EECS 570

Implementation #1: Snooping Bus MP

• Two basic implementations

• Bus-based systems

 Typically small: 2–8 (maybe 16) processors

 Typically processors split from memories (UMA)
 Sometimes multiple processors on single chip (CMP)

 Symmetric multiprocessors (SMPs)

 Common, I use one everyday

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

Lecture 2
Slide 73 EECS 570

Implementation #2: Scalable MP

• General point-to-point network-based systems
 Typically processor/memory/router blocks (NUMA)

 Glueless MP: no need for additional “glue” chips

 Can be arbitrarily large: 1000’s of processors
 Massively parallel processors (MPPs)

 In reality only government (DoD) has MPPs…
 Companies have much smaller systems: 32–64 processors
 Scalable multi-processors

CPU($)
Mem R

CPU($)
Mem R

CPU($)
MemR

CPU($)
MemR

Lecture 2
Slide 74 EECS 570

Snooping Cache-Coherence Protocols

Bus provides serialization point

Each cache controller “snoops” all bus transactions
 take action to ensure coherence

 invalidate
 update
 supply value

 depends on state of the block and the protocol

Lecture 2
Slide 75 EECS 570

Scalable Cache Coherence

• Scalable cache coherence: two part solution

• Part I: bus bandwidth
 Replace non-scalable bandwidth substrate (bus)…

 …with scalable bandwidth one (point-to-point network, e.g., mesh)

• Part II: processor snooping bandwidth
 Interesting: most snoops result in no action

 Replace non-scalable broadcast protocol (spam everyone)…

 …with scalable directory protocol (only spam processors that care)

• We will cover this in Unit 2

Lecture 2
Slide 76 EECS 570

Shared Memory Summary

• Shared-memory multiprocessors
+ “Simple” software: easy data sharing, handles both DLP & TLP

• …but hard to get fully correct!

– Complex hardware: must provide illusion of global address
space

• Two basic implementations
 Symmetric (UMA) multi-processors (SMPs)

 Underlying communication network: bus (ordered)
+ Low-latency, simple protocols
– Low-bandwidth, poor scalability

 Scalable (NUMA) multi-processors (MPPs)
 Underlying communication network: point-to-point (often

unordered)
+ Scalable bandwidth
– Higher-latency, complex protocols

	Slide 1
	Slide 2: Announcements
	Slide 3: Readings
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Sequential Merge Sort
	Slide 12: Parallel Merge Sort (as Parallel Directed Acyclic Graph)
	Slide 13: Parallel DAG for Merge Sort (2-core)
	Slide 14: Parallel DAG for Merge Sort (4-core)
	Slide 15: Parallel DAG for Merge Sort (8-core)
	Slide 16: The DAG Execution Model of a Parallel Computation
	Slide 17: Sorting 16 elements in four cores
	Slide 18: Sorting 16 elements in four cores (4 element arrays sorted in constant time)
	Slide 19: Performance Measures
	Slide 20: Work and Depth
	Slide 21: T∞ (Depth): Critical Path Length (Sequential Bottleneck)
	Slide 22: T1 (work): Time to Run Sequentially
	Slide 23: Sorting 16 elements in four cores (4 element arrays sorted in constant time)
	Slide 24: Some Useful Theorems
	Slide 25: Work Law
	Slide 26: Work Law
	Slide 27: Work Law
	Slide 28: Depth Law
	Slide 29: Amount of Parallelism
	Slide 30: Maximum Speedup Possible
	Slide 31: Greedy Scheduler
	Slide 35: Work/Depth of Merge Sort (Sequential Merge)
	Slide 36: Main Message
	Slide 37: Amdahl’s law
	Slide 38: Amdahl’s law, f equals 70%
	Slide 39: Amdahl’s law, f equals 70%
	Slide 40: Amdahl’s law, f equals 70%
	Slide 41: Amdahl’s law, f equals 10%
	Slide 42: Amdahl’s law, f equals 98%
	Slide 43: Lesson
	Slide 44: Parallel Programming Models and Interfaces
	Slide 45: Programming Models
	Slide 46: An Incomplete Taxonomy
	Slide 47: Programming Model Elements
	Slide 48: Historical View
	Slide 49: Message Passing Programming Model
	Slide 50: Message Passing Programming Model
	Slide 51: Message Passing Architectures
	Slide 52: MPI –Message Passing Interface API
	Slide 53: Processes and Threads in Message Passing
	Slide 54: Communication and Synchronization
	Slide 55: Message Passing: Send()
	Slide 56: Message Passing: Receive()
	Slide 57: Synchronous vs Asynchronous
	Slide 58: Deadlock
	Slide 59: Message Passing Paradigm Summary
	Slide 60: Message Passing Paradigm Summary
	Slide 61: Shared Memory Programming Model
	Slide 62: Shared-Memory Model
	Slide 63: Global Shared Physical Address Space
	Slide 64: Why Shared Memory?
	Slide 65: Thread-Level Parallelism
	Slide 66: Synchronization
	Slide 67: Cache Coherence
	Slide 68: No-Cache, No-Problem
	Slide 69: Cache Incoherence
	Slide 70: Paired vs. Separate Processor/Memory?
	Slide 71: Shared vs. Point-to-Point Networks
	Slide 72: Implementation #1: Snooping Bus MP
	Slide 73: Implementation #2: Scalable MP
	Slide 74: Snooping Cache-Coherence Protocols
	Slide 75: Scalable Cache Coherence
	Slide 76: Shared Memory Summary

