
Lecture 2
Slide 1 EECS 570

EECS	570	
Lecture	2	
Message	Passing	&	
Shared	Memory	
Winter	2024	

Prof.	Ronald	Dreslinski	

h7p://www.eecs.umich.edu/courses/eecs570/	

	Slides developed in part by Drs. Adve, Falsafi, Martin, Musuvathi, Narayanasamy, Nowatzyk,
Wenisch, Sarkar, Mikko Lipasti, Jim Smith, John Shen, Mark Hill, David Wood, Guri Sohi, Jim
Smith, Natalie Enright Jerger, Michel Dubois, Murali Annavaram, Per Stenström, and probably
others

Intel	Paragon	XP/S	

Lecture 2
Slide 2 EECS 570

Announcements
Discussion	this	Friday.	
• Will	discuss	programming	assignment	1	

Lecture 2
Slide 3 EECS 570

Readings
For	today	

❒  David	Wood	and	Mark	Hill.	“Cost-EffecJve	Parallel	
CompuJng,”	IEEE	Computer,	1995.			

❒  Mark	Hill	et	al.	“21st	Century	Computer	Architecture.”		
CCC	White	Paper,	2012.	

For	Monday	1/22:	

	
	
	
	
	

Christina Delimitrou and
Christos Kozyrakis.
Amdahl's law for tail
latency. Commun. ACM 61,
July 2018

H Kim, R Vuduc, S
Baghsorkhi, J Choi, Wen-
mei Hwu, Performance
Analysis and Tuning for
General Purpose Graphics
Processing Units (GPGPU),
Ch. 1

Lecture 2
Slide 4 EECS 570

Sequential Merge Sort

16MB	input	(32-bit	integers)	

Recurse(leX)	

Recurse(right)	

Copy	back	to	input	array	

Merge	to	scratch	array	

Time	

SequenJal	
ExecuJon	

Lecture 2
Slide 5 EECS 570

Parallel Merge Sort
(as Parallel Directed Acyclic Graph)

16MB	input	(32-bit	integers)	

Recurse(leX)	 Recurse(right)	

Copy	back	to	input	array	

Merge	to	scratch	array	

Time	 Parallel	
ExecuJon	

Lecture 2
Slide 6 EECS 570

Parallel DAG for Merge Sort
(2-core)

SequenJal		Sort	

Merge	

SequenJal	Sort	

Time	

Lecture 2
Slide 7 EECS 570

Parallel DAG for Merge Sort
(4-core)

Lecture 2
Slide 8 EECS 570

Parallel DAG for Merge Sort
(8-core)

Lecture 2
Slide 9 EECS 570

The DAG Execution Model of a
Parallel Computation

• Given	an	input,	dynamically	create	a	DAG	

• Nodes	represent	sequenJal	computaJon	
❒  Weighted	by	the	amount	of	work		

• Edges	represent	dependencies:	
❒  Node	A	à	Node	B	means	that	B	cannot	be	scheduled	unless	

A	is	finished	

Lecture 2
Slide 10 EECS 570

Sorting 16 elements in four cores

Lecture 2
Slide 11 EECS 570

Sorting 16 elements in four cores
(4 element arrays sorted in constant time)

1	 16	

1	 8	

1	

1	

1	 8	

1	

1	

Lecture 2
Slide 12 EECS 570

Performance Measures
• Given	a	graph	G,	a	scheduler	S,	and	P	processors	

• Tp(S)	:	Time	on	P	processors	using	scheduler	S	

• Tp 	:	Time	on	P	processors	using	best	scheduler	

• T1	 	:	Time	on	a	single	processor	(sequenJal	cost)	

• T∞ 	:	Time	assuming	infinite	resources	

Lecture 2
Slide 13 EECS 570

Work and Depth

• T1	=	Work	
❒  The	total	number	of	operaJons	executed	by	a	computaJon	
		

• T∞	=	Depth	
❒  The	longest	chain	of	sequenJal	dependencies	(criJcal	path)	

in	the	parallel	DAG	

	

Lecture 2
Slide 14 EECS 570

T∞ (Depth): Critical Path Length
(Sequential Bottleneck)

Lecture 2
Slide 15 EECS 570

T1 (work): Time to Run Sequentially

Lecture 2
Slide 16 EECS 570

Sorting 16 elements in four cores
(4 element arrays sorted in constant time)

1	 16	

1	 8	

1	

1	

1	 8	

1	

1	

Work	=		
Depth	=		

Lecture 2
Slide 17 EECS 570

Some Useful Theorems

Lecture 2
Slide 18 EECS 570

Work Law
• “You	cannot	avoid	work	by	parallelizing”	

T1 / P ≤ TP

Lecture 2
Slide 19 EECS 570

Work Law
• “You	cannot	avoid	work	by	parallelizing”	

	

T1 / P ≤ TP

Speedup = T1 / TP

Lecture 2
Slide 20 EECS 570

Work Law
• “You	cannot	avoid	work	by	parallelizing”	

• Can	speedup	be	more	than	2	when	we	go	from	1-core	to	2-
core	in	pracJce?	

	

T1 / P ≤ TP

Speedup = T1 / TP

Lecture 2
Slide 21 EECS 570

Depth Law
• More	resources	should	make	things	faster	
• You	are	limited	by	the	sequenJal	bofleneck	
	

TP ≥ T∞

Lecture 2
Slide 22 EECS 570

Amount of Parallelism

Parallelism = T1 / T∞

Lecture 2
Slide 23 EECS 570

Maximum Speedup Possible

Parallelism	

“speedup	is	bounded	above		
by	available	parallelism”	

Speedup	 T1 / TP ≤ T1 / T∞

Lecture 2
Slide 24 EECS 570

Greedy Scheduler

• If	more	than	P	nodes	can	be	scheduled,		
pick	any	subset	of	size	P	

• If	less	than	P	nodes	can	be	scheduled,		
schedule	them	all	

Lecture 2
Slide 25 EECS 570

More	Reading:	hfp://www.cs.cmu.edu/afs/cs/academic/class/15492-f07/www/scribe/lec4/lecture4.pdf			

Lecture 2
Slide 26 EECS 570

Performance of the Greedy Scheduler

Work	law T1 / P ≤ TP

Depth	law T∞ ≤ TP

TP(Greedy) ≤ T1 / P + T∞

Lecture 2
Slide 27 EECS 570

Greedy is optimal within factor of 2

Work	law T1 / P ≤ TP

Depth	law T∞ ≤ TP

TP ≤ TP(Greedy) ≤ 2 TP

Lecture 2
Slide 28 EECS 570

Work/Depth of Merge Sort
(Sequential Merge)

• Work	T1 : O(n log n)
• Depth	T∞ : O(n)

❒  Takes	O(n)	Jme	to	merge	n	elements	

• Parallelism:	
❒  T1 / T∞ = O(log n) à	really	bad!	

Lecture 2
Slide 29 EECS 570

Main Message
• Analyze	the	Work	and	Depth	of	your	algorithm	
• Parallelism	is	Work/Depth	
• Try	to	decrease	Depth	

❒  the	criJcal	path	
❒  a	sequen;al	bofleneck	

• If	you	increase	Depth	
❒  befer	increase	Work	by	a	lot	more!	

Lecture 2
Slide 30 EECS 570

Amdahl’s law
• SorJng	takes	70%	of	the	execuJon	Jme	of	a	sequenJal	
program	

• You	replace	the	sorJng	algorithm	with	one	that	scales	
perfectly	on	mulJ-core	hardware	

• How	many	cores	do	you	need	to	get	a	4x	speed-up	on	the	
program?	

Lecture 2
Slide 31 EECS 570

Amdahl’s law, 𝑓=70%

 f =	the	parallel	porJon	of	execuJon	
1 - f =	the	sequenJal	porJon	of	execuJon

c =	number	of	cores	used	

Speedup(f, c) = 1 / (1 – f) + f / c

Lecture 2
Slide 32 EECS 570

Amdahl’s law, 𝑓=70%

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

4.5	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Sp
ee
du

p	

#cores	

Desired	4x	
speedup	

Speedup	achieved	
(perfect	scaling	on	70%)	

Lecture 2
Slide 33 EECS 570

Amdahl’s law, 𝑓=70%

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

4.5	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Sp
ee
du

p	

#cores	

Desired	4x	
speedup	

Speedup	achieved	
(perfect	scaling	on	70%)	

Limit	as	c→∞	=	1/(1-f)	=	3.33	

Lecture 2
Slide 34 EECS 570

Amdahl’s law, 𝑓=10%

0.94	

0.96	

0.98	

1.00	

1.02	

1.04	

1.06	

1.08	

1.10	

1.12	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

Sp
ee
du

p	

#cores	

Speedup	achieved	
with	perfect	scaling	

Amdahl’s	law	limit,	
just	1.11x	

Lecture 2
Slide 35 EECS 570

Amdahl’s law, 𝑓=98%

0	

10	

20	

30	

40	

50	

60	

1	 7	 13	 19	 25	 31	 37	 43	 49	 55	 61	 67	 73	 79	 85	 91	 97	103	109	115	121	127	

Sp
ee
du

p	

#cores	

Lecture 2
Slide 36 EECS 570

Lesson
• Speedup	is	limited	by	sequenJal	code	

• Even	a	small	percentage	of	sequenJal	code	can	greatly	limit	
potenJal	speedup	

Lecture 2
Slide 37 EECS 570

 21st Century

Computer Architecture
 A CCC community white paper

http://cra.org/ccc/docs/init/

21stcenturyarchitecturewhitepaper.pdf

Slides	from	M.	Hill,	HPCA	2014	Keynote	

Lecture 2
Slide 38 EECS 570

20th Century ICT Set Up

• InformaJon	&	CommunicaJon	Technology	(ICT)	
Has	Changed	Our	World	
❒  <long	list	omifed>	

• Required	innovaJons	in	algorithms,	applicaJons,	
programming	languages,	…	,	&	system	soXware	

• Key	(invisible)	enablers	(cost-)performance	gains	
❒  Semiconductor	technology	(“Moore’s	Law”)	
❒  Computer	architecture	(~80x	per	Danowitz	et	al.)	

Lecture 2
Slide 39 EECS 570

Enablers: Technology + Architecture

Danowitz	et	al.,	CACM	04/2012,	Figure	1	
	

Technology

Architecture

Lecture 2
Slide 40 EECS 570

21st Century ICT Promises More

Data-centric	personalized	health	care	 ComputaJon-driven	scienJfic	discovery	

Much	more:	known	&	unknown	Human	network	analysis	

Lecture 2
Slide 41 EECS 570

21st Century App Characteristics

BIG DATA

Whither enablers of future
(cost-)performance gains?

ALWAYS ONLINE

SECURE/PRIVATE

Lecture 2
Slide 42 EECS 570

Technology’s Challenges 1/2
Late 20th Century The New Reality

Moore’s Law —
2× transistors/chip

Transistor count still 2× BUT…

Dennard Scaling —
~constant power/chip

Gone. Can’t repeatedly double
power/chip

42

Lecture 2
Slide 43 EECS 570

Technology’s Challenges 2/2
Late 20th Century The New Reality

Moore’s Law —
2× transistors/chip

Transistor count still 2× BUT…

Dennard Scaling —
~constant power/chip

Gone. Can’t repeatedly double
power/chip

Modest (hidden)
transistor unreliability

Increasing transistor
unreliability can’t be hidden

Focus on computation
over communication

Communication (energy) more
expensive than computation

1-time costs amortized
via mass market

One-time cost much worse &
want specialized platforms

How should architects step up as technology falters?

Lecture 2
Slide 44 EECS 570

“Timeline” from DARPA ISAT
Sy

st
e

m
 C

a
p

a
b

ili
ty

 (
lo

g
)

80s 90s 00s 10s 20s 30s 40s

Fallow Period

Our Focus

50s

Source:	Advancing	Computer	Systems	without	Technology	Progress,	
ISAT	Outbrief	(hfp://www.cs.wisc.edu/~markhill/papers/isat2012_ACSWTP.pdf)	

Mark	D.	Hill	and	Christos	Kozyrakis,	DARPA/ISAT	Workshop,	March	26-27,	2012.	
Approved	for	Public	Release,	DistribuJon	Unlimited	

The	views	expressed	are	those	of	the	author	and	do	not	reflect	the	official	policy	or	
	posiJon	of	the	Department	of	Defense	or	the	U.S.	Government.			

Lecture 2
Slide 45 EECS 570

21st Century Comp Architecture
20th Century 21st Century 	

Single-chip in
generic
computer

Architecture as Infrastructure:
Spanning sensors to clouds
Performance + security, privacy,
availability, programmability, …

		
		
Cross-
Cutting:

Break
current
layers with
new
interfaces

Performance
via invisible
instr.-level
parallelism

Energy First
●  Parallelism
●  Specialization
●  Cross-layer design

Predictable
technologies:
CMOS, DRAM,
& disks

New technologies (non-volatile
memory, near-threshold, 3D,
photonics, …) Rethink: memory &
storage, reliability, communication

X	

X	

Lecture 2
Slide 46 EECS 570

21st Century Comp Architecture
20th Century 21st Century 	

Single-chip in
generic
computer

Architecture as Infrastructure:
Spanning sensors to clouds
Performance + security, privacy,
availability, programmability, …

		
		
Cross-
Cutting:

Break
current
layers with
new
interfaces

Performance
via invisible
instr.-level
parallelism

Energy First
●  Parallelism
●  Specialization
●  Cross-layer design

Predictable
technologies:
CMOS, DRAM,
& disks

New technologies (non-volatile
memory, near-threshold, 3D,
photonics, …) Rethink: memory &
storage, reliability, communication

X	

Lecture 2
Slide 47 EECS 570

21st Century Comp Architecture
20th Century 21st Century 	

Single-chip in
generic
computer

Architecture as Infrastructure:
Spanning sensors to clouds
Performance + security, privacy,
availability, programmability, …

		
		
Cross-
Cutting:

Break
current
layers with
new
interfaces

Performance
via invisible
instr.-level
parallelism

Energy First
●  Parallelism
●  Specialization
●  Cross-layer design

Predictable
technologies:
CMOS, DRAM,
& disks

New technologies (non-volatile
memory, near-threshold, 3D,
photonics, …) Rethink: memory &
storage, reliability, communication

Lecture 2
Slide 48 EECS 570

21st Century Comp Architecture
20th Century 21st Century 	

Single-chip in
generic
computer

Architecture as Infrastructure:
Spanning sensors to clouds
Performance + security, privacy,
availability, programmability, …

		
		
Cross-
Cutting:

Break
current
layers with
new
interfaces

Performance
via invisible
instr.-level
parallelism

Energy First
●  Parallelism
●  Specialization
●  Cross-layer design

Predictable
technologies:
CMOS, DRAM,
& disks

New technologies (non-volatile
memory, near-threshold, 3D,
photonics, …) Rethink: memory &
storage, reliability, communication

Lecture 2
Slide 49 EECS 570

21st Century Comp Architecture
20th Century 21st Century 	

Single-chip in
stand-alone
computer

Architecture as Infrastructure:
Spanning sensors to clouds
Performance + security, privacy,
availability, programmability, …

		
		
Cross-
Cutting:

Break
current
layers with
new
interfaces

Performance
via invisible
instr.-level
parallelism

Energy First
●  Parallelism
●  Specialization
●  Cross-layer design

Predictable
technologies:
CMOS, DRAM,
& disks

New technologies (non-volatile
memory, near-threshold, 3D,
photonics, …) Rethink: memory &
storage, reliability, communication

Lecture 2
Slide 50 EECS 570

Cost-Effective Computing
[Wood & Hill, IEEE Computer 1995]

	
Premise:	Isn’t	speedup(P)	<	P	inefficient?	

❒  If	only	throughput	mafers,	use	P	computers	instead…	

• Key	observaJon:	much	of	a	computer’s	cost	is	NOT	CPU	
Let	Costup(P)	=	Cost(P)/Cost(1)	
Parallel	compuJng	is	cost-effecJve	if:	

❒  Speedup(P)	>	Costup(P)	

• E.g.,	for	SGI	PowerChallenge	w/	500	MB	
❒  Costup(32)	=	8.6	

Lecture 2
Slide 51 EECS 570

Parallel Programming
Models and Interfaces

Lecture 2
Slide 52 EECS 570

Programming Models
•  High	level	paradigm	for	expressing	an	algorithm	

❒ Examples:	
❍ FuncJonal	
❍ SequenJal,	procedural	
❍ Shared	memory	
❍ Message	Passing	

•  Embodied	in	languages	that	support	concurrent	execuJon	
❒  Incorporated	into	language	constructs	
❒  Incorporated	as	libraries	added	to	exisJng	sequenJal	language	

•  Top	level	features:	
(For	convenJonal	models	–	shared	memory,	message	passing)	
❒ MulJple	threads	are	conceptually	visible	to	programmer	
❒ CommunicaJon/synchronizaJon	are	visible	to	programmer	

❍  Somewhat	implicit	for	shared	memory	

Lecture 2
Slide 53 EECS 570

An Incomplete Taxonomy

•  VLIW	
•  SIMD	
•  Vector	
•  Data	Flow	
•  GPU	
• MapReduce	/	WSC	
•  Systolic	Array	
•  Reconfigurable	/	FPGA	
•  …	

MP	Systems	

Shared	Memory	

Bus-based	

Switching	
Fabric-based	

Incoherent	 Coherent	

Message	Passing	

COTS-based	

Switching	
Fabric-based	

Emerging	&	
LunaJc	Fringe	

Lecture 2
Slide 54 EECS 570

Programming Model Elements
•  For	both	Shared	Memory	and	Message	Passing	
•  Processes	and	threads	

❒ Process:	A	shared	address	space	and	one	or	more	threads	of	control	
❒ Thread:	A	sequence	of	instrucJons	
❒ Task:		Less	formal	term	–	part	of	an	overall	job		
❒ Created,	terminated,	scheduled,	etc.	

•  CommunicaJon	
❒ Passing	of	data	

•  SynchronizaJon	
❒ CommunicaJng	control	informaJon	
❒ To	assure	reliable,	correct	communicaJon	

Lecture 2
Slide 55 EECS 570

Historical View

Join	at:		

Program	with:		

P	 P	 P	

M	 M	 M	

IO	 IO	 IO	

I/O	(Network)	

Message	passing	

P	 P	 P	

M	 M	 M	

IO	 IO	 IO	

Memory	

Shared	Memory	

P	 P	 P	

M	 M	 M	

IO	 IO	 IO	

Processor	

Dataflow,	SIMD,		
VLIW,	CUDA,	

other	data	parallel	

Lecture 2
Slide 56 EECS 570

Message Passing
Programming Model

Lecture 2
Slide 57 EECS 570

Message Passing Programming Model

• User	level	send/receive	abstracJon	
❒  Match	via	local	buffer	(x,y),	process	(Q,P),	and	tag	(t)	
❒  Need	naming/synchronizaJon	convenJons	

Process	P		
local	address	space	

Process	Q		
local	address	space	

match	

Address	x	

Address	y	

send	x,	Q,	t	

recv	y,	P,	t	

Lecture 2
Slide 58 EECS 570

Message Passing Architectures

• Cannot	directly	access	
memory	of	another	node	

• IBM	SP-2,	Intel	Paragon,	
Myrinet	Quadrics	QSW	

• Cluster	of	workstaJons	
(e.g.,	MPI	on	flux	cluster)	

CPU($)	
Mem	

Interconnect	

Nic	
CPU($)	
Mem	Nic	

CPU($)	
Mem	Nic	

CPU($)	
Mem	Nic	

Lecture 2
Slide 59 EECS 570

MPI –Message Passing Interface API

•  A	widely	used	standard	
❒ For	a	variety	of	distributed	memory	systems	

•  SMP	Clusters,	workstaJon	clusters,	MPPs,	heterogeneous	systems	

•  Also	works	on	Shared	Memory	MPs	
❒ Easy	to	emulate	distributed	memory	on	shared	memory	HW	

•  Can	be	used	with	a	number	of	high	level	languages	

•  Available	in	the	Flux	cluster	at	Michigan	

Lecture 2
Slide 60 EECS 570

Processes and Threads in Message
Passing

•  Common:	mulJple	threads/processes	with	different	address	spaces	
❒  No	shared	memory	
❒  CommunicaJon	has	to	be	explicit	through	sending	and	receiving	of	

messages	
•  Processes	may	also	be	running	on	different	OSes	

❒ Process	creaJon	oXen	external	to	execuJon	environment;	e.g.	shell	script	
❒ Hard	for	user	process	on	one	system	to	create	process	on	another	OS	

•  Lots	of	flexibility	(advantage	of	message	passing).	Could	have:	
1.  	MulJple	threads	sharing	an	address	space	
2.  	MulJple	processes	sharing	an	address	space	

•  1	and	2	easily	implemented	on	shared	memory	HW	(with	single	OS)	
❒ Process	and	thread	creaJon/management	similar	to	shared	memory	

Lecture 2
Slide 61 EECS 570

Communication and Synchronization
•  Combined	in	the	message	passing	paradigm	

❒ SynchronizaJon	of	messages	part	of	communicaJon	semanJcs	

•  Point-to-point	communicaJon	
❒ From	one	process	to	another	

•  CollecJve	communicaJon	
❒ Involves	groups	of	processes	
❒ e.g.,	broadcast	

Lecture 2
Slide 62 EECS 570

Message Passing: Send()

• Send(<what>,	<where-to>,	<how>)	
• What:	

❒  A	data	structure	or	object	in	user	space	
❒  A	buffer	allocated	from	special	memory	
❒  A	word	or	signal	

• Where-to:	
❒  A	specific	processor	
❒  A	set	of	specific	processors	
❒  A	queue,	dispatcher,	scheduler	

• How:	
❒  Asynchronously	vs.	synchronously	
❒  Typed	
❒  In-order	vs.	out-of-order	
❒  PrioriJzed	

Lecture 2
Slide 63 EECS 570

Message Passing: Receive()

• Receive(<data>,	<info>,	<what>,	<how>)	
• Data:	mechanism	to	return	message	content	

❒  A	buffer	allocated	in	the	user	process	
❒  Memory	allocated	elsewhere	

•  Info:	meta-info	about	the	message	
❒  Sender-ID	
❒  Type,	Size,	Priority	
❒  Flow	control	informaJon	

• What:	receive	only	certain	messages	
❒  Sender-ID,	Type,	Priority	

• How:	
❒  Blocking	vs.	non-blocking	

Lecture 2
Slide 64 EECS 570

Synchronous vs Asynchronous

•  Synchronous	Send	
❒ Stall	unJl	message	has	actually	been	received	
❒ Implies	a	message	acknowledgement	from	receiver	to	sender	

•  Synchronous	Receive	
❒ Stall	unJl	message	has	actually	been	received	

•  Asynchronous	Send	and	Receive	
❒ Sender	and	receiver	can	proceed	regardless	
❒ Returns	request	handle	that	can	be	tested	for	message	receipt	
❒ Request	handle	can	be	tested	to	see	if	message	has	been	sent/
received	

Lecture 2
Slide 65 EECS 570

Deadlock
•  Blocking	communicaJons	may	deadlock	

•  Requires	careful	(safe)	ordering	of	sends/receives	

<Process 0> <Process 1>
Send(Process1, Message); Receive (Process0, Message);
Receive(Process1, Message); Send (Process0, Message);

<Process 0> <Process 1>
Send(Process1, Message); Send(Process0, Message);
Receive(Process1, Message); Receive(Process0, Message);

Lecture 2
Slide 66 EECS 570

Message Passing Paradigm Summary

Programming	Model	(SoXware)	point	of	view:	

• Disjoint,	separate	name	spaces	

•  “Shared	nothing”	

•  CommunicaJon	via	explicit,	typed	messages:	send	&	receive	

Lecture 2
Slide 67 EECS 570

Message Passing Paradigm Summary

Computer	Engineering	(Hardware)	point	of	view:	

•  Treat	inter-process	communicaJon	as	I/O	device	

•  CriJcal	issues:	
❒  How	to	opJmize	API	overhead	

❒  Minimize	communicaJon	latency	

❒  Buffer	management:	how	to	deal	with	early/unsolicited	messages,	
message	typing,	high-level	flow	control	

❒  Event	signaling	&	synchronizaJon	

❒  Library	support	for	common	funcJons	(barrier	synchronizaJon,	task	
distribuJon,	scafer/gather,	data	structure	maintenance)	

Lecture 2
Slide 68 EECS 570

Shared Memory
Programming Model

Lecture 2
Slide 69 EECS 570

Shared-Memory Model

P1	 P2	 P3	 P4	

Memory	System	

❒  MulJple	execuJon	contexts	sharing	a	single	address	space	
❍ MulJple	programs	(MIMD)	
❍  Or	more	frequently:	mulJple	copies	of	one	program	(SPMD)		

❒  Implicit	(automaJc)	communicaJon	via	loads	and	stores	
❒  TheoreJcal	foundaJon:	PRAM	model	

Lecture 2
Slide 70 EECS 570

Global Shared Physical Address Space

• CommunicaJon,	
sharing,	synchronizaJon	
via	loads/stores	to	
shared	variables	

• FaciliJes	for	address	
translaJon	between	
local/global	address	
spaces	

• Requires	OS	support	to	
maintain	this	mapping	

Shared	
porJon	of	

address	space	
Private	

porJon	of	
address	space	

Common	
physical	

address	space	

Pn	private	

P2	private	

P1	private	

P0	private	

store	P0	

load	Pn	

Lecture 2
Slide 71 EECS 570

Why Shared Memory?
Pluses	

❒  For	applicaJons	looks	like	mulJtasking	uniprocessor	
❒  For	OS	only	evoluJonary	extensions	required	
❒  Easy	to	do	communicaJon	without	OS	

Minuses	
❒  Proper	synchronizaJon	is	complex	
❒  CommunicaJon	is	implicit	so	harder	to	opJmize	
❒  Hardware	designers	must	implement	shared	mem	abstracJon	

❍  This	is	hard	

Result	
❒  TradiJonally	bus-based	Symmetric	MulJprocessors	(SMPs),	and	

now	CMPs	are	the	most	success	parallel	machines	ever	
❒  And	the	first	with	mulJ-billion-dollar	markets	

Lecture 2
Slide 72 EECS 570

Thread-Level Parallelism

• Thread-level	parallelism	(TLP)	
❒  CollecJon	of	asynchronous	tasks:	not	started	and	stopped	together	
❒  Data	shared	loosely,	dynamically	

• Example:	database/web	server	(each	query	is	a	thread)	
❒  	accts	is	shared,	can’t	register	allocate	even	if	it	were	scalar	
❒  	id	and	amt	are	private	variables,	register	allocated	to	r1,	r2

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id,amt;
if (accts[id].bal >= amt)
{
 accts[id].bal -= amt;
 spew_cash();
}

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

Lecture 2
Slide 73 EECS 570

Synchronization
• Mutual	exclusion 	 	:	locks,	…	

• Order 	 	 	:	barriers,	signal-wait,	…	

•  Implemented	using	read/write/RMW	to	shared	locaJon		
❒  Language-level:		

❍  libraries	(e.g.,	locks	in	pthread)		
❍  Programmers	can	write	custom	synchronizaJons	

❒  Hardware	ISA	
❍  E.g.,	test-and-set	

• OS	provides	support	for	managing	threads	
❒  scheduling,	fork,	join,	futex	signal/wait	

We’ll	cover	synchronizaJon	in	more	detail	in	a	couple	of	weeks	

Lecture 2
Slide 74 EECS 570

Cache Coherence

• Two	$100	withdrawals	from	account	#241	at	two	ATMs	
❒  Each	transacJon	maps	to	thread	on	different	processor	
❒  Track	accts[241].bal	(address	is	in	r3)	

Processor 0
0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

Processor 1

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

CPU0 Mem CPU1

Lecture 2
Slide 75 EECS 570

No-Cache, No-Problem

• Scenario	I:	processors	have	no	caches	
❒  No	problem	

Processor 0
0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

Processor 1

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

500
500

400

400

300

Lecture 2
Slide 76 EECS 570

Cache Incoherence

• Scenario	II:	processors	have	write-back	caches		
❒  PotenJally	3	copies	of	accts[241].bal:	memory,	p0$,	p1$	
❒  Can	get	incoherent	(out	of	sync)	

Processor 0
0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

Processor 1

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

500
V:500 500

D:400 500

D:400 500 V:500

D:400 500 D:400

Lecture 2
Slide 77 EECS 570

Paired vs. Separate Processor/Memory?
• Separate	processor/memory	

❒  Uniform	memory	access	(UMA):	equal	latency	to	all	memory	
+  Simple	soXware,	doesn’t	mafer	where	you	put	data	
–  Lower	peak	performance	
❒  Bus-based	UMAs	common:	symmetric	mulJ-processors	(SMP)	

• Paired	processor/memory	
❒  Non-uniform	memory	access	(NUMA):	faster	to	local	memory	
–  More	complex	soXware:	where	you	put	data	mafers	
+  Higher	peak	performance:	assuming	proper	data	placement	

CPU($)	

Mem	

CPU($)	

Mem	

CPU($)	

Mem	

CPU($)	

Mem	

CPU($)	
Mem	

CPU($)	
Mem	

CPU($)	
Mem	

CPU($)	
Mem	R	 R	R	R	

Lecture 2
Slide 78 EECS 570

Shared vs. Point-to-Point Networks
• Shared	network:	e.g.,	bus	(leX)	

+  Low	latency	
–  Low	bandwidth:	doesn’t	scale	beyond	~16	processors	
+  Shared	property	simplifies	cache	coherence	protocols	(later)	

• Point-to-point	network:	e.g.,	mesh	or	ring	(right)	
–  Longer	latency:	may	need	mulJple	“hops”	to	communicate	
+  Higher	bandwidth:	scales	to	1000s	of	processors	
–  Cache	coherence	protocols	are	complex	

CPU($)	
Mem	

CPU($)	
Mem	 R	

CPU($)	
Mem	 R	

CPU($)	
Mem	R	

CPU($)	
Mem	R	

CPU($)	
Mem	

CPU($)	
Mem	

CPU($)	
Mem	 R	R	R	R	

Lecture 2
Slide 79 EECS 570

Implementation #1: Snooping Bus MP

• Two	basic	implementaJons	

• Bus-based	systems	
❒  Typically	small:	2–8	(maybe	16)	processors	
❒  Typically	processors	split	from	memories	(UMA)	

❍  SomeJmes	mulJple	processors	on	single	chip	(CMP)	
❍  Symmetric	mulJprocessors	(SMPs)	
❍  Common,	I	use	one	everyday	

CPU($)	

Mem	

CPU($)	

Mem	

CPU($)	

Mem	

CPU($)	

Mem	

Lecture 2
Slide 80 EECS 570

Implementation #2: Scalable MP

• General	point-to-point	network-based	systems	
❒  Typically	processor/memory/router	blocks	(NUMA)	

❍  Glueless	MP:	no	need	for	addiJonal	“glue”	chips	
❒  Can	be	arbitrarily	large:	1000’s	of	processors	

❍ Massively	parallel	processors	(MPPs)	
❒  In	reality	only	government	(DoD)	has	MPPs…	

❍  Companies	have	much	smaller	systems:	32–64	processors	
❍  Scalable	mulJ-processors	

CPU($)	
Mem	 R	

CPU($)	
Mem	 R	

CPU($)	
Mem	R	

CPU($)	
Mem	R	

Lecture 2
Slide 81 EECS 570

Snooping Cache-Coherence Protocols
Bus	provides	serializaJon	point	
	
Each	cache	controller	“snoops”	all	bus	transacJons	

❒  take	acJon	to	ensure	coherence	
❍  invalidate	
❍  update	
❍  supply	value	

❒  depends	on	state	of	the	block	and	the	protocol	

Lecture 2
Slide 82 EECS 570

Scalable Cache Coherence
• Scalable	cache	coherence:	two	part	soluJon	

• Part	I:	bus	bandwidth	
❒  Replace	non-scalable	bandwidth	substrate	(bus)…	
❒  …with	scalable	bandwidth	one	(point-to-point	network,	e.g.,	mesh)	

• Part	II:	processor	snooping	bandwidth	
❒  InteresJng:	most	snoops	result	in	no	acJon	
❒  Replace	non-scalable	broadcast	protocol	(spam	everyone)…	
❒  …with	scalable	directory	protocol	(only	spam	processors	that	care)	

• We	will	cover	this	in	Unit	3	

Lecture 2
Slide 83 EECS 570

Shared Memory Summary
• Shared-memory	mulJprocessors	

+  “Simple”	soXware:	easy	data	sharing,	handles	both	DLP	&	TLP	
•  …but	hard	to	get	fully	correct!	

–  Complex	hardware:	must	provide	illusion	of	global	address	
space	

• Two	basic	implementaJons	
❒  Symmetric	(UMA)	mulJ-processors	(SMPs)	

❍  Underlying	communicaJon	network:	bus	(ordered)	
+  Low-latency,	simple	protocols	
–  Low-bandwidth,	poor	scalability	

❒  Scalable	(NUMA)	mulJ-processors	(MPPs)	
❍  Underlying	communicaJon	network:	point-to-point	(oXen	

unordered)	
+  Scalable	bandwidth		
–  Higher-latency,	complex	protocols	

