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Announcements

Programming 1 assignment 

  Discussion on this - Friday, Jan 17th

    Released this week

Jan 20th: No class (MLK Holiday)

Jan 21st : Quiz 2 is due on Canvas

 Released tomorrow along with reading list
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Readings

For today
 David Wood and Mark Hill. “Cost-Effective Parallel 

Computing,” IEEE Computer, 1995.  
 Mark Hill et al. “21st Century Computer Architecture.” 

CCC White Paper, 2012.
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Sequential Merge Sort

16MB input (32-bit integers)

Recurse(left)

Recurse(right)

Copy back to input array

Merge to scratch array

Time

Sequential
Execution
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Parallel Merge Sort 
(as Parallel Directed Acyclic Graph)  

16MB input (32-bit integers)

Recurse(left) Recurse(right)

Copy back to input array

Merge to scratch array

Time Parallel
Execution
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Parallel DAG for Merge Sort 
(2-core)

Sequential  Sort

Merge

Sequential Sort

Time
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Parallel DAG for Merge Sort 
(4-core)
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Parallel DAG for Merge Sort 
(8-core)
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The DAG Execution Model of a 
Parallel Computation

• Given an input, dynamically create a DAG

• Nodes represent sequential computation
 Weighted by the amount of work 

• Edges represent dependencies:
 Node A → Node B means that B cannot be scheduled unless 

A is finished
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Sorting 16 elements in four cores
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Sorting 16 elements in four cores
(4 element arrays sorted in constant time)

1 16

1 8

1

1

1 8

1

1
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Performance Measures

• Given a graph G, a scheduler S, and P processors

• Tp(S) : Time on P processors using scheduler S

• Tp : Time on P processors using best scheduler

• T1 : Time on a single processor (sequential cost)

• T∞ : Time assuming infinite resources
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Work and Depth

• T1 = Work
 The total number of operations executed by a computation
 

• T∞ = Depth
 The longest chain of sequential dependencies (critical path)

in the parallel DAG
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T∞ (Depth): Critical Path Length
(Sequential Bottleneck)
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T1 (work): Time to Run Sequentially
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Sorting 16 elements in four cores
(4 element arrays sorted in constant time)

1 16

1 8

1

1

1 8

1

1

Work = 
Depth = 
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Some Useful Theorems
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Work Law

• “You cannot avoid work by parallelizing”

T1 / P ≤ TP 
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Work Law

• “You cannot avoid work by parallelizing”

T1 / P ≤ TP 

Speedup = T1 / TP 
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Work Law

• “You cannot avoid work by parallelizing”

• Can speedup be more than 2 when we go from 1-core to 2-
core in practice?

T1 / P ≤ TP 

Speedup = T1 / TP 
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Depth Law

• More resources should make things faster

• You are limited by the sequential bottleneck

TP ≥ T∞ 
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Amount of Parallelism

Parallelism = T1 / T∞ 
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Maximum Speedup Possible

Parallelism

“speedup is bounded above 
by available parallelism”

Speedup T1 / TP  ≤  T1 / T∞ 
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Greedy Scheduler

• If more than P nodes can be scheduled, 
pick any subset of size P

• If less than P nodes can be scheduled, 
schedule them all
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Work/Depth of Merge Sort 
(Sequential Merge)

• Work T1 :  O(n log n)

• Depth T∞ : O(n)
 Takes O(n) time to merge n elements

• Parallelism:
 T1 / T∞ = O(log n)  → really bad!
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Main Message

• Analyze the Work and Depth of your algorithm

• Parallelism is Work/Depth

• Try to decrease Depth
 the critical path
 a sequential bottleneck

• If you increase Depth
 better increase Work by a lot more!
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Amdahl’s law

• Sorting takes 70% of the execution time of a sequential 
program

• You replace the sorting algorithm with one that scales 
perfectly on multi-core hardware

• How many cores do you need to get a 4x speed-up on the 
program?
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Amdahl’s law, 𝑓 = 70%

f = the parallel portion of execution

1 - f = the sequential portion of execution

c = number of cores used

Speedup(f, c) = 1 / ( 1 – f) + f / c
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Amdahl’s law, 𝑓 = 70%
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Amdahl’s law, 𝑓 = 70%
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Amdahl’s law, 𝑓 = 10%
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Amdahl’s law, 𝑓 = 98%
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Lesson

• Speedup is limited by sequential code

• Even a small percentage of sequential code can greatly limit 
potential speedup
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Parallel Programming 
Models and Interfaces
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Programming Models
• High level paradigm for expressing an algorithm

Examples:

Functional

Sequential, procedural

Shared memory

Message Passing

• Embodied in languages that support concurrent execution
 Incorporated into language constructs

 Incorporated as libraries added to existing sequential language

• Top level features:
(For conventional models – shared memory, message passing)

Multiple threads are conceptually visible to programmer

Communication/synchronization are visible to programmer
 Somewhat implicit for shared memory
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An Incomplete Taxonomy

• VLIW
• SIMD
• Vector
• Data Flow
• GPU
• MapReduce / WSC
• Systolic Array
• Reconfigurable / FPGA
• …

MP Systems

Shared Memory

Bus-based

Switching 
Fabric-based

Incoherent Coherent

Message Passing

COTS-based

Switching 
Fabric-based

Emerging & 
Lunatic Fringe
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Programming Model Elements

• For both Shared Memory and Message Passing

• Processes and threads
Process: A shared address space and one or more threads of control

Thread: A sequence of instructions

Task:  Less formal term – part of an overall job 

Created, terminated, scheduled, etc.

• Communication
Passing of data

• Synchronization
Communicating control information

To assure reliable, correct communication
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Historical View

Join at: 

Program with: 

P P P

M M M

IO IO IO

I/O (Network)

Message passing

P P P

M M M

IO IO IO

Memory

Shared Memory

P P P

M M M

IO IO IO

Processor

Dataflow, SIMD, 
VLIW, CUDA,

other data parallel
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Message Passing
Programming Model
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Message Passing Programming Model

• User level send/receive abstraction
 Match via local buffer (x,y), process (Q,P), and tag (t)
 Need naming/synchronization conventions

Process P 
local address space

Process Q 
local address space

match

Address x

Address y

send x, Q, t

recv y, P, t
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Message Passing Architectures

• Cannot directly access 
memory of another node

• IBM SP-2, Intel Paragon,
Myrinet Quadrics QSW

• Cluster of workstations
(e.g., MPI on flux cluster)

CPU($)
Mem

Interconnect

Nic
CPU($)

Mem Nic
CPU($)

Mem Nic
CPU($)

Mem Nic
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MPI –Message Passing Interface  API

• A widely used standard
For a variety of distributed memory systems

• SMP Clusters, workstation clusters, MPPs, heterogeneous systems

• Also works on Shared Memory MPs
Easy to emulate distributed memory on shared memory HW

• Can be used with a number of high level languages

• Available in the Flux cluster at Michigan
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Processes and Threads in Message 
Passing

• Common: multiple threads/processes with different address spaces
 No shared memory
 Communication has to be explicit through sending and receiving of 

messages

• Processes may also be running on different OSes
Process creation often external to execution environment; e.g. shell script

Hard for user process on one system to create process on another OS

• Lots of flexibility (advantage of message passing). Could have:
1.  Multiple threads sharing an address space

2.  Multiple processes sharing an address space

• 1 and 2 easily implemented on shared memory HW (with single OS)
Process and thread creation/management similar to shared memory
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Communication and Synchronization

• Combined in the message passing paradigm
Synchronization of messages part of communication semantics

• Point-to-point communication
From one process to another

• Collective communication
Involves groups of processes
e.g., broadcast
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Message Passing: Send()

• Send( <what>, <where-to>, <how> )

• What:
 A data structure or object in user space
 A buffer allocated from special memory
 A word or signal

• Where-to:
 A specific processor
 A set of specific processors
 A queue, dispatcher, scheduler

• How:
 Asynchronously vs. synchronously
 Typed
 In-order vs. out-of-order
 Prioritized
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Message Passing: Receive()

• Receive( <data>, <info>, <what>, <how> )

• Data: mechanism to return message content
 A buffer allocated in the user process
 Memory allocated elsewhere

• Info: meta-info about the message
 Sender-ID
 Type, Size, Priority
 Flow control information

• What: receive only certain messages
 Sender-ID, Type, Priority

• How:
 Blocking vs. non-blocking
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Synchronous vs Asynchronous

• Synchronous Send
Stall until message has actually been received

Implies a message acknowledgement from receiver to sender

• Synchronous Receive
Stall until message has actually been received

• Asynchronous Send and Receive
Sender and receiver can proceed regardless

Returns request handle that can be tested for message receipt

Request handle can be tested to see if message has been 
sent/received
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Deadlock

• Blocking communications may deadlock

• Requires careful (safe) ordering of sends/receives

<Process 0>   <Process 1>  

Send(Process1, Message);  Receive (Process0, Message);

Receive(Process1, Message); Send (Process0, Message);

<Process 0>   <Process 1>   

Send(Process1, Message);  Send(Process0, Message);

Receive(Process1, Message); Receive(Process0, Message);
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Message Passing Paradigm Summary

Programming Model (Software) point of view:

• Disjoint, separate name spaces

• “Shared nothing”

• Communication via explicit, typed messages: send & receive
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Message Passing Paradigm Summary

Computer Engineering (Hardware) point of view:

• Treat inter-process communication as I/O device

• Critical issues:

 How to optimize API overhead

 Minimize communication latency

 Buffer management: how to deal with early/unsolicited messages, 
message typing, high-level flow control

 Event signaling & synchronization

 Library support for common functions (barrier synchronization, task 
distribution, scatter/gather, data structure maintenance)
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Shared Memory 
Programming Model
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Shared-Memory Model

P1 P2 P3 P4

Memory System

 Multiple execution contexts sharing a single address space
 Multiple programs (MIMD)
 Or more frequently: multiple copies of one program (SPMD) 

 Implicit (automatic) communication via loads and stores
 Theoretical foundation: PRAM model
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Global Shared Physical Address Space

• Communication, 
sharing, synchronization 
via loads/stores to 
shared variables

• Facilities for address 
translation between 
local/global address 
spaces

• Requires OS support to 
maintain this mapping

Shared
portion of 

address space

Private
portion of 

address space

Common 
physical 

address space

Pn private

P2 private

P1 private

P0 private

store P0

load Pn
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Why Shared Memory?

Pluses
 For applications looks like multitasking uniprocessor
 For OS only evolutionary extensions required
 Easy to do communication without OS

Minuses
 Proper synchronization is complex
 Communication is implicit so harder to optimize
 Hardware designers must implement shared mem abstraction

 This is hard

Result
 Traditionally bus-based Symmetric Multiprocessors (SMPs), and 

now CMPs are the most success parallel machines ever
 And the first with multi-billion-dollar markets
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Thread-Level Parallelism

• Thread-level parallelism (TLP)

 Collection of asynchronous tasks: not started and stopped together

 Data shared loosely, dynamically

• Example: database/web server (each query is a thread)

  accts is shared, can’t register allocate even if it were scalar

  id and amt are private variables, register allocated to r1, r2

struct acct_t { int bal; };

shared struct acct_t  accts[MAX_ACCT];

int id,amt;

if (accts[id].bal >= amt)

{

   accts[id].bal -= amt;

   spew_cash();

}

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash



Lecture 2 
Slide 66 EECS 570

Synchronization

• Mutual exclusion  : locks, …

• Order   : barriers, signal-wait, …

• Implemented using read/write/RMW to shared location 
 Language-level: 

 libraries (e.g., locks in pthread) 
 Programmers can write custom synchronizations

 Hardware ISA
 E.g., test-and-set

• OS provides support for managing threads
 scheduling, fork, join, futex signal/wait

We’ll cover synchronization in more detail in a couple of weeks
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Cache Coherence

• Two $100 withdrawals from account #241 at two ATMs
 Each transaction maps to thread on different processor
 Track accts[241].bal (address is in r3)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

CPU0 MemCPU1
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No-Cache, No-Problem

• Scenario I: processors have no caches
 No problem

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

500

400

400

300
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Cache Incoherence

• Scenario II: processors have write-back caches 
 Potentially 3 copies of accts[241].bal: memory, p0$, p1$
 Can get incoherent (out of sync)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

V:500 500

D:400 500

D:400 500V:500

D:400 500D:400
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Paired vs. Separate Processor/Memory?
• Separate processor/memory

 Uniform memory access (UMA): equal latency to all memory

+ Simple software, doesn’t matter where you put data

– Lower peak performance

 Bus-based UMAs common: symmetric multi-processors (SMP)

• Paired processor/memory
 Non-uniform memory access (NUMA): faster to local memory

– More complex software: where you put data matters

+ Higher peak performance: assuming proper data placement

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
MemR RRR
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Shared vs. Point-to-Point Networks

• Shared network: e.g., bus (left)
+ Low latency

– Low bandwidth: doesn’t scale beyond ~16 processors

+ Shared property simplifies cache coherence protocols (later)

• Point-to-point network: e.g., mesh or ring (right)
– Longer latency: may need multiple “hops” to communicate

+ Higher bandwidth: scales to 1000s of processors

– Cache coherence protocols are complex

CPU($)
Mem

CPU($)
Mem R

CPU($)
Mem R

CPU($)
MemR

CPU($)
MemR

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem RRRR
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Implementation #1: Snooping Bus MP 

• Two basic implementations

• Bus-based systems

 Typically small: 2–8 (maybe 16) processors

 Typically processors split from memories (UMA)
 Sometimes multiple processors on single chip (CMP)

 Symmetric multiprocessors (SMPs)

 Common, I use one everyday

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem
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Implementation #2: Scalable MP

• General point-to-point network-based systems
 Typically processor/memory/router blocks (NUMA)

 Glueless MP: no need for additional “glue” chips

 Can be arbitrarily large: 1000’s of processors
 Massively parallel processors (MPPs)

 In reality only government (DoD) has MPPs…
 Companies have much smaller systems: 32–64 processors
 Scalable multi-processors

CPU($)
Mem R

CPU($)
Mem R

CPU($)
MemR

CPU($)
MemR
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Snooping Cache-Coherence Protocols

Bus provides serialization point

Each cache controller “snoops” all bus transactions
 take action to ensure coherence

 invalidate
 update
 supply value

 depends on state of the block and the protocol



Lecture 2 
Slide 75 EECS 570

Scalable Cache Coherence

• Scalable cache coherence: two part solution

• Part I: bus bandwidth
 Replace non-scalable bandwidth substrate (bus)…

 …with scalable bandwidth one (point-to-point network, e.g., mesh)

• Part II: processor snooping bandwidth
 Interesting: most snoops result in no action

 Replace non-scalable broadcast protocol (spam everyone)…

 …with scalable directory protocol (only spam processors that care)

• We will cover this in Unit 2
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Shared Memory Summary

• Shared-memory multiprocessors
+ “Simple” software: easy data sharing, handles both DLP & TLP

• …but hard to get fully correct!

– Complex hardware: must provide illusion of global address 
space

• Two basic implementations
 Symmetric (UMA) multi-processors (SMPs)

 Underlying communication network: bus (ordered)
+ Low-latency, simple protocols
– Low-bandwidth, poor scalability

 Scalable (NUMA) multi-processors (MPPs)
 Underlying communication network: point-to-point (often 

unordered)
+ Scalable bandwidth 
– Higher-latency, complex protocols
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