EECS 570
Lecture 21
Interconnects: Routing

Winter 2022
Prof. Yatin Manerker

http://www.eecs.umich.edu/courses/eecs570/

Butterfly

- Indirect network
- K-ary n-fly: k^n network nodes
- Every source-dest pair has the same hop count

Routing from 000 to 010
- Dest address used to directly route packet
- Bit n used to select output port at stage n
Butterfly (2)

- No path diversity \(|R_{xy}| = 1 \)
 - Can add extra stages for diversity
 - Increase network diameter
Butterfly (3)

• Hop Count
 - $\log_k N + 1 = n + 1$ (N = k^n = total number of terminal nodes)
 - Does not exploit locality
 - Hop count same regardless of location

• Switch Degree = 2k

• Requires long wires to implement
Clos network

- 3-stage networks where all input/output nodes are connected to all middle routers

- Key attribute: path diversity
 - Input node can select any middle router
 - Can enable non-blocking routing algorithms

- \((m, n, r)\)
 - \(m\) = Number of middle stage switches
 - \(n\) = input/output ports per input/output switch
 - \(r\) = number of input/output switches

\((5, 3, 4)\) Clos network
Key Dates

Project poster presentation
April 18th
in Tishman Hall
1:30p-3:00p (so during class time)
Please arrive up to 30 mins before for setup

Project Final Report
Due at 11:59pm on April 19th on Canvas

Final Exam
April 25 4p – 6pm (EST)
Topics to be covered

- Interfaces
- Topology
- Routing
- Flow Control
- Router Microarchitecture
Routing
Routing Overview

• Discussion of topologies assumed ideal routing

• In practice...
 - Routing algorithms are not ideal

• Goal: distribute traffic **evenly** among paths
 - Avoid hot spots, contention
 - More balanced ➔ closer throughput is to ideal

• Keep complexity in mind
Routing Basics

- Once topology is fixed
- Routing algorithm determines path(s) from source to destination
Routing Example

• Some routing options:
 □ Greedy: shortest path
 □ Uniform random: randomly pick direction
 □ Adaptive: send packet in direction with lowest local channel load

• Which gives best worst-case throughput?
Routing Example (2)

• Consider tornado traffic
 - node i sends to $i+3 \mod 8$
Routing Example (3)

• Greedy:
 - All traffic moves counterclockwise
 - Loads counterclockwise with 3 units of traffic
 - Each node gets 1/3 throughput
 - Clockwise channels are idle

• Random:
 - Clockwise channels become bottleneck
 - Load of 5/2
 - Half of traffic traverses 5 links in clockwise direction
 - Gives throughput of 2/5
Routing Example (4)

• Adaptive:
 • Perfect load balancing (some assumptions about implementation)
 • Sends 5/8 of traffic over 3 links, sends 3/8 over 5 links
 - Channel load is 15/8, throughput of 8/15

• Note: worst case throughput just 1 metric designer might optimize
Routing Algorithm Attributes

• Types
 - Deterministic, Oblivious, Adaptive

• Number of destinations
 - Unicast, Multicast, Broadcast?

• Adaptivity
 - Oblivious or Adaptive? Local or Global knowledge?
 - Minimal or non-minimal?

• Implementation
 - Source or node routing?
 - Table or circuit?
Routing Deadlock

- Each packet is occupying a link and waiting for a link
- Without routing restrictions, a resource cycle can occur
 - Leads to deadlock
Types of Routing Algorithms
Deterministic

• All messages from Source to Destination traverse the same path

• Common example: Dimension Order Routing (DOR)
 - Message traverses network dimension by dimension
 - Aka XY routing

• Cons:
 - Eliminates any path diversity provided by topology
 - Poor load balancing

• Pros:
 - Simple and inexpensive to implement
 - Deadlock-free
Dimension Order Routing

- a.k.a X-Y Routing
 - Traverse network dimension by dimension
 - Can only turn to Y dimension after finished X
Oblivious

• Routing decisions are made without regard to network state
 □ Keeps algorithms simple
 □ Unable to adapt

• Deterministic algorithms are a subset of oblivious
Valiant’s Routing Algorithm

• To route from s to d
 - Randomly choose intermediate node d'
 - Route from s to d' and from d' to d.

• Randomizes any traffic pattern
 - All patterns appear uniform random
 - Balances network load

• Non-minimal
• Destroys locality
Minimal Oblivious

• Valiant’s: Load balancing but significant increase in hop count

• Minimal Oblivious: some load balancing, but use shortest paths
 - d' must lie within min quadrant
 - 6 options for d'
 - Only 3 different paths
Oblivious Routing

- Valiant’s and Minimal Adaptive
 - Deadlock free
 - When used in conjunction with X-Y routing

- Randomly choose between X-Y and Y-X routes
 - Oblivious but not deadlock free!
Adaptive

- Exploits path diversity
- Uses network state to make routing decisions
 - Buffer occupancies often used
 - Coupled with flow control mechanism
- Local information readily available
 - Global information more costly to obtain
 - Network state can change rapidly
 - Use of local information can lead to non-optimal choices
- Can be minimal or non-minimal
Minimal Adaptive Routing

- Local info can result in sub-optimal choices
Non-minimal adaptive

- Fully adaptive
- Not restricted to take shortest path

- Misrouting: directing packet along non-productive channel
 - Priority given to productive output
 - Some algorithms forbid U-turns

- Livelock potential: traversing network without ever reaching destination
 - Mechanism to guarantee forward progress
 - Limit number of misroutings
Non-minimal routing example

- Longer path with potentially lower latency
- Livelock: continue routing in cycle
Adaptive Routing Example

• Should 3 route clockwise or counterclockwise to 7?
 □ If 5 is using all the capacity of link 5 → 6...
 □ ...queue at node 5 will sense contention but not at node 3

• Backpressure: allows nodes to indirectly sense congestion
 □ Queue in one node fills up, it will stop receiving flits
 □ Previous queue will fill up

• If each queue holds 4 packets
 □ 3 will send 8 packets before sensing congestion
Adaptive Routing: Turn Model

• DOR eliminates 4 turns
 □ N to E, N to W, S to E, S to W
 □ No adaptivity

• Some adaptivity by removing 2 of 8 turns
 □ Remains deadlock free (like DOR)

• West first
 □ Eliminates S to W and N to W

West first
Turn Model Routing

- Negative first
 - Eliminates E to S and N to W
- North last
 - Eliminates N to E and N to W
- Odd-Even
 - Eliminates 2 turns depending on if current node is in odd or even col.
 - Even column: E to N and N to W
 - Odd column: E to S and S to W
 - Deadlock free if 180 turns are disallowed
 - Better adaptivity
Negative-First Routing Example

- Limited or no adaptivity for certain source-destination pairs

![Diagram showing routing examples with source-destination pairs (0,0), (2,3), (0,3), and (2,0).]
Turn Model Routing Deadlock

- What about eliminating turns NW and WN?
- Not a valid turn elimination
 - Resource cycle results
Adaptive Routing and Deadlock

• Option 1: Eliminate turns that lead to deadlock
 □ Limits flexibility

• Option 2: Allow all turns
 □ Give more flexibility
 □ Must use other mechanism to prevent deadlock
 □ Rely on flow control (later)
 ☒ Escape virtual channels
Routing Algorithm Implementation
Routing Implementation

• Source tables
 ☐ Entire route specified at source
 ☐ Avoids per-hop routing latency
 ☐ Unable to adapt dynamically to network conditions
 ☐ Can specify multiple routes per destination
 ☐ Give fault tolerance and load balance
 ☐ Support reconfiguration
Source Table Routing

<table>
<thead>
<tr>
<th>Destination</th>
<th>Route 1</th>
<th>Route 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>EX</td>
<td>EX</td>
</tr>
<tr>
<td>20</td>
<td>EEX</td>
<td>EEX</td>
</tr>
<tr>
<td>01</td>
<td>NX</td>
<td>NX</td>
</tr>
<tr>
<td>11</td>
<td>NEX</td>
<td>ENX</td>
</tr>
<tr>
<td>21</td>
<td>NEEX</td>
<td>ENEX</td>
</tr>
<tr>
<td>02</td>
<td>NNX</td>
<td>NNX</td>
</tr>
<tr>
<td>12</td>
<td>ENNX</td>
<td>NNEX</td>
</tr>
<tr>
<td>22</td>
<td>EENNX</td>
<td>NNEEX</td>
</tr>
<tr>
<td>03</td>
<td>NNNX</td>
<td>NNNX</td>
</tr>
<tr>
<td>13</td>
<td>NENNX</td>
<td>ENNNX</td>
</tr>
<tr>
<td>23</td>
<td>EENNNX</td>
<td>NNNEEX</td>
</tr>
</tbody>
</table>

- Arbitrary length paths: storage overhead and packet overhead
Node Tables

- Store only next direction at each node
- Smaller tables than source routing
- Adds per-hop routing latency
- Can adapt to network conditions
 - Specify multiple possible outputs per destination
 - Select randomly to improve load balancing
Node Table Routing

Table

<table>
<thead>
<tr>
<th>From</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>X</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>E</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>01</td>
<td>S</td>
<td>X</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>E</td>
<td>N</td>
</tr>
<tr>
<td>02</td>
<td>S</td>
<td>S</td>
<td>X</td>
<td>E</td>
<td>E</td>
<td>S</td>
<td>E</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>X</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>E</td>
<td>N</td>
</tr>
<tr>
<td>11</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>S</td>
<td>X</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>12</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>S</td>
<td>S</td>
<td>X</td>
<td>E</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>20</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>X</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>21</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>S</td>
<td>X</td>
<td>N</td>
</tr>
<tr>
<td>22</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>S</td>
<td>S</td>
<td>X</td>
</tr>
</tbody>
</table>

Diagram

![Diagram](image)

(1,0)

- Each node would have 1 row of table
 - Max two possible output ports
Implementation

• Combinational circuits can be used
 □ Simple (e.g. DOR): low router overhead
 □ Specific to one topology and one routing algorithm
 ⚫ Limits fault tolerance

• OTOH, tables can be updated to reflect new configuration, network faults, etc
• Next hop based on buffer occupancies in a 2D mesh
• Or could implement simple DOR
• Fixed w.r.t. topology
Routing Algorithms: Implementation

<table>
<thead>
<tr>
<th>Routing Algorithm</th>
<th>Source Routing</th>
<th>Combinational</th>
<th>Node Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOR</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Oblivious</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valiant’s</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Minimal</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Adaptive</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Routing: Irregular Topologies

• MPSoCs
 ▶ Power and performance benefits from irregular/custom topologies

• Common routing implementations
 ▶ Rely on source or node table routing

• Maintain deadlock freedom
 ▶ Turn model may not be feasible
 ❍ Limited connectivity
Routing Summary

• Latency paramount concern
 □ Minimal routing most common for NoC
 □ Non-minimal can avoid congestion and deliver low latency

• To date: NoC research favors DOR for simplicity and deadlock freedom
 □ On-chip networks often lightly loaded

• Only covered unicast routing
 □ Recent work on extending on-chip routing to support multicast