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Announcements 
Discussion	this	Friday:	Programming	Assignment	1	
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Readings 
For	today:	

❒  ChrisBna	Delimitrou	and	Christos	Kozyrakis.	Amdahl's	law	for	
tail	latency.	Commun.	ACM,	July	2018.	

❒  H	Kim,	R	Vuduc,	S	Baghsorkhi,	J	Choi,	Wen-mei	Hwu,	
xPerformance	Analysis	and	Tuning	for	General	Purpose	
Graphics	Processing	Units	(GPGPU),	Ch.	1			

For	Wednesday:	
❒  Tor	M.	Aamodt,	Wilson	Wai	Lun	Fung,	Timothy	G.	Rogers,	

General-Purpose	Graphics	Processor	Architectures,	Ch.	
3.1-3.3,	4.1-4.3	

❒  V.	Narasiman,	M.	Shebanow,	C.	J.	Lee,	R.	Mi^akhutdinov,	O.	
Mutlu,	and	Y.	N.	Paa,	Improving	GPU	performance	via	large	
warps	and	two-level	warp	scheduling,	MICRO	2011.	
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Agenda 
Finish	message	passing	vs	shared	memory	from	L02	
	
Data-level	parallelism	
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Synchronous vs Asynchronous 

•  Synchronous	Send	
❒ Stall	unBl	message	has	actually	been	received	
❒ Implies	a	message	acknowledgement	from	receiver	to	sender	

•  Synchronous	Receive	
❒ Stall	unBl	message	has	actually	been	received	

•  Asynchronous	Send	and	Receive	
❒ Sender	and	receiver	can	proceed	regardless	
❒ Returns	request	handle	that	can	be	tested	for	message	receipt	
❒ Request	handle	can	be	tested	to	see	if	message	has	been	sent/
received	
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Deadlock 
•  Blocking	communicaBons	may	deadlock	

•  Requires	careful	(safe)	ordering	of	sends/receives	

<Process 0>    <Process 1>    
Send(Process1, Message);  Receive (Process0, Message); 
Receive(Process1, Message);  Send (Process0, Message); 

<Process 0>    <Process 1>     
Send(Process1, Message);  Send(Process0, Message); 
Receive(Process1, Message);  Receive(Process0, Message); 
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Message Passing Paradigm Summary 

Programming	Model	(So^ware)	point	of	view:	

• Disjoint,	separate	name	spaces	

•  “Shared	nothing”	

•  CommunicaBon	via	explicit,	typed	messages:	send	&	receive	
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Message Passing Paradigm Summary 

Computer	Engineering	(Hardware)	point	of	view:	

•  Treat	inter-process	communicaBon	as	I/O	device	

•  CriBcal	issues:	
❒  How	to	opBmize	API	overhead	

❒  Minimize	communicaBon	latency	

❒  Buffer	management:	how	to	deal	with	early/unsolicited	messages,	
message	typing,	high-level	flow	control	

❒  Event	signaling	&	synchronizaBon	

❒  Library	support	for	common	funcBons	(barrier	synchronizaBon,	task	
distribuBon,	scaaer/gather,	data	structure	maintenance)	
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Shared Memory  
Programming Model 
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Shared-Memory Model 

P1	 P2	 P3	 P4	

Memory	System	

❒  MulBple	execuBon	contexts	sharing	a	single	address	space	
❍ MulBple	programs	(MIMD)	
❍  Or	more	frequently:	mulBple	copies	of	one	program	(SPMD)		

❒  Implicit	(automaBc)	communicaBon	via	loads	and	stores	
❒  TheoreBcal	foundaBon:	PRAM	model	
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Global Shared Physical Address Space 

• CommunicaBon,	
sharing,	synchronizaBon	
via	loads/stores	to	
shared	variables	

• FaciliBes	for	address	
translaBon	between	
local/global	address	
spaces	

• Requires	OS	support	to	
maintain	this	mapping	

Shared	
porBon	of	

address	space	
Private	

porBon	of	
address	space	

Common	
physical	

address	space	

Pn	private	

P2	private	

P1	private	

P0	private	

store	P0	

load	Pn	
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Why Shared Memory? 
Pluses	

❒  For	applicaBons	looks	like	mulBtasking	uniprocessor	
❒  For	OS	only	evoluBonary	extensions	required	
❒  Easy	to	do	communicaBon	without	OS	

Minuses	
❒  Proper	synchronizaBon	is	complex	
❒  CommunicaBon	is	implicit	so	harder	to	opBmize	
❒  Hardware	designers	must	implement	shared	mem	abstracIon	

❍  This	is	hard	

Result	
❒  TradiBonally	bus-based	Symmetric	MulBprocessors	(SMPs),	and	

now	CMPs	are	the	most	success	parallel	machines	ever	
❒  And	the	first	with	mulB-billion-dollar	markets	



Lecture 3 
Slide 13  EECS 570 

Thread-Level Parallelism 

• Thread-level	parallelism	(TLP)	
❒  CollecBon	of	asynchronous	tasks:	not	started	and	stopped	together	
❒  Data	shared	loosely,	dynamically	

• Example:	database/web	server	(each	query	is	a	thread)	
❒  	accts	is	shared,	can’t	register	allocate	even	if	it	were	scalar	
❒  	id	and	amt	are	private	variables,	register	allocated	to	r1,	r2 

struct acct_t { int bal; }; 
shared struct acct_t  accts[MAX_ACCT]; 
int id,amt; 
if (accts[id].bal >= amt) 
{ 
   accts[id].bal -= amt; 
   spew_cash(); 
} 

 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,6 
3: sub r4,r2,r4 
4: st r4,0(r3) 
5: call spew_cash 
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Synchronization 
• Mutual	exclusion 	 	:	locks,	…	

• Order 	 	 	:	barriers,	signal-wait,	…	

•  Implemented	using	read/write/RMW	to	shared	locaBon		
❒  Language-level:		

❍  libraries	(e.g.,	locks	in	pthread)		
❍  Programmers	can	write	custom	synchronizaBons	

❒  Hardware	ISA	
❍  E.g.,	test-and-set	

• OS	provides	support	for	managing	threads	
❒  scheduling,	fork,	join,	futex	signal/wait	

We’ll	cover	synchronizaBon	in	more	detail	in	a	couple	of	weeks	
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Cache Coherence 

• Two	$100	withdrawals	from	account	#241	at	two	ATMs	
❒  Each	transacBon	maps	to	thread	on	different	processor	
❒  Track	accts[241].bal	(address	is	in	r3)	

Processor 0 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,6 
3: sub r4,r2,r4 
4: st r4,0(r3) 
5: call spew_cash 

Processor 1 
 
 
 
 
 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,6 
3: sub r4,r2,r4 
4: st r4,0(r3) 
5: call spew_cash 

CPU0 Mem CPU1 



Lecture 3 
Slide 16  EECS 570 

No-Cache, No-Problem 

• Scenario	I:	processors	have	no	caches	
❒  No	problem	

Processor 0 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,6 
3: sub r4,r2,r4 
4: st r4,0(r3) 
5: call spew_cash 

Processor 1 
 
 
 
 
 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,6 
3: sub r4,r2,r4 
4: st r4,0(r3) 
5: call spew_cash 

500 
500 

400 

400 

300 
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Cache Incoherence 

• Scenario	II:	processors	have	write-back	caches		
❒  PotenBally	3	copies	of	accts[241].bal:	memory,	p0$,	p1$	
❒  Can	get	incoherent	(out	of	sync)	

Processor 0 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,6 
3: sub r4,r2,r4 
4: st r4,0(r3) 
5: call spew_cash 

Processor 1 
 
 
 
 
 
0: addi r1,accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,6 
3: sub r4,r2,r4 
4: st r4,0(r3) 
5: call spew_cash 

500 
V:500 500 

D:400 500 

D:400 500 V:500 

D:400 500 D:400 
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Paired vs. Separate Processor/Memory? 
• Separate	processor/memory	

❒  Uniform	memory	access	(UMA):	equal	latency	to	all	memory	
+  Simple	so^ware,	doesn’t	maaer	where	you	put	data	
–  Lower	peak	performance	
❒  Bus-based	UMAs	common:	symmetric	mulI-processors	(SMP)	

• Paired	processor/memory	
❒  Non-uniform	memory	access	(NUMA):	faster	to	local	memory	
–  More	complex	so^ware:	where	you	put	data	maaers	
+  Higher	peak	performance:	assuming	proper	data	placement	

CPU($)	

Mem	

CPU($)	

Mem	

CPU($)	

Mem	

CPU($)	

Mem	

CPU($)	
Mem	

CPU($)	
Mem	

CPU($)	
Mem	

CPU($)	
Mem	R	 R	R	R	
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Shared vs. Point-to-Point Networks 
• Shared	network:	e.g.,	bus	(le^)	

+  Low	latency	
–  Low	bandwidth:	doesn’t	scale	beyond	~16	processors	
+  Shared	property	simplifies	cache	coherence	protocols	(later)	

• Point-to-point	network:	e.g.,	mesh	or	ring	(right)	
–  Longer	latency:	may	need	mulBple	“hops”	to	communicate	
+  Higher	bandwidth:	scales	to	1000s	of	processors	
–  Cache	coherence	protocols	are	complex	

CPU($)	
Mem	

CPU($)	
Mem	 R	

CPU($)	
Mem	 R	

CPU($)	
Mem	R	

CPU($)	
Mem	R	

CPU($)	
Mem	

CPU($)	
Mem	

CPU($)	
Mem	 R	R	R	R	
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Implementation #1: Snooping Bus MP  

• Two	basic	implementaBons	

• Bus-based	systems	
❒  Typically	small:	2–8	(maybe	16)	processors	
❒  Typically	processors	split	from	memories	(UMA)	

❍  SomeBmes	mulIple	processors	on	single	chip	(CMP)	
❍  Symmetric	mulIprocessors	(SMPs)	
❍  Common,	I	use	one	everyday	

CPU($)	

Mem	

CPU($)	

Mem	

CPU($)	

Mem	

CPU($)	

Mem	
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Implementation #2: Scalable MP 

• General	point-to-point	network-based	systems	
❒  Typically	processor/memory/router	blocks	(NUMA)	

❍  Glueless	MP:	no	need	for	addiBonal	“glue”	chips	
❒  Can	be	arbitrarily	large:	1000’s	of	processors	

❍ Massively	parallel	processors	(MPPs)	
❒  In	reality	only	government	(DoD)	has	MPPs…	

❍  Companies	have	much	smaller	systems:	32–64	processors	
❍  Scalable	mulI-processors	

CPU($)	
Mem	 R	

CPU($)	
Mem	 R	

CPU($)	
Mem	R	

CPU($)	
Mem	R	
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Snooping Cache-Coherence Protocols 
Bus	provides	serializaBon	point	
	
Each	cache	controller	“snoops”	all	bus	transacBons	

❒  take	acBon	to	ensure	coherence	
❍  invalidate	
❍  update	
❍  supply	value	

❒  depends	on	state	of	the	block	and	the	protocol	
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Scalable Cache Coherence 
• Scalable	cache	coherence:	two	part	soluBon	

• Part	I:	bus	bandwidth	
❒  Replace	non-scalable	bandwidth	substrate	(bus)…	
❒  …with	scalable	bandwidth	one	(point-to-point	network,	e.g.,	mesh)	

• Part	II:	processor	snooping	bandwidth	
❒  InteresBng:	most	snoops	result	in	no	acBon	
❒  Replace	non-scalable	broadcast	protocol	(spam	everyone)…	
❒  …with	scalable	directory	protocol	(only	spam	processors	that	care)	

• We	will	cover	this	in	Unit	3	
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Shared Memory Summary 
• Shared-memory	mulBprocessors	

+  “Simple”	so^ware:	easy	data	sharing,	handles	both	DLP	&	TLP	
•  …but	hard	to	get	fully	correct!	

–  Complex	hardware:	must	provide	illusion	of	global	address	
space	

• Two	basic	implementaBons	
❒  Symmetric	(UMA)	mulI-processors	(SMPs)	

❍  Underlying	communicaBon	network:	bus	(ordered)	
+  Low-latency,	simple	protocols	
–  Low-bandwidth,	poor	scalability	

❒  Scalable	(NUMA)	mulI-processors	(MPPs)	
❍  Underlying	communicaBon	network:	point-to-point	(o^en	

unordered)	
+  Scalable	bandwidth		
–  Higher-latency,	complex	protocols	
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Amdahl’s Law for Tail Latency 
[Delimitrou & Kozyrakis] 

1.  Very	strict	QoS	puts	a	lot	of	
pressure	on	1-thread	perf	

2.  With	low	QoS	constraints,	balance	
ILP	and	TLP	

3.  Limited	parallelism	calls	for	more	
powerful	cores	
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parallelism. At lower QoS targets, a larg-
er set of medium-size cores achieves 
the best performance. For example, 
7BCE cores are optimal for QoS = 10Ts. 
For applications with moderate la-
tency requirements (such as Web 
search and Web servers), architects 
should seek to balance improve-
ments in single-thread performance 
(instruction-level parallelism) and 
multi-core performance (request-
level parallelism). Increasing sin-
gle-thread performance at high cost 
yields diminishing returns in this 
case. Nevertheless, a large pool of 
wimpy cores—1BCE—is optimal only 
when applications have no latency 
constraints, as with long data min-

ing queries or log-processing requests. 
With QoS = 100Ts, applications are es-
sentially throughput-limited and per-
form best with many wimpy cores. 

These findings highlight a dispar-
ity between optimal system design 
when optimizing for throughput ver-
sus when optimizing for tail latency. 
For example, in a homogeneous sys-
tem where throughput is the only per-
formance metric of interest and paral-
lelism is plentiful, the smallest cores 
achieve the best performance; see the 
1BCE cores in Figure 4a. In compari-
son, when optimizing for throughput 
under a tail latency constraint, the op-
timal design point shifts toward larg-
er cores, unless the latency constraint 
relaxes significantly. 

Finding 3. Limited parallelism also 
calls for more powerful cores. So far 
we have assumed all user requests are 
independent and perfectly paralleliz-
able, though it is rarely the case in 
practice. Requests are often depen-
dent on each other and on system 
issues like connection ordering and 
locks for writes causing serialization. 
The growing trend of breaking com-
plex services down to smaller compo-
nents (microservices) will only make 
the problem of request dependen-
cies more common. This brings up 
the caveat of Amdahl’s Law. To what 
extent are the previous findings ac-
curate when parallelism is limited? 
Figure 4b shows the case of a reason-
able QoS (10Ts) with f ∈ {50%, 90%, 
99%, 100%}. When, for example, the 
parallel fraction of the computation 
f is 90%, 10% of requests are serial-
ized. As a result, while optimal per-
formance was previously achieved 
with seven BCE cores, the optimal 
core size now shifts to 25 BCEs. 
Limited parallelism also affects 
throughput-centric systems,11 with 
more powerful cores outperforming 
wimpy cores in applications with se-
rial regions. Using Hill’s and Marty’s 
model11 with a 100BCE budget and 
10% serialization, an architect would 
determine that 10BCE cores are opti-
mal for throughput, a less aggressive 
increase in core size than when op-
timizing for latency. As parallelism 
decreases further, more performant 
cores are needed to drive down tail 
latency. When 50% of execution is se-
rial, a single 100BCE core is optimal, 

single-thread performance even at 
high cost. At the same time, some core 
parallelism is needed. A single 100BCE 
core performs significantly worse than 
four 25BCE cores. This finding is in 
agreement with industry concerns 
about the performance of small cores 
with warehouse-scale services.12 The 
need for high single-thread perfor-
mance also motivates application- or 
domain-specific accelerators as a more 
economical way of improving perfor-
mance than incremental out-of-order 
core optimizations. 

Finding 2. At lower latency con-
straints, architects should look for ways 
to balance optimizations for single-
thread performance and request-level 

Figure 3. Homogeneous server configurations for a budget of R = 100 resource units:  
(a) 100 1BCE cores; (b) 25 4BCE cores; and (c) one 100BCE core. 

Service time: Ts = 1/µ

Small Core

(a) (b)

(c)

Arrival rate: λ Arrival rate: λ

Arrival rate: λ

Service time: Ts = 1/(µ√4)

Medium Core

Service time: Ts = 1/(µ√100)

Large Core
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Figure 4. Studies on big versus small cores, core heterogeneity, and caching using the queueing model. 

the need for lock serialization, and at 
the architecture level by investing in 
methods that increase single-thread 
performance and intra-request par-
allelism.9 

These findings remain consistent for 
per f (r) scaling with the square, cubic, 
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(c) Throughput (QPS) under a tail latency constraint 
as a system architect increases the resources for small 
cores (U1=1) under the assumption of unlimited parallelism; 
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(d) Throughput under a tail latency constraint when parallelism 
is limited;
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a system architect increases resources for caching, as 
opposed to compute when parallelism is unlimited; 

(f) Throughput under a tail latency constraint when parallelism 
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a dramatic shift from the unlimited-
parallelism case; overall throughput 
is also an order of magnitude lower. 
Quantifying the degree of parallel-
ism in latency-critical services is es-
sential when deciding how to build 
the underlying hardware. At the same 

time, computer scientists should 
strive to remove serialization across 
the system stack—at the application 
level by developing tracing and mon-
itoring systems that detect and mini-
mize cross-service dependencies, at 
the operating system by minimizing 
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Amdahl’s Law for Tail Latency 
[Delimitrou & Kozyrakis] 

4.  For	medium	QoS,	raBo	of	
big-to-small	cores	should	
follow	raBo	of	big-to-small	
requests	

5.  But,	as	fparallel	decreases,	big	
cores	are	rapidly	favored	
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Figure 5. Heterogeneous server configuration with 25BCE large cores and 1BCE small cores. 

Arrival rate: λ
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Figure 6. Server configurations with 10BCE cores when dedicating (a) 10 resource units and 
(b) 70 resource units toward caching. 
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and fourth root of r. Beyond that point, 
optimal design favors smaller cores. 

Core Heterogeneity 
The previous section explored the 
trade-offs between powerful, brawny 
cores and power-efficient, wimpy cores. 
Neither type of core provides high effi-
ciency across a wide range of QoS tar-
gets, raising several obvious questions, 
including: Should an architect com-
bine multiple core types in the same 
system, as is already the norm in multi-
core chips for mobile systems? How 
should architects determine the size of 
these cores? And at what ratio should 
they use them? Determining the right 
mix of large-versus-little cores, as well 
as devising schedulers that take ad-
vantage of heterogeneous cores, espe-
cially in the presence of heterogeneous 
load, has been a notably active topic of 
research in computer architecture in 
recent years.5,9,15 Figure 4c shows the 
QPS under various QoS targets for a set 
of heterogeneous designs. In all cases, 
the system has two core configura-
tions: small cores with U = 1, benefiting 
applications with relaxed QoS, and big 
cores with U = 25, benefiting applica-
tions with strict QoS. The system also 
receives two exponentially distributed 
input request streams, one with short 
and the other with long mean-service-
time requests, and design a simple het-
erogeneity-aware scheduler that routes 
long requests to big cores and short re-
quests to small cores. Requests are ad-
mitted to a single queue, as in Figure 5, 
and the ratio of long-to-short requests 
is, for now, 1:1. Figure 5 starts with all 
big cores at the leftmost point of the 
x-axis, explores the heterogeneous 
space, and ends with all small cores at 
the rightmost point. 

Finding 4. Figure 4c captures a sur-
prising trend. For strict QoS targets, 
like 1 · Ts, homogeneous systems with 
all big cores achieve optimal perfor-
mance. In contrast, for very relaxed QoS 
targets, like 100Ts, using all small cores 
achieves the best performance. How-
ever, for QoS targets in the middle (such 
as 10Ts), heterogeneous systems, cou-
pled with heterogeneity-aware sched-
ulers, outperform their homogeneous 
counterparts. This result is especially 
true when the ratio of big to small cores 
matches the ratio of long-to-short re-
quests. Varying the request ratio affects 
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the need for lock serialization, and at 
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methods that increase single-thread 
performance and intra-request par-
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a dramatic shift from the unlimited-
parallelism case; overall throughput 
is also an order of magnitude lower. 
Quantifying the degree of parallel-
ism in latency-critical services is es-
sential when deciding how to build 
the underlying hardware. At the same 

time, computer scientists should 
strive to remove serialization across 
the system stack—at the application 
level by developing tracing and mon-
itoring systems that detect and mini-
mize cross-service dependencies, at 
the operating system by minimizing 
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Amdahl’s Law for Tail Latency 
[Delimitrou & Kozyrakis] 

6.  30-50%	area	for	cache	is	
ideal	for	workloads	with	
locality	&	strict	QoS	

7.  Less	cache	needed	(~30%)	
with	QoS	less	strict	

8.  Less	parallelism	à	need	
more	cache	
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Figure 5. Heterogeneous server configuration with 25BCE large cores and 1BCE small cores. 
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and fourth root of r. Beyond that point, 
optimal design favors smaller cores. 

Core Heterogeneity 
The previous section explored the 
trade-offs between powerful, brawny 
cores and power-efficient, wimpy cores. 
Neither type of core provides high effi-
ciency across a wide range of QoS tar-
gets, raising several obvious questions, 
including: Should an architect com-
bine multiple core types in the same 
system, as is already the norm in multi-
core chips for mobile systems? How 
should architects determine the size of 
these cores? And at what ratio should 
they use them? Determining the right 
mix of large-versus-little cores, as well 
as devising schedulers that take ad-
vantage of heterogeneous cores, espe-
cially in the presence of heterogeneous 
load, has been a notably active topic of 
research in computer architecture in 
recent years.5,9,15 Figure 4c shows the 
QPS under various QoS targets for a set 
of heterogeneous designs. In all cases, 
the system has two core configura-
tions: small cores with U = 1, benefiting 
applications with relaxed QoS, and big 
cores with U = 25, benefiting applica-
tions with strict QoS. The system also 
receives two exponentially distributed 
input request streams, one with short 
and the other with long mean-service-
time requests, and design a simple het-
erogeneity-aware scheduler that routes 
long requests to big cores and short re-
quests to small cores. Requests are ad-
mitted to a single queue, as in Figure 5, 
and the ratio of long-to-short requests 
is, for now, 1:1. Figure 5 starts with all 
big cores at the leftmost point of the 
x-axis, explores the heterogeneous 
space, and ends with all small cores at 
the rightmost point. 

Finding 4. Figure 4c captures a sur-
prising trend. For strict QoS targets, 
like 1 · Ts, homogeneous systems with 
all big cores achieve optimal perfor-
mance. In contrast, for very relaxed QoS 
targets, like 100Ts, using all small cores 
achieves the best performance. How-
ever, for QoS targets in the middle (such 
as 10Ts), heterogeneous systems, cou-
pled with heterogeneity-aware sched-
ulers, outperform their homogeneous 
counterparts. This result is especially 
true when the ratio of big to small cores 
matches the ratio of long-to-short re-
quests. Varying the request ratio affects 
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the need for lock serialization, and at 
the architecture level by investing in 
methods that increase single-thread 
performance and intra-request par-
allelism.9 

These findings remain consistent for 
per f (r) scaling with the square, cubic, 
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is not plentiful;
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as a system architect increases the resources for small 
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(d) Throughput under a tail latency constraint when parallelism 
is limited;
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a dramatic shift from the unlimited-
parallelism case; overall throughput 
is also an order of magnitude lower. 
Quantifying the degree of parallel-
ism in latency-critical services is es-
sential when deciding how to build 
the underlying hardware. At the same 

time, computer scientists should 
strive to remove serialization across 
the system stack—at the application 
level by developing tracing and mon-
itoring systems that detect and mini-
mize cross-service dependencies, at 
the operating system by minimizing 
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Data-Level Parallelism 
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How to Compute This Fast? 
• Performing	the	same	operaBons	on	many	data	items	

❒  Example:	SAXPY	
	

• InstrucBon-level	parallelism	(ILP)	-	fine	grained		
❒  Loop	unrolling	with	staBc	scheduling	–or–	dynamic	scheduling	
❒  Wide-issue	superscalar	(non-)scaling	limits	benefits	

• Thread-level	parallelism	(TLP)	-	coarse	grained	
❒  MulBcore	

• Can	we	do	some	“medium	grained”	parallelism?	

L1: ldf [X+r1]->f1  // I is in r1 
 mulf f0,f1->f2  // A is in f0 
 ldf [Y+r1]->f3   
 addf f2,f3->f4 
 stf f4->[Z+r1]   
 addi r1,4->r1 
 blti r1,4096,L1 

for (I = 0; I < 1024; I++) { 
  Z[I] = A*X[I] + Y[I]; 
} 
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Data-Level Parallelism 

• Data-level	parallelism	(DLP)	
❒  Single	operaBon	repeated	on	mulBple	data	elements	

❍  SIMD	(Single-InstrucBon,	MulBple-Data)	
❒  Less	general	than	ILP:	parallel	insns	are	all	same	operaBon	
❒  Exploit	with	vectors	

• Old	idea:	Cray-1	supercomputer	from	late	1970s	
❒  Eight	64-entry	x	64-bit	floaBng	point	“Vector	registers”	

❍  4096	bits	(0.5KB)	in	each	register!		4KB	for	vector	register	file	
❒  Special	vector	instrucBons	to	perform	vector	operaBons	

❍  Load	vector,	store	vector	(wide	memory	operaBon)	
❍  Vector+Vector	addiBon,	subtracBon,	mulBply,	etc.	
❍  Vector+Constant	addiBon,	subtracBon,	mulBply,	etc.	
❍  In	Cray-1,	each	instrucBon	specifies	64	operaBons!	
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Vector Architectures 

• One	way	to	exploit	data	level	parallelism:	vectors	
❒  Extend	processor	with	vector	“data	type”	
❒  Vector:	array	of	32-bit	FP	numbers	

❍ Maximum	vector	length	(MVL):	typically	8–64	
❒  Vector	register	file:	8–16	vector	registers	(v0–v15)	

regfile	

I$	

B	
P	

D$	

V-regfile	
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Today’s Vectors / SIMD 
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Example Vector ISA Extensions (SIMD) 
• Extend	ISA	with	floaBng	point	(FP)	vector	storage	…	

❒  Vector	register:	fixed-size	array	of	32-	or	64-	bit	FP	elements	
❒  Vector	length:	For	example:	4,	8,	16,	64,	…	

• …	and	example	operaBons	for	vector	length	of	4	
❒  Load	vector:	ldf.v [X+r1]->v1 

ldf [X+r1+0]->v10 
ldf [X+r1+1]->v11 
ldf [X+r1+2]->v12 
ldf [X+r1+3]->v13 

❒  Add	two	vectors:	addf.vv v1,v2->v3 
addf v1i,v2i->v3i (where i is 0,1,2,3) 

❒  Add	vector	to	scalar:	addf.vs v1,f2,v3 
addf v1i,f2->v3i  (where i is 0,1,2,3) 

• Today’s	vectors:	short	(128	bits),	but	fully	parallel	
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Example Use of Vectors – 4-wide 

 
OperaBons	
❒  Load	vector:	ldf.v [X+r1]->v1 
❒  MulBply	vector	to	scalar:	mulf.vs v1,f2->v3 
❒  Add	two	vectors:	addf.vv v1,v2->v3 
❒  Store	vector:	stf.v v1->[X+r1] 

• Performance?	
❒  Best	case:	4x	speedup	
❒  But,	vector	instrucBons	don’t	always	have	1-cycle	throughput	

❍  Execution width (implementation) vs vector width (ISA) 

ldf [X+r1]->f1 
mulf f0,f1->f2  
ldf [Y+r1]->f3 
addf f2,f3->f4 
stf f4->[Z+r1] 
addi r1,4->r1 
blti r1,4096,L1 

ldf.v [X+r1]->v1 
mulf.vs v1,f0->v2 
ldf.v [Y+r1]->v3 
addf.vv v2,v3->v4 
stf.v v4,[Z+r1] 
addi r1,16->r1 
blti r1,4096,L1 

7x1024 instructions 7x256 instructions 
(4x fewer instructions)  
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Vector Datapath & Implementation 
• Vector	insn.	are	just	like	normal	insn…	only	“wider”	

❒  Single	instrucBon	fetch	
❒  Wide	register	read	&	write	(not	mulBple	ports)	
❒  Wide	execute:	replicate	FP	unit	(same	as	superscalar)	
❒  Wide	bypass	(avoid	N2	bypass	problem)	
❒  Wide	cache	read	&	write	(single	cache	tag	check)	

• ExecuBon	width	(implementaBon)	vs	vector	width	(ISA)	
❒  E.g.	PenBum	4	and	“Core	1”	executes	vector	ops	at	half	width	
❒  “Core	2”	executes	them	at	full	width	

• Because	they	are	just	instrucBons…	
❒  …superscalar	execuBon	of	vector	instrucBons	
❒  MulBple	n-wide	vector	instrucBons	per	cycle		



Lecture 3 
Slide 36  EECS 570 

Intel’s SSE2/SSE3/SSE4… 
• Intel	SSE2	(Streaming	SIMD	Extensions	2)	-	2001	

❒  16	128bit	floaBng	point	registers	(xmm0–xmm15)	
❒  Each	can	be	treated	as	2x64b	FP	or	4x32b	FP	(“packed	FP”)	

❍  Or	2x64b	or	4x32b	or	8x16b	or	16x8b	ints	(“packed	integer”)	
❍  Or	1x64b	or	1x32b	FP	(just	normal	scalar	floaBng	point)	

❒  Original	SSE:	only	8	registers,	no	packed	integer	support	

• Other	vector	extensions	
❒  AMD	3DNow!:	64b	(2x32b)	
❒  PowerPC	AlBVEC/VMX:	128b	(2x64b	or	4x32b)	

• Intel’s	AVX-512	
❒  Intel’s	“Haswell”	and	Xeon	Phi	brought	512-bit	vectors	to	x86	
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Other Vector Instructions 
•  These	target	specific	domains:	e.g.,	image	processing,	crypto	

❒  Vector	reducBon	(sum	all	elements	of	a	vector)	
❒  Geometry	processing:	4x4	translaBon/rotaBon	matrices	
❒  SaturaBng	(non-overflowing)	subword	add/sub:	image	processing	
❒  Byte	asymmetric	operaBons:	blending	and	composiBon	in	graphics	
❒  Byte	shuffle/permute:	crypto	
❒  PopulaBon	(bit)	count:	crypto	
❒  Max/min/argmax/argmin:	video	codec	
❒  Absolute	differences:	video	codec	
❒  MulBply-accumulate:	digital-signal	processing	
❒  Special	instrucBons	for	AES	encrypBon	

• More	advanced	(but	in	Intel’s	Xeon	Phi)	
❒  Scaaer/gather	loads:	indirect	store	(or	load)	from	a	vector	of	pointers	
❒  Vector	mask:	predicaBon	(condiBonal	execuBon)	of	specific	elements	



Lecture 3 
Slide 38  EECS 570 

Using Vectors in Your Code 
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Using Vectors in Your Code 
• Write	in	assembly	

❒  Ugh	

• Use	“intrinsic”	funcBons	and	data	types	
❒  For	example:		_mm_mul_ps()	and		“__m128” datatype	

• Use	vector	data	types	
❒  typedef	double	v2df	__aaribute__	((vector_size	(16)));	

• Use	a	library	someone	else	wrote	
❒  Let	them	do	the	hard	work	
❒  Matrix	and	linear	algebra	packages	

• Let	the	compiler	do	it	(automaBc	vectorizaBon,	with	feedback)	
❒  GCC’s	“-^ree-vectorize”	opBon,	-^ree-vectorizer-verbose=n	
❒  Limited	impact	for	C/C++	code	(old,	hard	problem)	



Lecture 3 
Slide 40  EECS 570 

SAXPY Example: Best Case 

• Code	
void saxpy(float* x, float* y, 
           float* z, float a, 
           int length) {
  for (int i = 0; i < length; i++) {
    z[i] = a*x[i] + y[i];
  }
}

• Scalar	
.L3:
   movss (%rdi,%rax), %xmm1
   mulss %xmm0, %xmm1
   addss (%rsi,%rax), %xmm1
   movss %xmm1, (%rdx,%rax)
   addq  $4, %rax
   cmpq  %rcx, %rax
   jne   .L3

• Auto	Vectorized	
.L6:
   movaps (%rdi,%rax), %xmm1
   mulps %xmm2, %xmm1
   addps (%rsi,%rax), %xmm1
   movaps %xmm1, (%rdx,%rax)
   addq  $16, %rax
   incl  %r8d
   cmpl  %r8d, %r9d
   ja .L6

❍  +	Scalar	loop	to	handle	
last	few	iteraBons	(if	
length	%	4	!=	0)	

❍  “mulps”:	mulBply	
	packed	‘single’		
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SAXPY Example: Actual 

• Code	
void saxpy(float* x, float* y, 
           float* z, float a, 
           int length) {
  for (int i = 0; i < length; i++) {
    z[i] = a*x[i] + y[i];
  }
}

• Scalar	
.L3:
   movss (%rdi,%rax), %xmm1
   mulss %xmm0, %xmm1
   addss (%rsi,%rax), %xmm1
   movss %xmm1, (%rdx,%rax)
   addq  $4, %rax
   cmpq  %rcx, %rax
   jne   .L3

• Auto	Vectorized	
.L8:
   movaps  %xmm3, %xmm1
   movaps  %xmm3, %xmm2
   movlps  (%rdi,%rax), %xmm1
   movlps  (%rsi,%rax), %xmm2
   movhps  8(%rdi,%rax), %xmm1
   movhps  8(%rsi,%rax), %xmm2
   mulps %xmm4, %xmm1
   incl  %r8d
   addps %xmm2, %xmm1
   movaps %xmm1, (%rdx,%rax)
   addq  $16, %rax
   cmpl  %r9d, %r8d
   jb .L8

❍  +	Explicit	alignment	test	
❍  +	Explicit	aliasing	test		
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Bridging “Best Case” and “Actual” 
• Align arrays 
typedef float afloat __attribute__ ((__aligned__(16)));
void saxpy(afloat* x, 
           afloat* y, 
           afloat* z, 
           float a, int length) {
  for (int i = 0; i < length; i++) {
    z[i] = a*x[i] + y[i];
  }
}

• Avoid aliasing check 
typedef float afloat __attribute__ ((__aligned__(16)));
void saxpy(afloat* __restrict__ x, 
           afloat* __restrict__ y, 
           afloat* __restrict__ z, float a, int length) 

•  Even with both, still has the “last few iterations” code 
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SSE2 on Pentium 4 
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New Developments in “CPU” Vectors 
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Emerging Features 
• Past	vectors	were	limited	

❒  Wide	compute	
❒  Wide	load/store	of	consecuBve	addresses	
❒  Allows	for	“SOA”	(structures	of	arrays)	style	parallelism	

• Looking	forward	(and	backward)...	
❒  Vector	masks	

❍  CondiBonal	execuBon	on	a	per-element	basis	
❍  Allows	vectorizaBon	of	condiBonals	

❒  Sca7er/gather	
❍  a[i]	=	b[y[i]]									b[y[i]]	=	a[i]	
❍  Helps	with	sparse	matrices,	“AOS”	(array	of	structures)	parallelism	

• Together,	enables	a	different	style	vectorizaBon	
❒  Translate	arbitrary	(parallel)	loop	bodies	into	vectorized	code	(later)			
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Vector Masks (Predication) 

• Vector	Masks:	1	bit	per	vector	element	
❒  Implicit	predicate	in	all	vector	operaBons	

for (I=0; I<N; I++) if (maskI) { vop… } 

❒  Usually	stored	in	a	“scalar”	register	(up	to	64-bits)		
❒  Used	to	vectorize	loops	with	condiBonals	in	them	

cmp_eq.v, cmp_lt.v,  etc.:	sets	vector	predicates	
 
for (I=0; I<32; I++) 
   if (X[I] != 0.0) Z[I] = A/X[I]; 
 
ldf.v [X+r1] -> v1 
cmp_ne.v v1,f0 -> r2      // 0.0 is in f0 
divf.sv {r2} v1,f1 -> v2  // A is in f1 
stf.v {r2} v2 -> [Z+r1] 
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Scatter Stores & Gather Loads 
• How	to	vectorize:	

for(int i = 1, i<N, i++) { 
int bucket = val[i] / scalefactor;   
found[bucket] = 1; 

❒  	Easy	to	vectorize	the	divide,	but	what	about	the	load/store?	

• SoluBon:	hardware	support	for	vector	“scaaer	stores”	
❍  stf.v v2->[r1+v1] 

❒  Each	address	calculated	from	r1+v1i	
stf v20->[r1+v10],   stf v21->[r1+v11], 
stf v22->[r1+v12],   stf v23->[r1+v13] 

• Vector	“gather	loads”	defined	analogously	
❒  ldf.v [r1+v1]->v2 

• Scaaer/gathers	slower	than	regular	vector	load/store	ops	
❒  SBll	provides	throughput	advantage	over	non-vector	version	


