
Lecture 3
Slide 1EECS 570

EECS 570

Lecture 3

Shared-Memory

and Synchronization
Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/

Slides developed in part by Profs. Adve, Falsafi, Martin, Roth, Nowatzyk, and
Wenisch of EPFL, CMU, UPenn, U-M, UIUC.

Lecture 3
Slide 2 EECS 570

Announcements

Discussion this Friday: Programming Assignment 1

Lecture 3
Slide 3 EECS 570

Readings

For next Wednesday (no class on Monday – MLK holiday):

Using Message Passing to Transfer Data Between Threads -
The Rust Programming Language

Michael Scott, Shared-Memory Synchronization Synthesis
Lectures on Computer Architecture (Ch. 1, 4.0-4.3.3, 5.0-
5.2.5)

https://doc.rust-lang.org/book/ch16-02-message-passing.html
https://doc.rust-lang.org/book/ch16-02-message-passing.html

Lecture 3
Slide 4 EECS 570

Agenda

Shared-Memory programming model

Brief intro to architecture support

Synchronization operations

 - Locks

 - Barriers

Lecture 3
Slide 5 EECS 570

Shared Memory
Programming Model

Lecture 3
Slide 6 EECS 570

Shared-Memory Model

P1 P2 P3 P4

Memory System

Execution Contexts: Share a single address space

Models:
MIMD: Multiple programs

SPMD: Multiple copies of one program

Communication: Implicit via loads/stores

Theory: Based on PRAM model

Lecture 3
Slide 7 EECS 570

Global Shared Physical Address Space

• Communication,
sharing, synchronization
via loads/stores to
shared variables

• Facilities for address
translation between
local/global address
spaces

• Requires OS support to
maintain this mapping

Shared
portion of

address space

Private
portion of

address space

Common
physical

address space

Pn private

P2 private

P1 private

P0 private

store P0

load Pn

Lecture 3
Slide 8 EECS 570

Why Shared Memory?

Pluses:

• Intuitive for programmers – no need for explicit comm.

• OS needs minimal evolutionary extensions

• Simplifies communication without OS

Minuses:

• Complex synchronization

• Implicit communication makes optimization harder

• Needs complex hardware support for comm. (e.g., coherence)

• Result:

Shared-memory multi-core and GPUs are common today

Lecture 3
Slide 9 EECS 570

Thread-Level Parallelism

• Thread-level parallelism (TLP)

 Collection of asynchronous tasks: not started and stopped together

 Data shared loosely, dynamically

• Example: database/web server (each query is a thread)

 accts is shared, can’t register allocate even if it were scalar

 id and amt are private variables, register allocated to r1, r2

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id,amt;

if (accts[id].bal >= amt)

{

 accts[id].bal -= amt;

 spew_cash();

}

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Lecture 3
Slide 10 EECS 570

Synchronization

• Mutual exclusion : locks, …

• Order : barriers, signal-wait, …

• Implemented using read/write/RMW to shared location
 Language-level:

 libraries (e.g., locks in pthread)
 Programmers can write custom synchronizations

 Hardware ISA
 E.g., test-and-set

• OS provides support for managing threads
 scheduling, fork, join, futex signal/wait

Lecture 3
Slide 11 EECS 570

Cache Coherence

• Two $100 withdrawals from account #241 at two ATMs
 Each transaction maps to thread on different processor
 Track accts[241].bal (address is in r3)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

CPU0 MemCPU1

Lecture 3
Slide 12 EECS 570

No-Cache, No-Problem

• Scenario I: processors have no caches
 No problem

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

500

400

400

300

Lecture 3
Slide 13 EECS 570

Cache Incoherence

• Scenario II: processors have write-back caches
 Potentially 3 copies of accts[241].bal: memory, p0$, p1$
 Can get incoherent (out of sync)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

V:500 500

D:400 500

D:400 500V:500

D:400 500D:400

Lecture 3
Slide 14 EECS 570

Paired vs. Separate Processor/Memory?
• Separate processor/memory

 Uniform memory access (UMA): equal latency to all memory

+ Simple software, doesn’t matter where you put data

– Lower peak performance

 Bus-based UMAs common: symmetric multi-processors (SMP)

• Paired processor/memory
 Non-uniform memory access (NUMA): faster to local memory

– More complex software: where you put data matters

+ Higher peak performance: assuming proper data placement

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
MemR RRR

Lecture 3
Slide 15 EECS 570

Shared vs. Point-to-Point Networks

• Shared network: e.g., bus (left)
+ Low latency

– Low bandwidth: doesn’t scale beyond ~16 processors

+ Shared property simplifies cache coherence protocols (later)

• Point-to-point network: e.g., mesh or ring (right)
– Longer latency: may need multiple “hops” to communicate

+ Higher bandwidth: scales to 1000s of processors

– Cache coherence protocols are complex

CPU($)
Mem

CPU($)
Mem R

CPU($)
Mem R

CPU($)
MemR

CPU($)
MemR

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem RRRR

Lecture 3
Slide 16 EECS 570

Implementation #1: Snooping Bus MP

Bus-based systems

 Typically small: 2–8 (maybe 16) processors

 Typically, processors split from memories (UMA)
 Multiple processors (cores) on single chip (multi-core)

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

Lecture 3
Slide 17 EECS 570

Implementation #2: Scalable MP

• General point-to-point network-based systems
 Typically, processor/memory/router blocks (NUMA)

 Glueless MP: no need for additional “glue” chips

 Can be arbitrarily large: 1000’s of processors
 Massively parallel processors (MPPs)

 AMD Infinity Fabric, Intel UPI
 nVidia’s NVLink (scales to 10s of GPUs)

CPU($)
Mem R

CPU($)
Mem R

CPU($)
MemR

CPU($)
MemR

Lecture 3
Slide 18 EECS 570

Snooping Cache-Coherence Protocols

Bus provides serialization point

Each cache controller “snoops” all bus transactions
 take action to ensure coherence

 invalidate
 update
 supply value

 depends on state of the block and the protocol

Lecture 3
Slide 19 EECS 570

Scalable Cache Coherence

• Scalable cache coherence: two part solution

• Part I: bus bandwidth
 Replace non-scalable bandwidth substrate (bus)…

 …with scalable bandwidth one (point-to-point network, e.g., mesh)

• Part II: processor snooping bandwidth
 Interesting: most snoops result in no action

 Replace non-scalable broadcast protocol (spam everyone)…

 …with scalable directory protocol (only spam processors that care)

• We will cover this in Unit 2

Lecture 3
Slide 20 EECS 570

Shared Memory Summary

• Shared-memory multiprocessors
+ “Simple” software: easy data sharing, handles both DLP & TLP

• …but hard to get fully correct!

– Complex hardware: must provide illusion of global address
space

• Two basic implementations
 Symmetric (UMA) multi-processors (SMPs)

 Underlying communication network: bus (ordered)
+ Low-latency, simple protocols
– Low-bandwidth, poor scalability

 Scalable (NUMA) multi-processors (MPPs)
 Underlying communication network: point-to-point (often

unordered)
+ Scalable bandwidth
– Higher-latency, complex protocols

Lecture 3
Slide 21 EECS 570

Synchronization

Lecture 3
Slide 22 EECS 570

Synchronization objectives

• Low overhead
 Synchronization can limit scalability

(E.g., single-lock OS kernels)

• Correctness (and ease of programmability)
 Synchronization failures are extremely difficult to debug

• Coordination of HW and SW
 SW semantics must be tightly specified to prove correctness
 HW can often improve efficiency

Lecture 3
Slide 23 EECS 570

Synchronization Forms

• Mutual exclusion (critical sections)
 Lock & Unlock

• Event Notification
 Point-to-point (producer-consumer, flags)
 I/O, interrupts, exceptions

• Barrier Synchronization

• Higher-level constructs
 Queues, software pipelines, (virtual) time, counters

• Novel research solution: optimistic concurrency control
 Transactional Memory

Lecture 3
Slide 24 EECS 570

Anatomy of a Synchronization Op

• Acquire Method
 Way to obtain the lock or proceed past the barrier

• Waiting Algorithm
 Spin (aka busy wait)

 Waiting process repeatedly tests a location until it changes
 Releasing process sets the location
 Lower overhead, but wastes CPU resources
 Can cause interconnect traffic

 Block (aka suspend)
 Waiting process is descheduled
 High overhead, but frees CPU to do other things

 Hybrids (e.g., spin, then block)

• Release Method
 Way to allow other processes to proceed

Lecture 3
Slide 25 EECS 570

HW/SW Implementation Trade-offs

• User wants high-level (ease of programming)
 LOCK(lock_variable); UNLOCK(lock_variable)
 BARRIER(barrier_variable, numprocs)

• SW advantages: flexibility, portability

• HW advantages: speed

• Design objectives:
 Low latency
 Low traffic
 Low storage
 Scalability (“wait-free”-ness)
 Fairness

Lecture 3
Slide 26 EECS 570

Challenges

• Same sync may have different behavior at different times
 Lock accessed with low or high contention
 Different performance needs: low latency vs. high throughput
 Different algorithms best for each, need different primitives

• Multiprogramming can change sync behavior
 Process scheduling or other resource interactions
 May need algorithms that are worse in dedicated case

• Rich area of SW/HW interactions
 Which primitives are available?
 What communication patterns cost more/less?

Lecture 3
Slide 27 EECS 570

Locks

Lecture 3
Slide 28 EECS 570

Lock-based Mutual Exclusion

xf
er

C
ri

t.
 s

ec
re

le
as

e

Acquire starts

w
ai

t

w
ai

t

xf
er

C
ri

t.
 s

ec
re

le
as

e

xf
er

C
ri

t.
 s

ec

Acquire done

Release starts

Release done

Synchronization
period

No contention:
• Want low latency

Contention:
• Want low period
• Low traffic
• Fairness

Lecture 3
Slide 29 EECS 570

How Not to Implement Locks

LOCK

while (lock_variable == 1);

lock_variable = 1;

UNLOCK

lock_variable = 0;

Context switch!

Lecture 3
Slide 30 EECS 570

Solution: Atomic Read-Modify-Write

• Test&Set(r,x)
{r=m[x]; m[x]=1;}

• Fetch&Op(r1,r2,x,op)
{r1=m[x]; m[x]=op(r1,r2);}

• Swap(r,x)
{temp=m[x]; m[x]=r; r=temp;}

• Compare&Swap(r1,r2,x)
{temp=r2; r2=m[x]; if r1==r2 then m[x]=temp;}

• r is register
• m[x] is memory location x

Lecture 3
Slide 31 EECS 570

Implementing RMWs

• Bus-based systems:
 Hold bus and issue load/store operations without any

intervening accesses by other processors

• Perform operation at shared point in the memory hierarchy
 E.g., if L1s are private and L2 is shared, perform sync ops at L2

 Need to invalidate lines for the address in the private L1s!

• Scalable systems
 Acquire exclusive ownership via cache coherence
 Perform load/store operations without allowing external

coherence requests

Lecture 3
Slide 32 EECS 570

Load-Locked Store-Conditional

• Load-locked
 Issues a normal load…
 …and sets a flag and address field

• Store-conditional
 Checks that flag is set and address matches…
 …only then performs store

• Flag is cleared by
 Invalidation
 Cache eviction
 Context switch

lock: while (1) {

 load-locked r1, lock_variable

 if (r1 == 0) {

 mov r2 = 1

 if (SC r2, lock_variable) break;

 }

 } unlock:st lock_variable, #0

Lecture 3
Slide 33 EECS 570

Coherence Protocol Example

• If P1 updates the value of x to 200, the stale value of x in
other processors must be invalidated

• If P3 wants to subsequently read/write x, it must request
the new value

• SWMR = Single-Writer Multiple Readers, DVI = Data Value
Invariant

P1 P2 P3

x = 100 x = 100 x = 100

Processors

Caches x = 200

Invalidation
s

x = 100 x = 100

Request
Data

x = 200

St x = 200 Ld x

Data Response

Lecture 3
Slide 34 EECS 570

Test-and-Set Spin Lock (T&S)

• Lock is “acquire”, Unlock is “release”

• acquire(lock_ptr):

while (true):

// Perform “test-and-set”

// UNLOCKED = 0, LOCKED = 1

test_and_set(old, lock_ptr)

if (old == UNLOCKED):

break // lock acquired!

// keep spinning, back to top of while loop

• release(lock_ptr):

store[lock_ptr] <- UNLOCKED

• Performance problem
 T&S is both a read and write; spinning causes lots of coherence

traffic

Lecture 3
Slide 35 EECS 570

• acquire(lock_ptr):

while (true):

// Perform “test”

load [lock_ptr] -> original_value

if (original_value == UNLOCKED):

 // Perform “test-and-set”

test_and_set(old, lock_ptr)

if (old == UNLOCKED):

 break // lock acquired!

// keep spinning, back to top of while loop

• release(lock_ptr):

store[lock_ptr] <- UNLOCKED

• Now “spinning” is read-only, on local cached copy

Test-and-Test-and-Set Spin Lock (TTS)

Lecture 3
Slide 36 EECS 570

TTS Lock Performance Issues
• Performance issues remain

 Every time the lock is released…
 All spinning cores get invalidated -> lots of coherence traffic

 All spinning cores would then load the lock addr to keep spinning,
and likely try to T&S the block

❑ More coherence traffic!

 Causes a storm of coherence traffic, clogs things up badly

• One solution: backoff

 Instead of spinning constantly, check less frequently

 Exponential backoff works well in practice

• Another problem with spinning

 Processors can spin really fast, starve threads on the same core!

 Solution: x86 adds a “PAUSE” instruction
 Tells processor to suspend the thread for a short time

• (Un)fairness

Lecture 3
Slide 37 EECS 570

Ticket Locks

• To ensure fairness and reduce coherence storms

• Locks have two counters: next_ticket, now_serving
 Deli counter

• acquire(lock_ptr):

 my_ticket = fetch_and_increment(lock_ptr->next_ticket)

 while(lock_ptr->now_serving != my_ticket); // spin

• release(lock_ptr):

 lock_ptr->now_serving = lock_ptr->now_serving + 1

 (Just a normal store, not an atomic operation, why?)

• Summary of operation
 To “get in line” to acquire the lock, CAS on next_ticket

 Spin on now_serving

Lecture 3
Slide 38 EECS 570

Ticket Locks

• Properties
 Less of a “thundering herd” coherence storm problem

 To acquire, only need to read new value of now_serving
 No CAS on critical path of lock handoff

 Just a non-atomic store
 FIFO order (fair)

 Good, but only if the O.S. hasn’t swapped out any threads!

• Padding
 Allocate now_serving and next_ticket on different cache blocks

 struct { int now_serving; char pad[60]; int next_ticket; } …
 Two locations reduces interference

• Proportional backoff
 Estimate of wait time: (my_ticket - now_serving) * average hold time

Lecture 3
Slide 39 EECS 570

Array-Based Queue Locks

• Why not give each waiter its own location to spin on?

 Avoid coherence storms altogether!

• Idea: “slot” array of size N: “go ahead” or “must wait”
 Initialize first slot to “go ahead”, all others to “must wait”
 Padded one slot per cache block,

 Keep a “next slot” counter (similar to “next_ticket” counter)

• Acquire: “get in line”

 my_slot = (atomic increment of “next slot” counter) mod N

 Spin while slots[my_slot] contains “must_wait”

 Reset slots[my_slot] to “must wait”

• Release: “unblock next in line”

 Set slots[my_slot+1 mod N] to “go ahead”

Lecture 3
Slide 40 EECS 570

Array-Based Queue Locks

• Variants: Anderson 1990, Graunke and Thakkar 1990

• Desirable properties
 Threads spin on dedicated location

 Just two coherence misses per handoff

 Traffic independent of number of waiters

 FIFO & fair (same as ticket lock)

• Undesirable properties
 Higher uncontended overhead than a TTS lock

 Storage O(N) for each lock

 128 threads at 64B padding: 8KBs per lock!
 What if N isn’t known at start?

• List-based locks address the O(N) storage problem
 Several variants of list-based locks: MCS 1991, CLH 1993/1994

Lecture 3
Slide 41 EECS 570

List-Based Queue Lock (MCS)

• A “lock” is a pointer to a linked list node
 next node pointer
 boolean must_wait
 Each thread has its own local pointer to a node “I”

• acquire(lock):

I->next = null;

predecessor = fetch_and_store(lock,I)

if predecessor != nil //some node holds lock

 I->must_wait = true

 predecessor->next = I //predecessor must wake us

 repeat while I->must_wait //spin till lock is free

• release(lock):

if (I->next == null) //no known successor

 if compare_and_swap(lock,I,nil) //make sure…

 return //CAS succeeded; lock freed

 repeat while I->next = nil //spin to learn successor

I->next->must_wait = false //wake successor

Lecture 3
Slide 42 EECS 570

MCS Lock Example: Time 0

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil

 I->must_wait = true

 pred->next = I

 repeat while I->must_wait

• release(lock):

if (I->next == null)

 if CAS(lock,I,nil)

 return

 repeat while I->next == nil

I->next->must_wait = false

False False False

Lock

I1 I2 I3

Lecture 3
Slide 43 EECS 570

MCS Lock Example: Time 1

False False False

Lock

I1 I2 I3• t1: Acquire(L)

Holds lock

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil

 I->must_wait = true

 pred->next = I

 repeat while I->must_wait

• release(lock):

if (I->next == null)

 if CAS(lock,I,nil)

 return

 repeat while I->next == nil

I->next->must_wait = false

Lecture 3
Slide 44 EECS 570

MCS Lock Example: Time 2

False True False

Lock

I1 I2 I3• t1: Acquire(L)

• t2: Acquire(L)

Holds lock Spinning

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil

 I->must_wait = true

 pred->next = I

 repeat while I->must_wait

• release(lock):

if (I->next == null)

 if CAS(lock,I,nil)

 return

 repeat while I->next == nil

I->next->must_wait = false

Lecture 3
Slide 45 EECS 570

MCS Lock Example: Time 3

False True True

Lock

I1 I2 I3• t1: Acquire(L)

• t2: Acquire(L)

• t3: Acquire(L)

Holds lock Spinning Spinning

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil

 I->must_wait = true

 pred->next = I

 repeat while I->must_wait

• release(lock):

if (I->next == null)

 if CAS(lock,I,nil)

 return

 repeat while I->next == nil

I->next->must_wait = false

Lecture 3
Slide 46 EECS 570

MCS Lock Example: Time 4

False False True

Lock

I1 I2 I3• t1: Acquire(L)

• t2: Acquire(L)

• t3: Acquire(L)

• t1: Release(L)

Holds lock Spinning

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil

 I->must_wait = true

 pred->next = I

 repeat while I->must_wait

• release(lock):

if (I->next == null)

 if CAS(lock,I,nil)

 return

 repeat while I->next == nil

I->next->must_wait = false

Lecture 3
Slide 47 EECS 570

MCS Lock Example: Time 5

False False False

Lock

I1 I2 I3• t1: Acquire(L)

• t2: Acquire(L)

• t3: Acquire(L)

• t1: Release(L)

• t2: Release(L)

Holds lock

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil

 I->must_wait = true

 pred->next = I

 repeat while I->must_wait

• release(lock):

if (I->next == null)

 if CAS(lock,I,nil)

 return

 repeat while I->next == nil

I->next->must_wait = false

Lecture 3
Slide 48 EECS 570

MCS Lock Example: Time 6

False False False

Lock

I1 I2 I3• t1: Acquire(L)

• t2: Acquire(L)

• t3: Acquire(L)

• t1: Release(L)

• t2: Release(L)

• t3: Release(L)

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil

 I->must_wait = true

 pred->next = I

 repeat while I->must_wait

• release(lock):

if (I->next == null)

 if CAS(lock,I,nil)

 return

 repeat while I->next == nil

I->next->must_wait = false

release() w/o CAS is more complex; see paper

Lecture 3
Slide 49 EECS 570

Queue-based locks in HW: QOLB

• Queue On Lock Bit

 HW maintains doubly-linked list between requesters
 This is a key idea of “Scalable Coherence Interface”, see Unit 3

 Augment cache with “locked” bit
 Waiting caches spin on local “locked” cache line

 Upon release, lock holder sends line to 1st requester
 Only requires one message on interconnect

P1 P2 P3

L L

Lecture 3
Slide 50 EECS 570

Fundamental Mechanisms to Reduce Overheads
[Kägi, Burger, Goodman ASPLOS 97]

• Basic mechanisms

 Local Spinning

 Queue-based locking

 Collocation

 Synchronous Prefetch

Local Spin Queue Collocation Prefetch

T&S No No Optional No

T&T&S Yes No Optional No

MCS Yes Yes Partial No

QOLB yes Yes Optional Yes

Lecture 3
Slide 51 EECS 570

Microbenchmark Analysis

CPUs

R
el

at
iv

e
sy

n
c

p
er

io
d

[Kägi 97]

Lecture 3
Slide 52 EECS 570

Performance of Locks

• Contention vs. No Contention
 Test-and-Set best when no contention

 Queue-based is best with medium contention

 Idea: switch implementation based on lock behavior
 Reactive Synchronization – Lim & Agarwal 1994
 SmartLocks – Eastep et al 2009

• High-contention indicates poorly written program
 Need better algorithm or data structures

Lecture 3
Slide 53 EECS 570

Point-to-Point Event Synchronization

• Can use normal variables as flags
a = f(x); while (flag == 0);

flag = 1; b = g(a);

• If we know initial conditions
a = f(x); while (a == 0);

 b = g(a);

• Assumes Sequential Consistency!

• Full/Empty Bits
 Set on write
 Cleared on read
 Can’t write if set, can’t read if clear

Lecture 3
Slide 54 EECS 570

Barriers

Lecture 3
Slide 55 EECS 570

Barriers

• Physics simulation computation
 Divide up each timestep computation into N independent pieces

 Each timestep: compute independently, synchronize

• Example: each thread executes:
segment_size = total_particles / number_of_threads

my_start_particle = thread_id * segment_size

my_end_particle = my_start_particle + segment_size - 1

for (timestep = 0; timestep += delta; timestep < stop_time):

calculate_forces(t, my_start_particle, my_end_particle)

barrier()

update_locations(t, my_start_particle, my_end_particle)

barrier()

• Barrier? All threads wait until all threads have reached it

Lecture 3
Slide 56 EECS 570

Example: Barrier-Based Merge Sort

Barrier

Barrier

t0 t1 t2 t3

Step 1

Step 2

Step 3

Lecture 3
Slide 57 EECS 570

Global Synchronization Barrier

• At a barrier
 All threads wait until all other threads have reached it

• Strawman implementation (wrong!)

global (shared) count : integer := P

procedure central_barrier

 if fetch_and_decrement(&count) == 1

 count := P

 else

 repeat until count == P

• What is wrong with the above code?

Barrier

t0 t1 t2 t3

Barrier

Lecture 3
Slide 58 EECS 570

Sense-Reversing Barrier

• Correct barrier implementation:

global (shared) count : integer := P

global (shared) sense : Boolean := true

local (private) local_sense : Boolean := true

procedure central_barrier

 // each processor toggles its own sense

 local_sense := !local_sense

 if fetch_and_decrement(&count) == 1

 count := P

 // last processor toggles global sense

 sense := local_sense

 else

 repeat until sense == local_sense

• Single counter makes this a “centralized” barrier

Lecture 3
Slide 59 EECS 570

Other Barrier Implementations

• Problem with centralized barrier
 All processors must increment each counter

 Each read/modify/write is a serialized coherence action

 Each one is a cache miss

 O(n) if threads arrive simultaneously, slow for lots of processors

• Combining Tree Barrier
 Build a logk(n) height tree of counters (one per cache block)

 Each thread coordinates with k other threads (by thread id)

 Last of the k processors, coordinates with next higher node in tree

 As many coordination address are used, misses are not serialized

 O(log n) in best case

• Static and more dynamic variants
 Tree-based arrival, tree-based or centralized release

	Slide 1
	Slide 2: Announcements
	Slide 3: Readings
	Slide 4: Agenda
	Slide 5: Shared Memory Programming Model
	Slide 6: Shared-Memory Model
	Slide 7: Global Shared Physical Address Space
	Slide 8: Why Shared Memory?
	Slide 9: Thread-Level Parallelism
	Slide 10: Synchronization
	Slide 11: Cache Coherence
	Slide 12: No-Cache, No-Problem
	Slide 13: Cache Incoherence
	Slide 14: Paired vs. Separate Processor/Memory?
	Slide 15: Shared vs. Point-to-Point Networks
	Slide 16: Implementation #1: Snooping Bus MP
	Slide 17: Implementation #2: Scalable MP
	Slide 18: Snooping Cache-Coherence Protocols
	Slide 19: Scalable Cache Coherence
	Slide 20: Shared Memory Summary
	Slide 21: Synchronization
	Slide 22: Synchronization objectives
	Slide 23: Synchronization Forms
	Slide 24: Anatomy of a Synchronization Op
	Slide 25: HW/SW Implementation Trade-offs
	Slide 26: Challenges
	Slide 27: Locks
	Slide 28: Lock-based Mutual Exclusion
	Slide 29: How Not to Implement Locks
	Slide 30: Solution: Atomic Read-Modify-Write
	Slide 31: Implementing RMWs
	Slide 32: Load-Locked Store-Conditional
	Slide 33: Coherence Protocol Example
	Slide 34: Test-and-Set Spin Lock (T&S)
	Slide 35
	Slide 36: TTS Lock Performance Issues
	Slide 37: Ticket Locks
	Slide 38: Ticket Locks
	Slide 39: Array-Based Queue Locks
	Slide 40: Array-Based Queue Locks
	Slide 41: List-Based Queue Lock (MCS)
	Slide 42: MCS Lock Example: Time 0
	Slide 43: MCS Lock Example: Time 1
	Slide 44: MCS Lock Example: Time 2
	Slide 45: MCS Lock Example: Time 3
	Slide 46: MCS Lock Example: Time 4
	Slide 47: MCS Lock Example: Time 5
	Slide 48: MCS Lock Example: Time 6
	Slide 49: Queue-based locks in HW: QOLB
	Slide 50: Fundamental Mechanisms to Reduce Overheads [Kägi, Burger, Goodman ASPLOS 97]
	Slide 51: Microbenchmark Analysis
	Slide 52: Performance of Locks
	Slide 53: Point-to-Point Event Synchronization
	Slide 54: Barriers
	Slide 55: Barriers
	Slide 56: Example: Barrier-Based Merge Sort
	Slide 57: Global Synchronization Barrier
	Slide 58: Sense-Reversing Barrier
	Slide 59: Other Barrier Implementations

