EECS 570
Lecture 3

Data-level
Parallelism
Winter 2024

Prof. Ronald Dreslinski

4 .a:\:ﬁ‘:.‘..: e

http://www.eecs.umich.edu/courses/eecs570/

Slides developed in part by Profs. Adve, Falsafi, Martin, Roth, Nowatzyk, and
Wenisch of EPFL, CMU, UPenn, U-M, UIUC.

Lecture 3
EECS 570 Slide 1

Announcements

Discussion this Friday: Programming Assignment 1

Lecture 3
EECS 570 Slide 2

Readings

For today:

3 Christina Delimitrou and Christos Kozyrakis. Amdahl's law for
tail latency. Commun. ACM, July 2018.

3 H Kim, R Vuduc, S Baghsorkhi, J Choi, Wen-mei Hwu,

xPerformance Analysis and Tuning for General Purpose
Graphics Processing Units (GPGPU), Ch. 1

For Wednesday:

A Tor M. Aamodt, Wilson Wai Lun Fung, Timothy G. Rogers,
General-Purpose Graphics Processor Architectures, Ch.
3.1-3.3,4.1-4.3

7 V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O.
Mutlu, and Y. N. Patt, Improving GPU performance via large
warps and two-level warp scheduling, MICRO 2011.

Lecture 3
EECS 570 Slide 3

Agenda

Finish message passing vs shared memory from LO2

Data-level parallelism

Lecture 3
EECS 570 Slide 4

Synchronous vs Asynchronous

e Synchronous Send
A Stall until message has actually been received
TJlmplies a message acknowledgement from receiver to sender

e Synchronous Receive
A Stall until message has actually been received

« Asynchronous Send and Receive
A Sender and receiver can proceed regardless
T Returns request handle that can be tested for message receipt

T Request handle can be tested to see if message has been sent/
received

Lecture 3
EECS 570 Slide 5

Deadlock

« Blocking communications may deadlock

<Process 0> <Process 1>
Send(Process1, Message); Send(Process0, Message);
Receive(Process1, Message); Receive(Process0, Message);

o Requires careful (safe) ordering of sends/receives

<Process 0> <Process 1>

Send(Process1, Message); Receive (Process0, Message);

Receive(Process1, Message); Send (Process0, Message);
EECS 570

Lecture 3
Slide 6

Message Passing Paradigm Summary

Programming Model (Software) point of view:
 Disjoint, separate name spaces
e “Shared nothing”

« Communication via explicit, typed messages: send & receive

Lecture 3
EECS 570 Slide 7

Message Passing Paradigm Summary

Computer Engineering (Hardware) point of view:
 Treat inter-process communication as /O device
e Critical issues:

7 How to optimize APl overhead

T Minimize communication latency

7 Buffer management: how to deal with early/unsolicited messages,
message typing, high-level flow control

Event signaling & synchronization

Library support for common functions (barrier synchronization, task
distribution, scatter/gather, data structure maintenance)

Lecture 3
EECS 570 Slide 8

Shared Memory
Programming Model

Lecture 3
EECS 570 Slide 9

Shared-Memory Model

3 Multiple execution contexts sharing a single address space
O Multiple programs (MIMD)

O Or more frequently: multiple copies of one program (SPMD)
3 Implicit (automatic) communication via loads and stores
3 Theoretical foundation: PRAM model

P, P, P, P,

Memory System

Lecture 3
EECS 570 Slide 10

Global Shared Physical Address Space

load P, er'-
C ~
"
store P,_ /:; -
7 |l=
Shared g Common
portion of Y physical
address space | | | . | @ddress space
— \
: . |
Prlyate .| Pnprivate
portion of | [y
\[— \
address space | '\
v\ * -
\\ ‘\ P2 private
v)
\ *
\ .
. P1 private
\
\
1 PO private

EECS 570

« Communication,
sharing, synchronization
via loads/stores to
shared variables

e Facilities for address
translation between
local/global address
spaces

e Requires OS support to
maintain this mapping

Lecture 3
Slide 11

Why Shared Memory?

Pluses
A For applications looks like multitasking uniprocessor
3 For OS only evolutionary extensions required
3 Easy to do communication without OS

Minuses
3 Proper synchronization is complex
3 Communication is implicit so harder to optimize

7 Hardware designers must implement shared mem abstraction
O This is hard

Result

3 Traditionally bus-based Symmetric Multiprocessors (SMPs), and
now CMPs are the most success parallel machines ever

7 And the first with multi-billion-dollar markets

Lecture 3
EECS 570 Slide 12

Thread-Level Parallelism

struct acct t { int bal; };

shared struct acct t accts[MAX ACCT];
int id,amt;

if (accts[id] .bal >= amt)

{

addi rl,accts,r3
1d 0(x3),r4

: blt r4,r2,6

sub r4,r2,r4

st r4,0(xr3)

call spew cash

accts[id] .bal -= amt;
spew_cash() ;

o WMNEFPO

}

e Thread-level parallelism (TLP)
3 Collection of asynchronous tasks: not started and stopped together
7 Data shared loosely, dynamically

« Example: database/web server (each query is a thread)
7 accts is shared, can’t register allocate even if it were scalar
7 idand amt are private variables, register allocated to r1, r2

Lecture 3
EECS 570 Slide 13

Synchronization

e Mutual exclusion : locks, ...

e Order : barriers, signal-wait, ...

« Implemented using read/write/RMW to shared location

7 Language-level:
O libraries (e.g., locks in pthread)
O Programmers can write custom synchronizations

7 Hardware ISA
O E.g., test-and-set

« OS provides support for managing threads
3 scheduling, fork, join, futex signal/wait

We’'ll cover synchronization in more detail in a couple of weeks

Lecture 3
EECS 570 Slide 14

Cache Coherence

Processor 0 Processor 1

0: addi rl,accts,r3 CPUO | CPU1 | Mem
1: 1d 0(xr3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(xr3)

5: call spew cash : addi rl,accts,r3

1d 0(xr3) ,r4

: blt r4,r2,6
sub r4,r2,r4
st r4,0(xr3)
call spew cash

o s~ W DdhhH+H O

e Two $100 withdrawals from account #241 at two ATMs
7 Each transaction maps to thread on different processor
3 Track accts[241] .bal (addressisin r3)

Lecture 3
EECS 570 Slide 15

No-Cache, No-Problem

Processor 0

addi rl,accts,r3
1d 0(xr3),r4

: blt r4,r2,6

sub r4,r2,r4

st r4,0(xr3)

call spew cash

o s W DN+ o

Processor 1

o s~ W DdhhH+H O

addi rl,accts,r3
1d 0(x3) ,r4

: blt r4,r2,6

sub r4,r2,r4
st r4,0(xr3)
call spew cash

e Scenario |: processors have no caches

7 No problem

EECS 570

500

500

400

400

300

Lecture 3
Slide 16

Cache Incoherence

Processor 0

: addi rl,accts,r3
: 1d 0(x3) ,r4

: blt r4,r2,6

: sub r4,r2,r4

: st r4,0(x3)

: call spew cash

o s W DN+ o

« Scenario ll: processors have write-back caches

Processor 1

o s~ W DdhhH+H O

: addi rl,accts,r3
: 1d 0(xr3),r4

: blt r4,r2,6

: sub r4,r2,r4

: st r4,0(x3)

: call spew cash

500
V:500 500
D:400 500
D:400 | V:500 | 500
D:400 | D:400] 500

7 Potentially 3 copies of accts[241] .bal: memory, p0S, plS
3 Can get incoherent (out of sync)

EECS 570

Lecture 3
Slide 17

Paired vs. Separate Processor/Memory?

 Separate processor/memory
3 Uniform memory access (UMA): equal latency to all memory
+ Simple software, doesn’t matter where you put data
— Lower peak performance
7 Bus-based UMAs common: symmetric multi-processors (SMP)

e Paired processor/memory
3 Non-uniform memory access (NUMA): faster to local memory
— More complex software: where you put data matters
+ Higher peak performance: assuming proper data placement

CPU(S) [| CPU(S) [| CPU(S) | | CPU(S)

CPU(S) | | CPU(S) | | CPU(S) | | CPU(S)
Mem|R| IMem|R| IMem|R | [Mem|R

Mem| [Mem] [Mem] [Mem ﬁ

Lecture 3
EECS 570 Slide 18

Shared vs. Point-to-Point Networks

« Shared network: e.g., bus (left)
+ Low latency
— Low bandwidth: doesn’t scale beyond ~16 processors
+ Shared property simplifies cache coherence protocols (later)

 Point-to-point network: e.g., mesh or ring (right)
- Longer latency: may need multiple “hops” to communicate
+ Higher bandwidth: scales to 1000s of processors
— Cache coherence protocols are complex

CPU(S) | | CPU(S) | | CPU(S) | L CPU(S) CPU(S) CPU(S)
Mem|R| [IMem|R| IMem|R | [Mem|R Meml R lF—{ R IMem
H Mem] R F—[R [Mem
CPU(S) CPU(S)

Lecture 3

EECS 570 Slide 19

Implementation #1: Snooping Bus MP

CPU(S) | [CPU(S) | [CPU(S) | | CPU(S)

Mem Mem Mem Mem

« Two basic implementations

e Bus-based systems
3 Typically small: 2-8 (maybe 16) processors
3 Typically processors split from memories (UMA)
O Sometimes multiple processors on single chip (CMP)
O Symmetric multiprocessors (SMPs)
O Common, | use one everyday

Lecture 3
EECS 570 Slide 20

Implementation #2: Scalable MP

CPU(S) CPU(S)
Mem| R [R |[Mem

A A

\ 4 A 4

Mem| R [R |[Mem
CPU(S) CPU(S)

e General point-to-point network-based systems
3 Typically processor/memory/router blocks (NUMA)
O Glueless MP: no need for additional “glue” chips
A Can be arbitrarily large: 1000’s of processors
O Massively parallel processors (MPPs)

3 In reality only government (DoD) has MPPs...
O Companies have much smaller systems: 32—64 processors
O Scalable multi-processors

Lecture 3
EECS 570 Slide 21

Snooping Cache-Coherence Protocols

Bus provides serialization point

Each cache controller “snoops” all bus transactions

7 take action to ensure coherence
O invalidate
O update
O supply value

7 depends on state of the block and the protocol

Lecture 3
EECS 570 Slide 22

Scalable Cache Coherence

« Scalable cache coherence: two part solution

e Part |: bus bandwidth

7 Replace non-scalable bandwidth substrate (bus)...
3 ...with scalable bandwidth one (point-to-point network, e.g., mesh)

« Part Il: processor snooping bandwidth
7 Interesting: most snoops result in no action
7 Replace non-scalable broadcast protocol (spam everyone)...
3 ...with scalable directory protocol (only spam processors that care)

o We will cover this in Unit 3

EECS 570

Lecture 3
Slide 23

Shared Memory Summary

« Shared-memory multiprocessors

+ “Simple” software: easy data sharing, handles both DLP & TLP
...but hard to get fully correct!

— Complex hardware: must provide illusion of global address
space

« Two basic implementations

3 Symmetric (UMA) multi-processors (SMPs)
O Underlying communication network: bus (ordered)
+ Low-latency, simple protocols
— Low-bandwidth, poor scalability

3 Scalable (NUMA) multi-processors (MPPs)

O Underlying communication network: point-to-point (often
unordered)

+ Scalable bandwidth
— Higher-latency, complex protocols

Lecture 3
EECS 570 Slide 24

Amdahl's Law for Tail Latency

[Delimitrou & Kozyrakis]

Figure 3. Homogeneous server configurations for a budget of R = 100 resource units:

(a) 100 1BCE cores; (b) 25 4BCE cores; and (c) one 100BCE core.

a2l
— {2l

Arrival rate: \ Arrival rate: \

e S

—{2l
Service time: Ts = 1/p
«—>

—{2l
Small Core

(a)

o

Service time: Ts = 1/(1v/4)
—>

L

Medium Core

(b)

Service time: Ts = 1/(v/100)

Arrival rate: \

I

AZANANZAN/ANTANTANTANTANT AN

o L i iV S P v e v
AAVAV AV AV AN AT AT AN 4

s

EECS 570

A A A A A A A A A AN A AN AN
A AR A A A AN AR AN

ST A A A A AN AR A AN

Large Core

e e e

e e e e e e e e e]
VYVVVVVVVVVVVVVVYVYVYVYYY

QPS at QoS (*1/Ts)

‘ ‘ : 40— ‘ UESSIE
. .| m— Q0S=1Ts : . . m— F=100%
be ottt 4 | W A A
: ‘ QoS=5Ts 35 gy — R
Lo _.|== QoS=10Ts | Dagl-] Hp-ccfocoeaee L F=90%
. . . QoS=50Ts - Pyt . . = F=50%
Fe- S i i e== Q0S=100Ts | L25r gt ge==s=s=s
. : : : ; 0 ‘.,p
e e e EEEEEREE § 2.0 :
‘ ‘ < ‘
‘ ‘ 2 ‘
peqpiesstcccccccclocacoccclocacoacsdoscacacsy wn 1.5
o o o
! 0 o
F=qF==:d=f=e==ccctzcczccccldoczccsaclococccczg 1.0f-
. ‘ ‘
:7’ ,,,,,,,,,,, 0.5
: — : 0.0 : : : :
40 60 80 100 0 20 40 60 80 100
BCEs BCEs

(a) Throughput (QPS) under a tail latency constraint as
a system architect increases the resources per core when
parallelism is unlimited;

Very strict QoS puts a lot of
pressure on 1-thread perf

(b) Throughput under a tail latency constraint when parallelism
is not plentiful;

With low QoS constraints, balance
ILP and TLP

Limited parallelism calls for more
powerful cores

Lecture 3
Slide 25

Amdahl's Law for Tail Latency

[Delimitrou & Kozyrakis]

Figure 5. Heterogeneous server configuration with 25BCE large cores and 1BCE small cores. 4- For me diu m QOS’ ratio O f
big-to-small cores should
follow ratio of big-to-small
requests

long request
é R

Arrival rate: \
—_—>

050 050 090 050 050 050
050 050 050 00 050 050
_L o0 050 090 050 030 050 5. But,asf

srovrenest) - {1211 1120 DI 2 12 120 cores are rapidly favored

sarallel dECTEASES, big

00 020 020 020 120 1

10 Ul=1U2=25 6 QoS =10Ts, Ul=1,U2=125
T T T T T T T T
m— Q0S=1Ts | 1 ; m— F=100% j j ‘
gl QoS=5Ts L Y S o | G | = =090 e |
e = QoS=10Ts |: ; : @ m— F=90% ‘ ‘ :
= QoS=50Ts |: : : =
5 6r QoS=100Ts |i- - pFme--tmom- oo e] =
-] . . -]
(< . o
- . L3
[. [
2 : o
(=4 . o
0 A " N 0 n L L L
0 20 40 60 80 100 0 20 40 60 80 100
BCEs toward small cores (%) BCEs toward small cores (%)
(c) Throughput (QPS) under a tail latency constraint (d) Throughput under a tail latency constraint when parallelism
as a system architect increases the resources for small is limited;

ores (U1=1) under the assumption of unlimited parallelism; LeCfo'e 3

EECS 570 Slide 26

Amdahl's Law for Tail Latency

[Delimitrou & Kozyrakis]

Figure 6. Server configurations with 10BCE cores when dedicating (a) 10 resource units and

(b) 70 resource units toward caching.

>
et
1%
>
- 5 B
1%
e
D
8%

=N

I

=

S0

=
(C=10)

=]
ST

T ST

w
@
3
=
o
@
ch
S
®
-
—
=
=
of
o

[
o
STy |,
=
(C=70)

EECS 570

14 u=10 i i : 12 : QoS=10Ts, U:‘10 :
m— Q0S=1Ts ;
120 vt p—— - - - - - QoS=5Ts
=== Q0S=10Ts oy
10F - i ol N QoS=50Ts g
QoS=100Ts x
8 0
o
o
6 %
)
o
4 (=]
L1y S SR S R
& 10 20 30 40 50 60 70 80 0

0 10 20 30 40 50 60 70 80 90
BCEs for caching

ughpu t(OPS) d t llt ncy constra t
a system architec ses urces for caching, a:
opposed to compt wh n par ll lism is ul lmlt d;

BCEs for caching

(f) Throughput under a tail latency constraint when parallelism
is not plentiful.

()Th

30-50% area for cache is
ideal for workloads with

locality & strict QoS

Less cache needed (~30%)
with QoS less strict

Less parallelism = need
more cache

Lecture 3
Slide 27

Data-Level Parallelism

Lecture 3
EECS 570 Slide 28

How to Compute This Fast?

e Performing the same operations on many data items

7 Example: SAXPY
Ll: 1df [X+rl]->fl1 // I is in rl

mulf £0,f1->f2 // A is in f£0

for (I = 0; I < 1024; I++) { 1df [Y+rl]->£3
Zz[I] = A*X[I] + Y[I]; addf f2,f3->f4
} stf £4->[Z+rl]

addi rl,4->rl
blti rl,4096,L1L1

e Instruction-level parallelism (ILP) - fine grained
3 Loop unrolling with static scheduling —or— dynamic scheduling
3 Wide-issue superscalar (non-)scaling limits benefits

e Thread-level parallelism (TLP) - coarse grained
7 Multicore

e Can we do some “medium grained” parallelism?

Lecture 3
EECS 570 Slide 29

Data-Level Parallelism

« Data-level parallelism (DLP)

7 Single operation repeated on multiple data elements
O SIMD (Single-Instruction, Multiple-Data)

7 Less general than ILP: parallel insns are all same operation
3 Exploit with vectors

e Old idea: Cray-1 supercomputer from late 1970s

7 Eight 64-entry x 64-bit floating point “Vector registers’
O 4096 bits (0.5KB) in each register! 4KB for vector register file

3 Special vector instructions to perform vector operations
O Load vector, store vector (wide memory operation)
O Vector+Vector addition, subtraction, multiply, etc.
O Vector+Constant addition, subtraction, multiply, etc.
O In Cray-1, each instruction specifies 64 operations!

Lecture 3
EECS 570 Slide 30

Vector Architectures

regfile

B DS

V-regfile [

« One way to exploit data level parallelism: vectors
7 Extend processor with vector “data type”

3 Vector: array of 32-bit FP numbers
O Maximum vector length (MVL): typically 8-64

3 Vector register file: 8-16 vector registers (v0—v15)

Lecture 3
EECS 570 Slide 31

Today s Vectors / SIMD

Lecture 3
EECS 570 Slide 32

Example Vector ISA Extensions (SIMD)

« Extend ISA with floating point (FP) vector storage ...
3 Vector register: fixed-size array of 32- or 64- bit FP elements
3 Vector length: For example: 4, 8, 16, 64, ...

e ... and example operations for vector length of 4

7 Load vector: 1df.v [X+rl]->vl
1df [X+rl+0]->v1,
1df [X+rl+l]->vl,
1df [X+rl+2]->vl,
1df [X+rl+43]->vl,

7 Add two vectors: addf.vv vl1,v2->v3
addf vl.,v2.->v3, (where i is 0,1,2,3)
7 Add vector to scalar: addf.vs v1,£f2,v3
addf vl.,£f2->v3; (where i is 0,1,2,3)

« Today s vectors: short (128 bits), but fully parallel

Lecture 3
EECS 570 Slide 33

Example Use of Vectors - 4-wide

1df [X+rl]->f1 1df.v [X+rl]->vl
mulf £0,£f1->£f2 mulf.vs vl,£0->v2
1df [Y+rl]->£3 1df.v [Y+rl]->v3
addf f2,£f3->f4 addf .vv v2,v3->v4
stf f4->[Z+rl] stf.v v4,[Z2+rl]
addi rl,4->rl addi rl,l16->rl
blti rl,4096,L1 blti rl,4096,L1
7x1024 instructions 7Xx256 instructions

Operations (4x fewer instructions)

7 Load vector: 1df.v [X+rl]->vl

7 Multiply vector to scalar: mulf.vs vl,£2->v3
I Add two vectors: addf.vv vl,v2->v3

3 Store vector: stf.v vl1->[X+rl]

e Performance?
7 Best case: 4x speedup

3 But, vector instructions don’t always have 1-cycle throughput
O Execution width (implementation) vs vector width (ISA)

Lecture 3
EECS 570 Slide 34

Vector Datapath & Implementation

« Vector insn. are just like normal insn... only “wider”
3 Single instruction fetch
7 Wide register read & write (not multiple ports)
7 Wide execute: replicate FP unit (same as superscalar)
3 Wide bypass (avoid N? bypass problem)
7 Wide cache read & write (single cache tag check)

e Execution width (implementation) vs vector width (ISA)
7 E.g. Pentium 4 and “Core 1” executes vector ops at half width
7 “Core 2” executes them at full width

« Because they are just instructions...
3 ...superscalar execution of vector instructions
3 Multiple n-wide vector instructions per cycle

Lecture 3
EECS 570 Slide 35

Intel’'s SSE2/SSE3/SSEA4..

e Intel SSE2 (Streaming SIMD Extensions 2) - 2001
7 16 128bit floating point registers (xmmO0-xmm15)

7 Each can be treated as 2x64b FP or 4x32b FP (“packed FP")
O Or 2x64b or 4x32b or 8x16b or 16x8b ints (“packed integer”)
O Or 1x64b or 1x32b FP (just normal scalar floating point)

3 Original SSE: only 8 registers, no packed integer support

e Other vector extensions
7 AMD 3DNow!: 64b (2x32b)
7 PowerPC AIGVEC/VMX: 128b (2x64b or 4x32b)

e Intel’s AVX-512
7 Intel’ s “Haswell” and Xeon Phi brought 512-bit vectors to x86

Lecture 3
EECS 570 Slide 36

Other Vector Instructions

e These target specific domains: e.g., image processing, crypto

W

9 O 0 O aa aad

Vector reduction (sum all elements of a vector)

Geometry processing: 4x4 translation/rotation matrices
Saturating (non-overflowing) subword add/sub: image processing
Byte asymmetric operations: blending and composition in graphics
Byte shuffle/permute: crypto

Population (bit) count: crypto

Max/min/argmax/argmin: video codec

Absolute differences: video codec

Multiply-accumulate: digital-signal processing

Special instructions for AES encryption

« More advanced (but in Intel’ s Xeon Phi)

W
m

Scatter/gather loads: indirect store (or load) from a vector of pointers
Vector mask: predication (conditional execution) of specific elements

Lecture 3

EECS 570 Slide 37

Using Vectors in Your Code

Lecture 3
EECS 570 Slide 38

Using Vectors in Your Code

e Write in assembly
A Ugh

e Use “intrinsic” functions and data types
7 For example: _mm_mul_ps() and “_ _m128” datatype

e Use vector data types
3 typedef doublev2df attribute ((vector _size (16)));

« Use a library someone else wrote
A Let them do the hard work
3 Matrix and linear algebra packages

e Let the compiler do it (automatic vectorization, with feedback)
7 GCC’s “-ftree-vectorize” option, -ftree-vectorizer-verbose=n
3 Limited impact for C/C++ code (old, hard problem)

Lecture 3
EECS 570 Slide 39

SAXPY Example: Best Case

e Code

void saxpy(float* x, float* y,

float* z, float a,
int length) {

for (int i = 0; i < length; i++) {

z[i] = a*x[i] + y[i];
}
}

e Scalar

.L3:
movss (%rdi,%rax), %xmml
mulss $xmmO, %$xmml
addss (%rsi,%rax), %$xmml
movss %xmml, (%rdx,3%rax)
addq $4, %rax
cmpg %rcx, %rax
jne L3

EECS 570

e Auto Vectorized
.L6:

movaps (%rdi,%rax), %xmml
mulps %xmm2, 3%xmml
addps (%rsi,%rax), %xmml
movaps %xmml, (3rdx,3%rax)
addg $16, S%rax
incl %r8d
cmpl 3%r8d, %r9d
ja .L6
O + Scalar loop to handle
last few iterations (if
length % 4 !=0)
O “mulps”: multiply
packed ‘single’

Lecture 3
Slide 40

SAXPY Example: Actual

e Code

void saxpy(float* x, float* vy,
float* z, float a,
int length) {
for (int i = 0; i < length; i++) {
z[i] = a*x[i] + y[i];
}
}

e Scalar

.L3:
movss (%rdi,%rax), %xmml
mulss $xmmO, %$xmml
addss (%rsi,%rax), %$xmml
movss %xmml, (%rdx,3%rax)
addq $4, %rax
cmpg %rcx, %rax
jne L3

EECS 570

movaps
movaps
movlps
movlps
movhps
movhps
mulps
incl
addps

e Auto Vectorized
.L8:

gxmm3, 3Ixmml
Zxmm3, Ixmm2
(%rdi, %rax),
(%rsi, %rax),
8(%rdi, %rax),
8(%rsi, %rax),

Zxmm4, 3Ixmml
zr8d

Zxmm2, Ixmml
movaps %xmml,

addq S$16, %rax

cmpl
jb .L8

%$r9d, %r8d

$xmml
% xmm2

$xmml
%$xmm2

(%rdx, 3rax)

O + Explicit alignment test
O + Explicit aliasing test

Lecture 3
Slide 41

Bridging “Best Case” and “Actual”

o Align arrays
typedef float afloat __ attribute_ ((__aligned (16)));
void saxpy(afloat* x,
afloat~* vy,
afloat* z,
float a, int length) {
for (int i = 0; i < length; i++) {
z[i] = a*x[i] + y[i];
}
}

« Avoid aliasing check

typedef float afloat __ attribute ((__aligned_ (16)));
void saxpy(afloat* restrict x,

afloat* _ restrict__ vy,
afloat* restrict z, float a, int length)

« Even with both, still has the “last few iterations” code

Lecture 3
EECS 570 Slide 42

@ Manual Vectorization
mICC8.0

Speedups
N

G. Ren, P. Wu, and D. Padua: An Empirical Study on the

Vectorization of Multimedia Applications for Multimedia
Extensions. IPDPS 2005 SSE2 on Pentium 4
Lecture 3

EECS 570 Slide 43

New Developments in “CPU” Vectors

Lecture 3
EECS 570 Slide 44

Emerging Features

 Past vectors were limited
7 Wide compute
7 Wide load/store of consecutive addresses
7 Allows for “SOA” (structures of arrays) style parallelism

 Looking forward (and backward)...
7 Vector masks
O Conditional execution on a per-element basis
O Allows vectorization of conditionals
7 Scatter/gather
O ali] = b[yli]] bly[i]] = ali]
O Helps with sparse matrices, “AOS” (array of structures) parallelism

« Together, enables a different style vectorization
3 Translate arbitrary (parallel) loop bodies into vectorized code (later)

Lecture 3
EECS 570 Slide 45

Vector Masks (Predication)

« Vector Masks: 1 bit per vector element

3 Implicit predicate in all vector operations
for (I=0; I<KN; I++) if (mask:) { vop.. }

7 Usually stored in a “scalar” register (up to 64-bits)

7 Used to vectorize loops with conditionals in them
cmp eq.v, cmp lt.v, etc.:setsvector predicates

for (I=0; I<32; I++)
if (X[I] '= 0.0) Z[I] = A/X[I];

1df.v [X+rl] -> v1

cmp ne.v vl,£f0 -> r2 // 0.0 is in f£0
divf.sv {r2} vl1l,fl -> v2 // A is in fl
stf.v {r2} v2 -> [Z+rl]

Lecture 3

EECS 570 Slide 46

Scatter Stores & Gather Loads

e How to vectorize:
for(int 1 = 1, i<N, i++) {
int bucket = val[i] / scalefactor;
found[bucket] = 1;

7 Easy to vectorize the divide, but what about the load/store?

« Solution: hardware support for vector “scatter stores”
O stf.v v2->[rl+vl]

7 Each address calculated from r1+vi;
stf v20->[rl+vlo], stf v2:->[rl+vl.i],
stf v22->[rl+vl:], stf v23->[rl+vls]

- Vector “gather loads” defined analogously
7 ldf.v [rl+v1]->Vv2

o Scatter/gathers slower than regular vector load/store ops
3 Still provides throughput advantage over non-vector version

Lecture 3
EECS 570 Slide 47

