EECS 570

Lecture 3
Shared-Memory
and Synchronization

Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/

Slides developed in part by Profs. Adve, Falsafi, Martin, Roth, Nowatzyk, and
Wenisch of EPFL, CMU, UPenn, U-M, UIUC.

Lecture 3
EECS 570 Slide 1

Announcements

Discussion this Friday: Programming Assignment 1

Lecture 3
EECS 570 Slide 2

Readings

For next Wednesday (no class on Monday — MLK holiday):

Using Message Passing to Transfer Data Between Threads -
The Rust Programming Language

Michael Scott, Shared-Memory Synchronization Synthesis
Lectures on Computer Architecture (Ch. 1, 4.0-4.3.3, 5.0-
5.2.5)

Lecture 3
EECS 570 Slide 3

https://doc.rust-lang.org/book/ch16-02-message-passing.html
https://doc.rust-lang.org/book/ch16-02-message-passing.html

Agenda

Shared-Memory programming model
Brief intro to architecture support
Synchronization operations

- Locks

- Barriers

Lecture 3
EECS 570 Slide 4

Shared Memory
Programming Model

Lecture 3
EECS 570 Slide 5

Shared-Memory Model

Execution Contexts: Share a single address space

Models:
MIMD: Multiple programs
SPMD: Multiple copies of one program

Communication: Implicit via loads/stores

Theory: Based on PRAM model

P, P, P, P,

Memory System

Lecture 3
EECS 570 Slide 6

Global Shared Physical Address Space

load P, <— -

[S
\
store P, - ; -
I ||
A
Shared dB Comrpon
portion of X physical
address space || | |, | @address space
— \
P”Yate R Y Pnprivate
portionof | ||
address space [', '\
vy _
\ '\ 4 P2 private
v\
v A
'\ 1 Plprivate
\
\
1 PO private

EECS 570

« Communication,
sharing, synchronization
via loads/stores to
shared variables

e Facilities for address
translation between
local/global address
spaces

e Requires OS support to
maintain this mapping

Lecture 3
Slide 7

Why Shared Memory?

Pluses:

» Intuitive for programmers — no need for explicit comm.

 OS needs minimal evolutionary extensions

» Simplifies communication without OS

Minuses:

» Complex synchronization

- Implicit communication makes optimization harder

- Needs complex hardware support for comm. (e.g., coherence)
 Result:

Shared-memory multi-core and GPUs are common today

Lecture 3
EECS 570 Slide 8

Thread-Level Parallelism

struct acct t { int bal; };

shared struct acct t accts[MAX ACCT];
int id,amt;

if (accts[id] .bal >= amt)

{

addi rl,accts,r3
1d 0(x3),r4

: blt r4,r2,6

sub r4,r2,r4

st r4,0(xr3)

call spew cash

accts[id] .bal -= amt;
spew_cash() ;

s WwWNhEFE O

» Thread-level parallelism (TLP)
3 Collection of asynchronous tasks: not started and stopped together
O Data shared loosely, dynamically

« Example: database/web server (each query is a thread)
O acctsisshared, can’t register allocate even if it were scalar
0 idand amt are private variables, register allocated to rl, r2

Lecture 3
EECS 570 Slide 9

Synchronization

e Mutual exclusion : locks, ...

e Order : barriers, signal-wait, ...

« Implemented using read/write/RMW to shared location

3 Language-level:
Q libraries (e.g., locks in pthread)
QO Programmers can write custom synchronizations

3 Hardware ISA
O E.g., test-and-set

 OS provides support for managing threads
O scheduling, fork, join, futex signal/wait

Lecture 3
EECS 570 Slide 10

Cache Coherence

Processor 0 Processor 1

O: addi rl,accts,r3 CPUO | CPU1 | Mem
1: 1d 0(xr3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(xr3)

5: call spew cash : addi rl,accts,r3

1d 0(x3),r4

: blt r4,r2,6
sub r4,r2,r4
st r4,0(xr3)
call spew cash

o s~ W N HFE O

« TWo $100 withdrawals from account #241 at two ATMs
O Each transaction maps to thread on different processor
O Track accts[241] .bal (addressisin r3)

Lecture 3
EECS 570 Slide 11

No-Cache, No-Problem

Processor 0

addi rl,accts,r3
1d 0(xr3),r4

: blt r4,r2,6

sub r4,r2,r4

st r4,0(r3)

call spew cash

o s W N+ O

Processor 1

> W N P O

addi rl,accts,r3
1d 0(x3),r4

: blt r4,r2,6

sub r4,r2,r4
st r4,0(xr3)
call spew cash

e Scenario |: processors have no caches

3 No problem

EECS 570

500

500

400

400

300

Lecture 3
Slide 12

Cache Incoherence

Processor 0

: addi rl,accts,r3
: 1d 0(xr3),r4

: blt r4,r2,6

: sub r4,r2,r4

: st r4,0(xr3)

: call spew cash

o s W N+ O

e Scenario Il: processors have write-back caches

Processor 1

o s~ W N HFE O

: addi rl,accts,r3
: 1d 0(xr3),r4

: blt r4,r2,6

: sub r4,r2,r4

: st r4,0(xr3)

: call spew cash

500
V:500 500
D:400 500
D:400 | V:500 | 500
D:400 | D:400 | 500

3 Potentially 3 copies of acects[241] .bal: memory, p0S, plS
3 Can get incoherent (out of sync)

EECS 570

Lecture 3
Slide 13

Paired vs. Separate Processor/Memory?

« Separate processor/memory
3 Uniform memory access (UMA): equal latency to all memory

+ Simple software, doesn’t matter where you put data

-~ Lower peak performance
[Bus-based UMAs common: symmetric multi-processors (SMP)

o Paired processor/memory
[Non-uniform memory access (NUMA): faster to local memory

— More complex software: where you put data matters
+ Higher peak performance: assuming proper data placement

CPU(S) | [CPU(S) | | CPU(S) | | CPU(S)

cpu($) | [cru(g) | | cru(s) | [cru(s)

Mem| R| [IMem|R| [IMem|R| |[Mem]| R

EECS 570

Mem| [Mem| [Mem] ~[Mem ﬁ

Lecture 3
Slide 14

Shared vs. Point-to-Point Networks

« Shared network: e.g., bus (left)
+ Low latency
—~ Low bandwidth: doesn’t scale beyond ~16 processors
+ Shared property simplifies cache coherence protocols (later)

» Point-to-point network: e.g., mesh or ring (right)
-~ Longer latency: may need multiple “hops” to communicate
+ Higher bandwidth: scales to 1000s of processors
— Cache coherence protocols are complex

cpu(s) | [cpu(s) | [cpu(s) | [cpu(s) CPU(S)

CPU(S)

Mem| R | [IMem|R| [IMem|R| |[Mem| R Mem

H Mem[R

P

y 3

\ 4

R [Mem

a

\ 4

CPU(S)

EECS 570

\ 4

R [Mem

CPU(S)

Lecture 3
Slide 15

Implementation #1: Snooping Bus MP

cpU(s) | | cru(s) | | cPu(s) | | cPU(S)

Mem Mem Mem Mem

Bus-based systems
3 Typically small: 2—8 (maybe 16) processors

O Typically, processors split from memories (UMA)
Q Multiple processors (cores) on single chip (multi-core)

Lecture 3
EECS 570 Slide 16

Implementation #2: Scalable MP

CPU(S) CPU(S)
Mem| R [*—1 R [Mem
Mem| R [*—1 R [Mem
CPU(S) CPU(S)

e General point-to-point network-based systems

O Typically, processor/memory/router blocks (NUMA)
O Glueless MP: no need for additional “glue” chips

3 Can be arbitrarily large: 1000’s of processors
Q Massively parallel processors (MPPs)

3 AMD Infinity Fabric, Intel UPI
O nVidia’s NVLink (scales to 10s of GPUs)

Lecture 3

EECS 570 Slide 17

Snooping Cache-Coherence Protocols

Bus provides serialization point

Each cache controller “snoops” all bus transactions

3 take action to ensure coherence
O invalidate
O update
O supply value

3 depends on state of the block and the protocol

Lecture 3
EECS 570 Slide 18

Scalable Cache Coherence

 Scalable cache coherence: two part solution

e Part |: bus bandwidth

[Replace non-scalable bandwidth substrate (bus)...
A ...with scalable bandwidth one (point-to-point network, e.g., mesh)

« Part Il: processor snooping bandwidth
3 Interesting: most snoops result in no action
3 Replace non-scalable broadcast protocol (spam everyone)...
3 ...with scalable directory protocol (only spam processors that care)

o We will cover this in Unit 2

EECS 570

Lecture 3
Slide 19

Shared Memory Summary

« Shared-memory multiprocessors

+ “Simple” software: easy data sharing, handles both DLP & TLP
...but hard to get fully correct!

— Complex hardware: must provide illusion of global address
space

« Two basic implementations

O Symmetric (UMA) multi-processors (SMPs)
O Underlying communication network: bus (ordered)
+ Low-latency, simple protocols
— Low-bandwidth, poor scalability

3 Scalable (NUMA) multi-processors (MPPs)

O Underlying communication network: point-to-point (often
unordered)

+ Scalable bandwidth
— Higher-latency, complex protocols

Lecture 3
EECS 570 Slide 20

Synchronization

Lecture 3
EECS 570 Slide 21

Synchronization objectives

 Low overhead

3 Synchronization can limit scalability
(E.g., single-lock OS kernels)

 Correctness (and ease of programmability)
3 Synchronization failures are extremely difficult to debug

e Coordination of HW and SW

3 SW semantics must be tightly specified to prove correctness
3 HW can often improve efficiency

Lecture 3
EECS 570 Slide 22

Synchronization Forms

e Mutual exclusion (critical sections)
O Lock & Unlock

« Event Notification
3 Point-to-point (producer-consumer, flags)
3 1/0, interrupts, exceptions

e Barrier Synchronization

e Higher-level constructs
O Queues, software pipelines, (virtual) time, counters

« Novel research solution: optimistic concurrency control
3 Transactional Memory

Lecture 3
EECS 570 Slide 23

Anatomy of a Synchronization Op

e Acquire Method
3 Way to obtain the lock or proceed past the barrier

« Waiting Algorithm
3 Spin (aka busy wait)
QO Waiting process repeatedly tests a location until it changes
O Releasing process sets the location
O Lower overhead, but wastes CPU resources
O Can cause interconnect traffic

3 Block (aka suspend)
O Waiting process is descheduled
O High overhead, but frees CPU to do other things

3 Hybrids (e.g., spin, then block)

« Release Method
3 Way to allow other processes to proceed

Lecture 3
EECS 570 Slide 24

HW/SW Implementation Trade-offs

e User wants high-level (ease of programming)
3 LOCK(lock_variable); UNLOCK(lock variable)
3 BARRIER(barrier_variable, numprocs)

« SW advantages: flexibility, portability
« HW advantages: speed

« Design objectives:
3 Low latency
3 Low traffic
O Low storage
3 Scalability (“wait-free”-ness)
3 Fairness

Lecture 3
EECS 570 Slide 25

Challenges

« Same sync may have different behavior at different times
3 Lock accessed with low or high contention
O Different performance needs: low latency vs. high throughput
3 Different algorithms best for each, need different primitives

e Multiprogramming can change sync behavior
3 Process scheduling or other resource interactions
O May need algorithms that are worse in dedicated case

 Rich area of SW/HW interactions
3 Which primitives are available?
7 What communication patterns cost more/less?

Lecture 3
EECS 570 Slide 26

Locks

Lecture 3
EECS 570 Slide 27

Synchronization

EECS 570

Lock-based Mutual Exclusion

period

—_—

~——

 Acquire starts

Acquire done

Release starts

Release done

release | Crit. sec | xfer

wait

release | Crit. sec | xfer

wait

Crit. sec | xfer

No contention:
- Want low latency

Contention:

- Want low period
- Low traffic

« Fairness

Lecture 3
Slide 28

How Not to Implement Locks

LOCK

i |
while (lock variable == 1) ; Context switch!

lock variable = 1;

UNLOCK

lock variable = 0;

Lecture 3
EECS 570 s

Solution: Atomic Read-Modify-Write

- Test&Set(r,x) - ris register
{r=m[x]; m[x]=1;} « m[x] is memory location x

e Fetch&Op(rl,r2,x,0p)
{rl=m[x]; m[x]=0op(rl,r2);}

e Swap(r,x)

{temp=m[x]; m[x]=r; r=temp;}
e« Compare&Swap(rl,r2,x)
{temp=r2; r2=m[x]; if rl==r2 then m[x]=temp;}

Lecture 3
EECS 570 Slide 30

Implementing RMWs

e Bus-based systemes:
O Hold bus and issue load/store operations without any
intervening accesses by other processors
« Perform operation at shared point in the memory hierarchy

O E.g., if L1s are private and L2 is shared, perform sync ops at L2
O Need to invalidate lines for the address in the private L1s!

« Scalable systems
[Acquire exclusive ownership via cache coherence

O Perform load/store operations without allowing external
coherence requests

Lecture 3
EECS 570 Slide 31

Load-Locked Store-Conditional

e Load-locked

3 Issues a normal load...
3 ...and sets a flag and address field

« Store-conditional
[Checks that flag is set and address matches...
3 ...only then performs store

 Flag is cleared by
O Invalidation
3 Cache eviction
O Context switch

lock: while (1){
load-locked r1, lock_variable
if (rl ==0) {
movr2=1
if (SCr2, lock_variable) break;

} unlock:st lock_variable, #0 Lecture 3
EECS 570 Slide 32

Coherence Protocol Example

o If P1 updates the value of x to 200, the stale value of x in
other processors must be invalidated

o If P3 wants to subsequently read/write x, it must request
the new value

« SWMR = Single-Writer Multiple Readers, DVI = Data Value
Invariant

Processors

Caches

Lecture 3
EECS 570 Data Slide 33

Test-and-Set Spin Lock (T&S)

« Lock is “acquire”, Unlock is “release”

« acquire (lock ptr):

while (true):
// Perform “test-and-set”
// UNLOCKED = 0, LOCKED = 1
test and set(old, lock ptr)
if (old == UNLOCKED) :
break // lock acquired!
// keep spinning, back to top of while loop

« release (lock ptr):
store[lock ptr] <- UNLOCKED

e Performance problem

O T&S is both a read and write; spinning causes lots of coherence
traffic

Lecture 3
EECS 570 Slide 34

Test-and-Test-and-Set Spin Lock (TTS)

« acquire (lock ptr):
while (true):
// Perform “test”
load [lock ptr] -> original value
if (original value == UNLOCKED) :
// Perform “test-and-set”
test and set(old, lock ptr)
if (old == UNLOCKED) :
break // lock acquired!

// keep spinning, back to top of while loop

« release (lock ptr):
store[lock ptr] <- UNLOCKED

 Now “spinning” is read-only, on local cached copy

EECS 570

Lecture 3
Slide 35

TTS Lock Performance Issues

e Performance issues remain

O Every time the lock is released...
O All spinning cores get invalidated -> lots of coherence traffic

O All spinning cores would then load the lock addr to keep spinning,
and likely try to T&S the block

d More coherence traffic!
3 Causes a storm of coherence traffic, clogs things up badly

e One solution: backoff
O Instead of spinning constantly, check less frequently
O Exponential backoff works well in practice

e Another problem with spinning
3 Processors can spin really fast, starve threads on the same core!

3 Solution: x86 adds a “PAUSE” instruction
O Tells processor to suspend the thread for a short time

« (Un)fairness

Lecture 3
EECS 570 Slide 36

Ticket Locks

» To ensure fairness and reduce coherence storms

o Locks have two counters: next ticket, now_serving

3 Deli counter

« acquire (lock ptr):
0O my ticket = fetch and increment(lock ptr->next ticket)
0 while(lock ptr->now serving != my ticket); // spin

« release (lock ptr):

0 lock ptr->now_serving = lock ptr->now serving + 1
O (Just a normal store, not an atomic operation, why?)

« Summary of operation
O To “getin line” to acquire the lock, CAS on next_ticket

O Spin on now_serving

Lecture 3
EECS 570 Slide 37

Ticket Locks

e Properties
3 Less of a “thundering herd” coherence storm problem
O To acquire, only need to read new value of now_serving
3 No CAS on critical path of lock handoff
O Just a non-atomic store
3 FIFO order (fair)
O Good, but only if the O.S. hasn’t swapped out any threads!

e Padding
3 Allocate now_serving and next_ticket on different cache blocks
QO struct { int now_serving; char pad[60]; int next_ticket; } ...
O Two locations reduces interference

e Proportional backoff
O Estimate of wait time: (my_ticket - now_serving) * average hold time

Lecture 3
EECS 570 Slide 38

Array-Based Queue Locks

« Why not give each waiter its own location to spin on?
3 Avoid coherence storms altogether!

 ldea: “slot” array of size N: “go ahead” or “must wait”
Q Initialize first slot to “go ahead”, all others to “must wait”
O Padded one slot per cache block,

O Keep a “next slot” counter (similar to “next_ticket” counter)

e Acquire: “get in line”
3 my_slot = (atomic increment of “next slot” counter) mod N
3 Spin while slots[my_slot] contains “must_wait”
3 Reset slots[my_slot] to “must wait”

e Release: “unblock next in line”
3 Set slots[my_slot+1 mod N] to “go ahead”

EECS 570

Lecture 3
Slide 39

Array-Based Queue Locks

e Variants: Anderson 1990, Graunke and Thakkar 1990

e Desirable properties

3 Threads spin on dedicated location
O Just two coherence misses per handoff
O Traffic independent of number of waiters

3 FIFO & fair (same as ticket lock)

e Undesirable properties
3 Higher uncontended overhead than a TTS lock

O Storage O(N) for each lock
O 128 threads at 64B padding: 8KBs per lock!
O What if N isn’t known at start?

o List-based locks address the O(N) storage problem
3 Several variants of list-based locks: MCS 1991, CLH 1993/1994

Lecture 3
EECS 570 Slide 40

List-Based Queue Lock (MCS)

e A “lock” is a pointer to a linked list node
O next node pointer
O boolean must_wait
O Each thread has its own local pointer to a node

llI”

« acquire (lock) :
I->next = null;
predecessor = fetch and store(lock,I)

if predecessor != nil //some node holds lock
I->must wait = true
predecessor->next = I //predecessor must wake us
repeat while I->must wait //spin till lock is free

e release (lock) :

if (I->next == null) //no known successor
if compare and swap(lock,I,nil) //make sure..
return //CAS succeeded, lock freed
repeat while I->next = nil //spin to learn successor
I->next->must wait = false //wake successor Lecture 3

EECS 570 Slide 41

MCS Lock Example: Time O

|1 P 3

~ e

False False False

Lock I\I

e release(lock) :

« acquire (lock) :

I->next = null; if (I->next == null)
pred = FAS(lock,I) if CAS(lock,I,nil)
if pred != nil return
I->must wait = true repeat while I->next == nil

pred->next = I

I->next->must wait = false
repeat while I->must wait -

Lecture 3
EECS 570 Slide 42

MCS Lock Example: Time 1

o ti: Acquire(L) 11 P 3

I

Holds lock
Lock

e release(lock) :

« acquire (lock) :

I->next = null; if (I->next == null)
pred = FAS(lock,I) if CAS(lock,I,nil)
if pred != nil return
I->must wait = true repeat while I->next == nil

pred->next = I

I->next->must wait = false
repeat while I->must wait -

Lecture 3
EECS 570 Slide 43

MCS Lock Example: Time 2

e ti: Acquire(L) 1 P 3
o t2: Acquire(L) \ \ \
False True False
Holds lock TSpinning
Lock |
- acquire (lock) : . release (lock) :
I->next = null; if (I->next == null)
pred = FAS(lock,I) if CAS(lock,I,nil)
I->must wait = true repeat while I->next == nil
pred->next = I I->next->must wait = false

repeat while I->must wait

Lecture 3
EECS 570 Slide 44

MCS Lock Example: Time 3

e ti: Acquire(L) 1 P 3
o t2: Acquire(L)
o t3: Acquire(L)
False True True
Holds lock Spinnin Spinning
Lock
- acquire (lock) : . release (lock) :
I->next = null; if (I->next == null)
pred = FAS(lock,I) if CAS(lock,I,nil)
if pred != nil return
I->must wait = true repeat while I->next == nil
pred->next = I I->next->must wait = false

repeat while I->must wait

Lecture 3
EECS 570 Slide 45

MCS Lock Example: Time 4

o t1: Acquire(L) 1 5 B
o t2: Acquire(L)
o t3: Acquire(L) \ \
e ti: Release(L) \ > \
False False True
Holds lock Spinning
Lock

« acquire (lock) :

e release(lock) :

I->next = null; if (I->next == null)

pred = FAS(lock,I)
if pred != nil

if CAS(lock,I,nil)

_ return
I->must_wait = true repeat while I->next == nil
pred->next = I I->next->must wait = false

repeat while I->must wait

EECS 570

Lecture 3
Slide 46

MCS Lock Example: Time 5

o ti: Acquire(L) 11 P 3

! eauire) | | |

e ti1: Release(L) \ \ \

e t7: Release(lL)
False False False

N

|

Holds lock

Lock

e acquire (lock) :
I->next = null;

e release(lock) :

if (I->next == null)
pred = FAS(lock,I) if CAS(lock,I,nil)
I->must_wait = true repeat while I->next == nil

pred->next = I

I->next->must wait = false
repeat while I->must wait -

Lecture 3
EECS 570 Slide 47

MCS Lock Example: Time 6

o ti: Acquire(L) 11 P 3
o t2: Acquire(L)
o t3: Acquire(L) \

. b Reense(S

o t3: Release(L) False False False

Lock I\I

e release(lock) :

« acquire (lock) :
I->next = null;

if (I->next == null)
pred = FAS(lock,I) if CAS(lock,I,nil)
I->must_wait = true repeat while I->next == nil

pred->next = I

I->next->must wait = false
repeat while I->must wait -

EECS 570 release() w/o CAS is more complex; see paper Lecture S

Queue-based locks in HW: QOLB

e Queue On Lock Bit
3 HW maintains doubly-linked list between requesters
O This is a key idea of “Scalable Coherence Interface”, see Unit 3

O Augment cache with “locked” bit
O Waiting caches spin on local “locked” cache line

3 Upon release, lock holder sends line to 1%t requester
QO Only requires one message on interconnect

EECS 570

Lecture 3
Slide 49

Fundamental Mechanisms to Reduce Overheads

[Kdgi, Burger, Goodman ASPLOS 97]

e Basic mechanisms

3 Local Spinning

O Queue-based locking
3 Collocation

3 Synchronous Prefetch

Local Spin Queue Collocation Prefetch
T&S No Optional No
T&T&S Yes Optional No
MCS Yes Partial No
QOLB yes Optional Yes

EECS 570

Lecture 3
Slide 50

Microbenchmark Analysis

O

2 T&S T&T&S
Q

o

(@)

(-

73

% MCS
>

)

©

ke QOLB

1 2 4 8 16 32 64 [Kagi 97]
CPUs

Lecture 3
EECS 570 Slide 51

Performance of Locks

e Contention vs. No Contention
[Test-and-Set best when no contention
[Queue-based is best with medium contention

O Idea: switch implementation based on lock behavior
O Reactive Synchronization — Lim & Agarwal 1994
O SmartLocks — Eastep et al 2009

« High-contention indicates poorly written program
3 Need better algorithm or data structures

Lecture 3
EECS 570 Slide 52

Point-to-Point Event Synchronization

« Can use normal variables as flags
a = f(x); while (flag == 0);
flag = 1; b = g(a);
o If we know initial conditions
a = £(x); while (a == 0);
b = g(a);
« Assumes Sequential Consistency!
o Full/Empty Bits
3 Set on write

3 Cleared on read
O Can’t write if set, can’t read if clear

Lecture 3
EECS 570 Slide 53

Barriers

Lecture 3
EECS 570 Slide 54

Barriers

e Physics simulation computation
3 Divide up each timestep computation into N independent pieces

O Each timestep: compute independently, synchronize

e Example: each thread executes:
segment size = total particles / number of threads
my start particle = thread id * segment size
my end particle = my start particle + segment size - 1
for (timestep = 0; timestep += delta; timestep < stop_ time):
calculate forces(t, my start particle, my end particle)

barrier ()
update locations(t, my start particle, my end particle)

barrier ()

e Barrier? All threads wait until all threads have reached it

Lecture 3

EECS 570 Slide 55

Example: Barrier-Based Merge Sort

to t1 t2 t3

Step 1

Barrier

Step 2

Barrier

Step 3

Lecture 3
EECS 570 Slide 56

Global Synchronization Barrier

e At a barrier
3 All threads wait until all other threads have reached it

« Strawman implementation (wrong!) b t1 L 6

global (shared) count : integer := P

procedure central barrier
if fetch and decrement (&count) ==
count := P
else
repeat until count ==

« What is wrong with the above code?

Barrier

Barrier

Lecture 3
EECS 570 Slide 57

Sense-Reversing Barrier

e Correct barrier implementation:

global (shared) count : integer := P
global (shared) sense : Boolean := true
local (private) local sense : Boolean := true

procedure central barrier
// each processor toggles its own sense
local sense := !'local sense
if fetch and decrement (&count) ==
count := P
// last processor toggles global sense

sense := local_ sense
else
repeat until sense == local sense

e Single counter makes this a “centralized” barrier

EECS 570

Lecture 3
Slide 58

Other Barrier Implementations

e Problem with centralized barrier
3 All processors must increment each counter

O Each read/modify/write is a serialized coherence action
O Each one is a cache miss

3 O(n) if threads arrive simultaneously, slow for lots of processors

e« Combining Tree Barrier

Build a logk(n) height tree of counters (one per cache block)

Each thread coordinates with k other threads (by thread id)

Last of the k processors, coordinates with next higher node in tree
As many coordination address are used, misses are not serialized

 a a aaq

O(logn) in best case

e Static and more dynamic variants
O Tree-based arrival, tree-based or centralized release

EECS 570

Lecture 3
Slide 59

	Slide 1
	Slide 2: Announcements
	Slide 3: Readings
	Slide 4: Agenda
	Slide 5: Shared Memory Programming Model
	Slide 6: Shared-Memory Model
	Slide 7: Global Shared Physical Address Space
	Slide 8: Why Shared Memory?
	Slide 9: Thread-Level Parallelism
	Slide 10: Synchronization
	Slide 11: Cache Coherence
	Slide 12: No-Cache, No-Problem
	Slide 13: Cache Incoherence
	Slide 14: Paired vs. Separate Processor/Memory?
	Slide 15: Shared vs. Point-to-Point Networks
	Slide 16: Implementation #1: Snooping Bus MP
	Slide 17: Implementation #2: Scalable MP
	Slide 18: Snooping Cache-Coherence Protocols
	Slide 19: Scalable Cache Coherence
	Slide 20: Shared Memory Summary
	Slide 21: Synchronization
	Slide 22: Synchronization objectives
	Slide 23: Synchronization Forms
	Slide 24: Anatomy of a Synchronization Op
	Slide 25: HW/SW Implementation Trade-offs
	Slide 26: Challenges
	Slide 27: Locks
	Slide 28: Lock-based Mutual Exclusion
	Slide 29: How Not to Implement Locks
	Slide 30: Solution: Atomic Read-Modify-Write
	Slide 31: Implementing RMWs
	Slide 32: Load-Locked Store-Conditional
	Slide 33: Coherence Protocol Example
	Slide 34: Test-and-Set Spin Lock (T&S)
	Slide 35
	Slide 36: TTS Lock Performance Issues
	Slide 37: Ticket Locks
	Slide 38: Ticket Locks
	Slide 39: Array-Based Queue Locks
	Slide 40: Array-Based Queue Locks
	Slide 41: List-Based Queue Lock (MCS)
	Slide 42: MCS Lock Example: Time 0
	Slide 43: MCS Lock Example: Time 1
	Slide 44: MCS Lock Example: Time 2
	Slide 45: MCS Lock Example: Time 3
	Slide 46: MCS Lock Example: Time 4
	Slide 47: MCS Lock Example: Time 5
	Slide 48: MCS Lock Example: Time 6
	Slide 49: Queue-based locks in HW: QOLB
	Slide 50: Fundamental Mechanisms to Reduce Overheads [Kägi, Burger, Goodman ASPLOS 97]
	Slide 51: Microbenchmark Analysis
	Slide 52: Performance of Locks
	Slide 53: Point-to-Point Event Synchronization
	Slide 54: Barriers
	Slide 55: Barriers
	Slide 56: Example: Barrier-Based Merge Sort
	Slide 57: Global Synchronization Barrier
	Slide 58: Sense-Reversing Barrier
	Slide 59: Other Barrier Implementations

