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Announcements

Discussion this Friday: Programming Assignment 1
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Readings

For next Wednesday (no class on Monday – MLK holiday):

Using Message Passing to Transfer Data Between Threads - 
The Rust Programming Language

Michael Scott, Shared-Memory Synchronization Synthesis 
Lectures on Computer Architecture (Ch. 1, 4.0-4.3.3, 5.0-
5.2.5)

https://doc.rust-lang.org/book/ch16-02-message-passing.html
https://doc.rust-lang.org/book/ch16-02-message-passing.html
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Agenda

Shared-Memory programming model

Brief intro to architecture support

Synchronization operations

 - Locks

 - Barriers
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Shared Memory 
Programming Model
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Shared-Memory Model

P1 P2 P3 P4

Memory System

Execution Contexts: Share a single address space

Models:
MIMD: Multiple programs

SPMD: Multiple copies of one program

Communication: Implicit via loads/stores

Theory: Based on PRAM model 
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Global Shared Physical Address Space

• Communication, 
sharing, synchronization 
via loads/stores to 
shared variables

• Facilities for address 
translation between 
local/global address 
spaces

• Requires OS support to 
maintain this mapping

Shared
portion of 

address space

Private
portion of 

address space

Common 
physical 

address space

Pn private

P2 private

P1 private

P0 private

store P0

load Pn
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Why Shared Memory?

Pluses:

• Intuitive for programmers – no need for explicit comm.

• OS needs minimal evolutionary extensions

• Simplifies communication without OS

Minuses:

• Complex synchronization

• Implicit communication makes optimization harder

• Needs complex hardware support for comm. (e.g., coherence)

• Result:

Shared-memory multi-core and GPUs are common today
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Thread-Level Parallelism

• Thread-level parallelism (TLP)

 Collection of asynchronous tasks: not started and stopped together

 Data shared loosely, dynamically

• Example: database/web server (each query is a thread)

  accts is shared, can’t register allocate even if it were scalar

  id and amt are private variables, register allocated to r1, r2

struct acct_t { int bal; };

shared struct acct_t  accts[MAX_ACCT];

int id,amt;

if (accts[id].bal >= amt)

{

   accts[id].bal -= amt;

   spew_cash();

}

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash
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Synchronization

• Mutual exclusion  : locks, …

• Order   : barriers, signal-wait, …

• Implemented using read/write/RMW to shared location 
 Language-level: 

 libraries (e.g., locks in pthread) 
 Programmers can write custom synchronizations

 Hardware ISA
 E.g., test-and-set

• OS provides support for managing threads
 scheduling, fork, join, futex signal/wait
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Cache Coherence

• Two $100 withdrawals from account #241 at two ATMs
 Each transaction maps to thread on different processor
 Track accts[241].bal (address is in r3)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

CPU0 MemCPU1
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No-Cache, No-Problem

• Scenario I: processors have no caches
 No problem

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

500

400

400

300
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Cache Incoherence

• Scenario II: processors have write-back caches 
 Potentially 3 copies of accts[241].bal: memory, p0$, p1$
 Can get incoherent (out of sync)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

V:500 500

D:400 500

D:400 500V:500

D:400 500D:400
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Paired vs. Separate Processor/Memory?
• Separate processor/memory

 Uniform memory access (UMA): equal latency to all memory

+ Simple software, doesn’t matter where you put data

– Lower peak performance

 Bus-based UMAs common: symmetric multi-processors (SMP)

• Paired processor/memory
 Non-uniform memory access (NUMA): faster to local memory

– More complex software: where you put data matters

+ Higher peak performance: assuming proper data placement

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem

CPU($)
MemR RRR
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Shared vs. Point-to-Point Networks

• Shared network: e.g., bus (left)
+ Low latency

– Low bandwidth: doesn’t scale beyond ~16 processors

+ Shared property simplifies cache coherence protocols (later)

• Point-to-point network: e.g., mesh or ring (right)
– Longer latency: may need multiple “hops” to communicate

+ Higher bandwidth: scales to 1000s of processors

– Cache coherence protocols are complex

CPU($)
Mem

CPU($)
Mem R

CPU($)
Mem R

CPU($)
MemR

CPU($)
MemR

CPU($)
Mem

CPU($)
Mem

CPU($)
Mem RRRR
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Implementation #1: Snooping Bus MP 

Bus-based systems

 Typically small: 2–8 (maybe 16) processors

 Typically, processors split from memories (UMA)
 Multiple processors (cores) on single chip (multi-core)

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem
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Implementation #2: Scalable MP

• General point-to-point network-based systems
 Typically, processor/memory/router blocks (NUMA)

 Glueless MP: no need for additional “glue” chips

 Can be arbitrarily large: 1000’s of processors
 Massively parallel processors (MPPs)

 AMD Infinity Fabric, Intel UPI
 nVidia’s NVLink (scales to 10s of GPUs)

CPU($)
Mem R

CPU($)
Mem R

CPU($)
MemR

CPU($)
MemR
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Snooping Cache-Coherence Protocols

Bus provides serialization point

Each cache controller “snoops” all bus transactions
 take action to ensure coherence

 invalidate
 update
 supply value

 depends on state of the block and the protocol
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Scalable Cache Coherence

• Scalable cache coherence: two part solution

• Part I: bus bandwidth
 Replace non-scalable bandwidth substrate (bus)…

 …with scalable bandwidth one (point-to-point network, e.g., mesh)

• Part II: processor snooping bandwidth
 Interesting: most snoops result in no action

 Replace non-scalable broadcast protocol (spam everyone)…

 …with scalable directory protocol (only spam processors that care)

• We will cover this in Unit 2
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Shared Memory Summary

• Shared-memory multiprocessors
+ “Simple” software: easy data sharing, handles both DLP & TLP

• …but hard to get fully correct!

– Complex hardware: must provide illusion of global address 
space

• Two basic implementations
 Symmetric (UMA) multi-processors (SMPs)

 Underlying communication network: bus (ordered)
+ Low-latency, simple protocols
– Low-bandwidth, poor scalability

 Scalable (NUMA) multi-processors (MPPs)
 Underlying communication network: point-to-point (often 

unordered)
+ Scalable bandwidth 
– Higher-latency, complex protocols
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Synchronization
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Synchronization objectives

• Low overhead
 Synchronization can limit scalability

(E.g., single-lock OS kernels)

• Correctness (and ease of programmability)
 Synchronization failures are extremely difficult to debug

• Coordination of HW and SW
 SW semantics must be tightly specified to prove correctness
 HW can often improve efficiency
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Synchronization Forms 

• Mutual exclusion (critical sections)
 Lock & Unlock

• Event Notification
 Point-to-point (producer-consumer, flags)
 I/O, interrupts, exceptions

• Barrier Synchronization

• Higher-level constructs
 Queues, software pipelines, (virtual) time, counters

• Novel research solution: optimistic concurrency control
 Transactional Memory
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Anatomy of a Synchronization Op

• Acquire Method
 Way to obtain the lock or proceed past the barrier

• Waiting Algorithm
 Spin (aka busy wait) 

 Waiting process repeatedly tests a location until it changes
 Releasing process sets the location
 Lower overhead, but wastes CPU resources
 Can cause interconnect traffic

 Block (aka suspend) 
 Waiting process is descheduled
 High overhead, but frees CPU to do other things

 Hybrids (e.g., spin, then block)

• Release Method
 Way to allow other processes to proceed 



Lecture 3 
Slide 25 EECS 570

HW/SW Implementation Trade-offs

• User wants high-level (ease of programming)
 LOCK(lock_variable); UNLOCK(lock_variable)
 BARRIER(barrier_variable, numprocs)

• SW advantages: flexibility, portability

• HW advantages: speed 

• Design objectives:
 Low latency
 Low traffic
 Low storage
 Scalability (“wait-free”-ness)
 Fairness
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Challenges

• Same sync may have different behavior at different times
 Lock accessed with low or high contention
 Different performance needs: low latency vs. high throughput
 Different algorithms best for each, need different primitives

• Multiprogramming can change sync behavior
 Process scheduling or other resource interactions
 May need algorithms that are worse in dedicated case

• Rich area of SW/HW interactions
 Which primitives are available?
 What communication patterns cost more/less?
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Locks
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Lock-based Mutual Exclusion
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No contention:
• Want low latency

Contention:
• Want low period
• Low traffic
• Fairness
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How Not to Implement Locks

LOCK

while (lock_variable == 1);

lock_variable = 1;

 

UNLOCK

lock_variable = 0;

Context switch!
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Solution: Atomic Read-Modify-Write

• Test&Set(r,x)    
{r=m[x]; m[x]=1;}

• Fetch&Op(r1,r2,x,op)    
{r1=m[x]; m[x]=op(r1,r2);}

• Swap(r,x)    
{temp=m[x]; m[x]=r; r=temp;}

• Compare&Swap(r1,r2,x)    
{temp=r2; r2=m[x]; if r1==r2 then m[x]=temp;}

• r is register
• m[x] is memory location x
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Implementing RMWs

• Bus-based systems:
 Hold bus and issue load/store operations without any 

intervening accesses by other processors

• Perform operation at shared point in the memory hierarchy
 E.g., if L1s are private and L2 is shared, perform sync ops at L2

 Need to invalidate lines for the address in the private L1s!

• Scalable systems
 Acquire exclusive ownership via cache coherence
 Perform load/store operations without allowing external 

coherence requests
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Load-Locked Store-Conditional

• Load-locked
 Issues a normal load…
 …and sets a flag and address field

• Store-conditional
 Checks that flag is set and address matches…
 …only then performs store

• Flag is cleared by
 Invalidation
 Cache eviction
 Context switch

lock: while (1) { 

  load-locked r1, lock_variable

    if (r1 == 0) { 

   mov r2 = 1

   if (SC r2, lock_variable) break; 

   } 

        } unlock:st lock_variable, #0
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Coherence Protocol Example

• If P1 updates the value of x to 200, the stale value of x in 
other processors must be invalidated

• If P3 wants to subsequently read/write x, it must request 
the new value

• SWMR = Single-Writer Multiple Readers, DVI = Data Value 
Invariant

P1 P2 P3

x = 100 x = 100 x = 100

Processors

Caches x = 200

Invalidation
s

x = 100 x = 100

Request 
Data

x = 200

St x = 200 Ld x

Data Response
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Test-and-Set Spin Lock (T&S)

• Lock is “acquire”, Unlock is “release”

• acquire(lock_ptr):

while (true):

// Perform “test-and-set”

// UNLOCKED = 0, LOCKED = 1 

test_and_set(old, lock_ptr)

if (old == UNLOCKED):

break   // lock acquired!

// keep spinning, back to top of while loop 

• release(lock_ptr):

store[lock_ptr] <- UNLOCKED

• Performance problem
 T&S is both a read and write; spinning causes lots of coherence 

traffic
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• acquire(lock_ptr):

while (true):

// Perform “test”

load [lock_ptr] -> original_value

if (original_value == UNLOCKED): 

 // Perform “test-and-set” 

test_and_set(old, lock_ptr)

if (old == UNLOCKED):

 break   // lock acquired!

// keep spinning, back to top of while loop 

• release(lock_ptr):

store[lock_ptr] <- UNLOCKED

• Now “spinning” is read-only, on local cached copy

Test-and-Test-and-Set Spin Lock (TTS)
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TTS Lock Performance Issues
• Performance issues remain

 Every time the lock is released…
 All spinning cores get invalidated -> lots of coherence traffic

 All spinning cores would then load the lock addr to keep spinning, 
and likely try to T&S the block

❑ More coherence traffic!

 Causes a storm of coherence traffic, clogs things up badly

• One solution: backoff

 Instead of spinning constantly, check less frequently

 Exponential backoff works well in practice

• Another problem with spinning

 Processors can spin really fast, starve threads on the same core!

 Solution: x86 adds a “PAUSE” instruction
 Tells processor to suspend the thread for a short time

• (Un)fairness
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Ticket Locks

• To ensure fairness and reduce coherence storms

• Locks have two counters: next_ticket, now_serving
 Deli counter

• acquire(lock_ptr):

 my_ticket = fetch_and_increment(lock_ptr->next_ticket)

 while(lock_ptr->now_serving != my_ticket); // spin

• release(lock_ptr):

 lock_ptr->now_serving = lock_ptr->now_serving + 1

 (Just a normal store, not an atomic operation, why?)

• Summary of operation
 To “get in line” to acquire the lock, CAS on next_ticket

 Spin on now_serving
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Ticket Locks

• Properties
 Less of a “thundering herd” coherence storm problem

 To acquire, only need to read new value of now_serving
 No CAS on critical path of lock handoff

 Just a non-atomic store
 FIFO order (fair)

 Good, but only if the O.S. hasn’t swapped out any threads!

• Padding
 Allocate now_serving and next_ticket on different cache blocks

 struct { int now_serving; char pad[60]; int next_ticket; } …  
 Two locations reduces interference

• Proportional backoff
 Estimate of wait time: (my_ticket - now_serving) * average hold time 
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Array-Based Queue Locks

• Why not give each waiter its own location to spin on?

 Avoid coherence storms altogether!

• Idea: “slot” array of size N: “go ahead” or “must wait”
 Initialize first slot to “go ahead”, all others to “must wait”
 Padded one slot per cache block, 

 Keep a “next slot” counter (similar to “next_ticket” counter)

• Acquire: “get in line”

 my_slot = (atomic increment of “next slot” counter) mod N

 Spin while slots[my_slot] contains “must_wait”

 Reset slots[my_slot] to “must wait”

• Release: “unblock next in line”

 Set slots[my_slot+1 mod N] to “go ahead”
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Array-Based Queue Locks

• Variants: Anderson 1990, Graunke and Thakkar 1990

• Desirable properties
 Threads spin on dedicated location

 Just two coherence misses per handoff

 Traffic independent of number of waiters 

 FIFO & fair (same as ticket lock)

• Undesirable properties
 Higher uncontended overhead than a TTS lock 

 Storage O(N) for each lock

 128 threads at 64B padding: 8KBs per lock!
 What if N isn’t known at start?

• List-based locks address the O(N) storage problem
 Several variants of list-based locks: MCS 1991, CLH 1993/1994
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List-Based Queue Lock (MCS)

• A “lock” is a pointer to a linked list node
 next node pointer
 boolean must_wait
 Each thread has its own local pointer to a node “I”

• acquire(lock):

I->next = null;

predecessor = fetch_and_store(lock,I)

if predecessor != nil   //some node holds lock

 I->must_wait = true

 predecessor->next = I   //predecessor must wake us

 repeat while I->must_wait   //spin till lock is free

• release(lock):

if (I->next == null)   //no known successor

 if compare_and_swap(lock,I,nil) //make sure…

    return    //CAS succeeded; lock freed

 repeat while I->next = nil //spin to learn successor

I->next->must_wait = false //wake successor
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MCS Lock Example: Time 0

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil 

 I->must_wait = true

 pred->next = I 

 repeat while I->must_wait  

• release(lock):

if (I->next == null) 

 if CAS(lock,I,nil) 

 return  

 repeat while I->next == nil

I->next->must_wait = false

False False False

Lock

I1 I2 I3



Lecture 3 
Slide 43 EECS 570

MCS Lock Example: Time 1

False False False

Lock

I1 I2 I3• t1: Acquire(L)

Holds lock

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil 

 I->must_wait = true

 pred->next = I 

 repeat while I->must_wait  

• release(lock):

if (I->next == null) 

 if CAS(lock,I,nil) 

 return  

 repeat while I->next == nil

I->next->must_wait = false
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MCS Lock Example: Time 2

False True False

Lock

I1 I2 I3• t1: Acquire(L)

• t2: Acquire(L)

Holds lock Spinning

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil 

 I->must_wait = true

 pred->next = I 

 repeat while I->must_wait  

• release(lock):

if (I->next == null) 

 if CAS(lock,I,nil) 

 return  

 repeat while I->next == nil

I->next->must_wait = false
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MCS Lock Example: Time 3

False True True

Lock

I1 I2 I3• t1: Acquire(L)

• t2: Acquire(L)

• t3: Acquire(L)

Holds lock Spinning Spinning

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil 

 I->must_wait = true

 pred->next = I 

 repeat while I->must_wait  

• release(lock):

if (I->next == null) 

 if CAS(lock,I,nil) 

 return  

 repeat while I->next == nil

I->next->must_wait = false
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MCS Lock Example: Time 4

False False True

Lock

I1 I2 I3• t1: Acquire(L)

• t2: Acquire(L)

• t3: Acquire(L)

• t1: Release(L)

Holds lock Spinning

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil 

 I->must_wait = true

 pred->next = I 

 repeat while I->must_wait  

• release(lock):

if (I->next == null) 

 if CAS(lock,I,nil) 

 return  

 repeat while I->next == nil

I->next->must_wait = false
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MCS Lock Example: Time 5

False False False

Lock

I1 I2 I3• t1: Acquire(L)

• t2: Acquire(L)

• t3: Acquire(L)

• t1: Release(L)

• t2: Release(L)

Holds lock

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil 

 I->must_wait = true

 pred->next = I 

 repeat while I->must_wait  

• release(lock):

if (I->next == null) 

 if CAS(lock,I,nil) 

 return  

 repeat while I->next == nil

I->next->must_wait = false
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MCS Lock Example: Time 6

False False False

Lock

I1 I2 I3• t1: Acquire(L)

• t2: Acquire(L)

• t3: Acquire(L)

• t1: Release(L)

• t2: Release(L)

• t3: Release(L)

• acquire(lock):

I->next = null;

pred = FAS(lock,I)

if pred != nil 

 I->must_wait = true

 pred->next = I 

 repeat while I->must_wait  

• release(lock):

if (I->next == null) 

 if CAS(lock,I,nil) 

 return  

 repeat while I->next == nil

I->next->must_wait = false

release() w/o CAS is more complex; see paper
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Queue-based locks in HW: QOLB

• Queue On Lock Bit

 HW maintains doubly-linked list between requesters
 This is a key idea of “Scalable Coherence Interface”, see Unit 3

 Augment cache with “locked” bit
 Waiting caches spin on local “locked” cache line 

 Upon release, lock holder sends line to 1st requester
 Only requires one message on interconnect

P1 P2 P3

L L
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Fundamental Mechanisms to Reduce Overheads
[Kägi, Burger, Goodman ASPLOS 97]

• Basic mechanisms

 Local Spinning

 Queue-based locking

 Collocation

 Synchronous Prefetch

Local Spin Queue Collocation Prefetch

T&S No No Optional No

T&T&S Yes No Optional No

MCS Yes Yes Partial No

QOLB yes Yes Optional Yes



Lecture 3 
Slide 51 EECS 570

Microbenchmark Analysis
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Performance of Locks

• Contention vs. No Contention
 Test-and-Set best when no contention

 Queue-based is best with medium contention

 Idea: switch implementation based on lock behavior
 Reactive Synchronization – Lim & Agarwal 1994
 SmartLocks – Eastep et al 2009

• High-contention indicates poorly written program
 Need better algorithm or data structures



Lecture 3 
Slide 53 EECS 570

Point-to-Point Event Synchronization

• Can use normal variables as flags
a = f(x);    while (flag == 0);

flag = 1;    b = g(a);

• If we know initial conditions
a = f(x);    while (a == 0);

      b = g(a);

• Assumes Sequential Consistency!

• Full/Empty Bits
 Set on write
 Cleared on read
 Can’t write if set, can’t read if clear
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Barriers
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Barriers 

• Physics simulation computation
 Divide up each timestep computation into N independent pieces

 Each timestep: compute independently, synchronize

• Example: each thread executes:
segment_size = total_particles / number_of_threads

my_start_particle = thread_id * segment_size

my_end_particle =  my_start_particle + segment_size - 1 

for (timestep = 0; timestep += delta; timestep < stop_time):

calculate_forces(t, my_start_particle, my_end_particle)

barrier()

update_locations(t, my_start_particle, my_end_particle)

barrier()

• Barrier? All threads wait until all threads have reached it
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Example: Barrier-Based Merge Sort

Barrier

Barrier

t0 t1 t2 t3

Step 1

Step 2

Step 3
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Global Synchronization Barrier

• At a barrier
 All threads wait until all other threads have reached it

• Strawman implementation (wrong!)
  

global (shared) count : integer := P

  

procedure central_barrier

  if fetch_and_decrement(&count) == 1

    count := P

  else

    repeat until count == P

• What is wrong with the above code?

Barrier

t0 t1 t2 t3

Barrier
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Sense-Reversing Barrier

• Correct barrier implementation:
  

global (shared) count : integer := P

global (shared) sense : Boolean := true

local (private) local_sense : Boolean := true

  

procedure central_barrier

  // each processor toggles its own sense

  local_sense := !local_sense  

  if fetch_and_decrement(&count) == 1

    count := P

    // last processor toggles global sense

    sense := local_sense   

  else

    repeat until sense == local_sense

• Single counter makes this a “centralized” barrier
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Other Barrier Implementations

• Problem with centralized barrier
 All processors must increment each counter

 Each read/modify/write is a serialized coherence action

 Each one is a cache miss

 O(n) if threads arrive simultaneously, slow for lots of processors

• Combining Tree Barrier
 Build a logk(n) height tree of counters (one per cache block)

 Each thread coordinates with k other threads (by thread id) 

 Last of the k processors, coordinates with next higher node in tree

 As many coordination address are used, misses are not serialized

 O(log n) in best case

• Static and more dynamic variants
 Tree-based arrival, tree-based or centralized release 
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