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Readings

Today:	
•  Tor	M.	Aamodt,	Wilson	Wai	Lun	Fung,	Timothy	G.	Rogers,	General-Purpose	
Graphics	Processor	Architectures,	Ch.	3.1-3.3,	4.1-4.3	

•  V.	Narasiman,	M.	Shebanow,	C.	J.	Lee,	R.	MiOakhutdinov,	O.	Mutlu,	and	Y.	N.	
PaT,	Improving	GPU	performance	via	large	warps	and	two-level	warp	
scheduling,	MICRO	2011.	



Project Discussion this Friday

• Project	ideas	will	be	released	
•  InformaYon	about	grading	of	projects	will	be	provided	
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Example Use of Vectors – 4-wide 

 
OperaYons	
❒  Load	vector:	ldf.v [X+r1]->v1 
❒  MulYply	vector	to	scalar:	mulf.vs v1,f2->v3 
❒  Add	two	vectors:	addf.vv v1,v2->v3 
❒  Store	vector:	stf.v v1->[X+r1] 

• Performance?	
❒  Best	case:	4x	speedup	
❒  But,	vector	instrucYons	don’t	always	have	1-cycle	throughput	

❍  Execution width (implementation) vs vector width (ISA) 

ldf [X+r1]->f1 
mulf f0,f1->f2  
ldf [Y+r1]->f3 
addf f2,f3->f4 
stf f4->[Z+r1] 
addi r1,4->r1 
blti r1,4096,L1 

ldf.v [X+r1]->v1 
mulf.vs v1,f0->v2 
ldf.v [Y+r1]->v3 
addf.vv v2,v3->v4 
stf.v v4,[Z+r1] 
addi r1,16->r1 
blti r1,4096,L1 

7x1024 instructions 7x256 instructions 
(4x fewer instructions)  



Lecture 3 Slide 6  
EECS 570 

Vector Datapath & Implementation 
• Vector	insn.	are	just	like	normal	insn…	only	“wider”	

❒  Single	instrucYon	fetch	
❒  Wide	register	read	&	write	(not	mulYple	ports)	
❒  Wide	execute:	replicate	FP	unit	(same	as	superscalar)	
❒  Wide	bypass	(avoid	N2	bypass	problem)	
❒  Wide	cache	read	&	write	(single	cache	tag	check)	

• ExecuYon	width	(implementaYon)	vs	vector	width	(ISA)	
❒  E.g.	PenYum	4	and	“Core	1”	executes	vector	ops	at	half	width	
❒  “Core	2”	executes	them	at	full	width	

• Because	they	are	just	instrucYons…	
❒  …superscalar	execuYon	of	vector	instrucYons	
❒  MulYple	n-wide	vector	instrucYons	per	cycle		
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Intel’s SSE2/SSE3/SSE4… 
• Intel	SSE2	(Streaming	SIMD	Extensions	2)	-	2001	

❒  16	128bit	floaYng	point	registers	(xmm0–xmm15)	
❒  Each	can	be	treated	as	2x64b	FP	or	4x32b	FP	(“packed	FP”)	

❍  Or	2x64b	or	4x32b	or	8x16b	or	16x8b	ints	(“packed	integer”)	
❍  Or	1x64b	or	1x32b	FP	(just	normal	scalar	floaYng	point)	

❒  Original	SSE:	only	8	registers,	no	packed	integer	support	

• Other	vector	extensions	
❒  AMD	3DNow!:	64b	(2x32b)	
❒  PowerPC	AlYVEC/VMX:	128b	(2x64b	or	4x32b)	

• Intel’s	AVX-512	
❒  Intel’s	“Haswell”	and	Xeon	Phi	brought	512-bit	vectors	to	x86	
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Other Vector Instructions 
•  These	target	specific	domains:	e.g.,	image	processing,	crypto	

❒  Vector	reducYon	(sum	all	elements	of	a	vector)	
❒  Geometry	processing:	4x4	translaYon/rotaYon	matrices	
❒  SaturaYng	(non-overflowing)	subword	add/sub:	image	processing	
❒  Byte	asymmetric	operaYons:	blending	and	composiYon	in	graphics	
❒  Byte	shuffle/permute:	crypto	
❒  PopulaYon	(bit)	count:	crypto	
❒  Max/min/argmax/argmin:	video	codec	
❒  Absolute	differences:	video	codec	
❒  MulYply-accumulate:	digital-signal	processing	
❒  Special	instrucYons	for	AES	encrypYon	

• More	advanced	(but	in	Intel’s	Xeon	Phi)	
❒  ScaTer/gather	loads:	indirect	store	(or	load)	from	a	vector	of	pointers	
❒  Vector	mask:	predicaYon	(condiYonal	execuYon)	of	specific	elements	



Using Vectors in Your Code 



Using Vectors in Your Code 
• Write	in	assembly	

❒  Ugh	

• Use	“intrinsic”	funcYons	and	data	types	
❒  For	example:		_mm_mul_ps()	and		“__m128” datatype	

• Use	vector	data	types	
❒  typedef	double	v2df	__aTribute__	((vector_size	(16)));	

• Use	a	library	someone	else	wrote	
❒  Let	them	do	the	hard	work	
❒  Matrix	and	linear	algebra	packages	

• Let	the	compiler	do	it	(automaYc	vectorizaYon)	
❒  GCC’s	“-Oree-vectorize”	opYon,	-Oree-vectorizer-verbose=n	
❒  Limited	impact	for	C/C++	code	(old,	hard	problem)	



SAXPY Example: Best Case 

• Code	
void saxpy(float* x, float* y, 
           float* z, float a, 
           int length) {
  for (int i = 0; i < length; i++) {
    z[i] = a*x[i] + y[i];
  }
}

• Scalar	
.L3:
   movss (%rdi,%rax), %xmm1
   mulss %xmm0, %xmm1
   addss (%rsi,%rax), %xmm1
   movss %xmm1, (%rdx,%rax)
   addq  $4, %rax
   cmpq  %rcx, %rax
   jne   .L3

• Auto	Vectorized	
.L6:
   movaps (%rdi,%rax), %xmm1
   mulps %xmm2, %xmm1
   addps (%rsi,%rax), %xmm1
   movaps %xmm1, (%rdx,%rax)
   addq  $16, %rax
   incl  %r8d
   cmpl  %r8d, %r9d
   ja .L6

❍  +	Scalar	loop	to	handle	last	few	
iteraYons	(if	length	%	4	!=	0)	

❍  “mulps”:	mulYply	
	packed	‘single’		



SAXPY Example: Actual 

• Code	
void saxpy(float* x, float* y, 
           float* z, float a, 
           int length) {
  for (int i = 0; i < length; i++) {
    z[i] = a*x[i] + y[i];
  }
}

• Scalar	
.L3:
   movss (%rdi,%rax), %xmm1
   mulss %xmm0, %xmm1
   addss (%rsi,%rax), %xmm1
   movss %xmm1, (%rdx,%rax)
   addq  $4, %rax
   cmpq  %rcx, %rax
   jne   .L3

• Auto	Vectorized	
.L8:
   movaps  %xmm3, %xmm1
   movaps  %xmm3, %xmm2
   movlps  (%rdi,%rax), %xmm1
   movlps  (%rsi,%rax), %xmm2
   movhps  8(%rdi,%rax), %xmm1
   movhps  8(%rsi,%rax), %xmm2
   mulps %xmm4, %xmm1
   incl  %r8d
   addps %xmm2, %xmm1
   movaps %xmm1, (%rdx,%rax)
   addq  $16, %rax
   cmpl  %r9d, %r8d
   jb .L8

❍  +	Explicit	alignment	test	
❍  +	Explicit	aliasing	test		



Bridging “Best Case” and “Actual” 
• Align arrays 
typedef float afloat __attribute__ ((__aligned__(16)));
void saxpy(afloat* x, 
           afloat* y, 
           afloat* z, 
           float a, int length) {
  for (int i = 0; i < length; i++) {
    z[i] = a*x[i] + y[i];
  }
}

• Avoid aliasing check 
typedef float afloat __attribute__ ((__aligned__(16)));
void saxpy(afloat* __restrict__ x, 
           afloat* __restrict__ y, 
           afloat* __restrict__ z, float a, int length) 

•  Even with both, still has the “last few iterations” code 



Reduction Example 

• Code	
void saxpy(float* x, float* y, 
           float* z, float a, 
           int length) {
  for (int i = 0; i < length; i++) {
    z[i] = a*x[i] + y[i];
  }
}

• Scalar	
.L3:
   movss (%rdi,%rax), %xmm1
   mulss %xmm0, %xmm1
   addss (%rsi,%rax), %xmm1
   movss %xmm1, (%rdx,%rax)
   addq  $4, %rax
   cmpq  %rcx, %rax
   jne   .L3

• Auto	Vectorized	
.L7:
   movaps  (%rdi,%rax), %xmm0
   incl  %ecx
   subps (%rsi,%rax), %xmm0
   addq  $16, %rax
   addps %xmm0, %xmm1
   cmpl  %ecx, %r8d
   ja .L7

   haddps   %xmm1, %xmm1
   haddps   %xmm1, %xmm1
   movaps   %xmm1, %xmm0
   je .L3

❍  “haddps”:	Packed	Single-FP	Horizontal	
Add		



SSE2 on Pentium 4 



Tomorrow’s “CPU” Vectors 



Beyond Today’s Vectors 
• Today’s	vectors	are	limited	

❒  Wide	compute	
❒  Wide	load/store	of	consecuYve	addresses	
❒  Allows	for	“SOA”	(structures	of	arrays)	style	parallelism	

• Looking	forward	(and	backward)...	
❒  Vector	masks	

❍  CondiYonal	execuYon	on	a	per-element	basis	
❍  Allows	vectorizaYon	of	condiYonals	

❒  Sca6er/gather	
❍  a[i]	=	b[y[i]]									b[y[i]]	=	a[i]	
❍  Helps	with	sparse	matrices,	“AOS”	(array	of	structures)	parallelism	

• Together,	enables	a	different	style	vectorizaYon	
❒  Translate	arbitrary	(parallel)	loop	bodies	into	vectorized	code			



Vector Masks (Predication) 

• Vector	Masks:	1	bit	per	vector	element	
❒  Implicit	predicate	in	all	vector	operaYons	

for (I=0; I<N; I++) if (maskI) { vop… } 

❒  Usually	stored	in	a	“scalar”	register	(up	to	64-bits)		
❒  Used	to	vectorize	loops	with	condiYonals	in	them	

cmp_eq.v, cmp_lt.v,  etc.:	sets	vector	predicates	
 
for (I=0; I<32; I++) 
   if (X[I] != 0.0) Z[I] = A/X[I]; 
 
ldf.v [X+r1] -> v1 
cmp_ne.v v1,f0 -> r2      // 0.0 is in f0 
divf.sv {r2} v1,f1 -> v2  // A is in f1 
stf.v {r2} v2 -> [Z+r1] 



Scatter Stores & Gather Loads 
• How	to	vectorize:	

for(int i = 1, i<N, i++) { 
int bucket = val[i] / scalefactor;   
found[bucket] = 1; 

❒  	Easy	to	vectorize	the	divide,	but	what	about	the	load/store?	

• SoluYon:	hardware	support	for	vector	“scaTer	stores”	
❍  stf.v v2->[r1+v1] 

❒  Each	address	calculated	from	r1+v1i	
stf v20->[r1+v10],   stf v21->[r1+v11], 
stf v22->[r1+v12],   stf v23->[r1+v13] 

• Vector	“gather	loads”	defined	analogously	
❒  ldf.v [r1+v1]->v2 

• ScaTer/gathers	slower	than	regular	vector	load/store	ops	
❒  SYll	provides	throughput	advantage	over	non-vector	version	



Today’s GPU’s “SIMT” Model 

CIS 501 (Martin): Vectors 20 



Graphics Processing Units (GPU) 
• Killer app for parallelism: graphics (3D games) 

Tesla S870



What is Behind such an Evolution? 
•  The	GPU	is	specialized	for	compute-intensive,	highly	data	parallel	

computaYon	(exactly	what	graphics	rendering	is	about)	
❒  So,	more	transistors	can	be	devoted	to	data	processing	rather	than	data	

caching	and	flow	control	

	

	

	

	

	

	

•  The	fast-growing	video	game	industry	exerts	strong	economic	
pressure	that	forces	constant	innovaYon	
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GPUs and SIMD/Vector Data Parallelism 

• Graphics	processing	units	(GPUs)	
❒  How	do	they	have	such	high	peak	FLOPS?	
❒  Ans:	exploit	massive	data	parallelism	

• “SIMT”	execuYon	model	
❒  Single	instrucYon	mulYple	threads	
❒  Similar	to	both	“vectors”	and	“SIMD”	
❒  A	key	difference:	beTer	support	for	condiYonal	control	flow	

• Program	it	with	CUDA	or	OpenCL	(or	Vulkan	or	Metal	or	…)	
❒  Extensions	to	C	(or	ObjecYve-C	in	the	case	of	Metal)	
❒  Perform	a	“shader	task”	(a	snippet	of	scalar	computaYon)	over	many	elements	
❒  Internally,	GPU	uses	scaTer/gather	and	vector	mask	operaYons	



Context: History of Programming GPUs 

• “GPGPU”	
❒  Originally	could	only	perform	“shader”	computaYons	on	images	
❒  So,	programmers	started	using	this	framework	for	computaYon	
❒  Puzzle	to	work	around	the	limitaYons,	unlock	the	raw	potenYal	

• As	GPU	designers	noYce	this	trend…	
❒  Hardware	provided	more	“hooks”	for	computaYon	
❒  Provided	some	limited	soOware	tools	

• GPU	designs	are	now	fully	embracing	compute	
❒  More	programmability	features	to	each	generaYon	
❒  Industrial-strength	tools,	documentaYon,	tutorials,	etc.	
❒  Can	be	used	for	in-game	physics,	etc.	
❒  A	major	iniYaYve	to	push	GPUs	beyond	graphics	(HPC,	ML)	



GPU Architectures 
•  NVIDIA	G80	–	extreme	SIMD	parallelism	in	shader	units	
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Latency Hiding with “Thread Warps” 
• Warp:	A	set	of	threads	that	
execute	the	same	instrucYon	
(on	different	data	elements)	

• Fine-grained	mulYthreading	
❒  One	instrucYon	per	thread	in	

pipeline	at	a	Yme	(No	branch	
predicYon)	

❒  Interleave	warp	execuYon	to	hide	
latencies	

•  Register	values	of	all	threads	stay	in	
register	file	

•  No	OS	context	switching	

• Memory	latency	hiding	
❒  Graphics	has	millions	of	pixels	
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Slide credit: Tor Aamodt 



Warp-based SIMD vs. Traditional SIMD 
•  TradiYonal	SIMD	contains	a	single	thread		

❒  Lock	step	
❒  Programming	model	is	SIMD	(no	threads)	
❒  ISA	contains	vector/SIMD	instrucYons	

• Warp-based	SIMD	consists	of	mulYple	scalar	threads	execuYng	in	a	
SIMD	manner	(i.e.,	same	instrucYon	executed	by	all	threads)	
❒  Each	thread	can	be	treated	individually	(i.e.,	placed	in	a	different	warp)	à	

programming	model	not	SIMD	
❍  Enables	memory	and	branch	latency	tolerance	

❒  ISA	is	scalar	à	vector	instrucYons	formed	dynamically	





CUDA Devices and Threads 

•  A	compute	device	
❒  Is	a	coprocessor	to	the	CPU	or	host	
❒  Has	its	own	DRAM	(device	memory)	
❒  Runs	many	threads	in	parallel	
❒  Is	typically	a	GPU	but	can	also	be	another	type	of		parallel	processing	

device		

•  Data-parallel	porYons	of	an	applicaYon	are	expressed	as	
device	kernels	which	run	on	many	threads	

•  Differences	between	GPU	and	CPU	threads		
❒  GPU	threads	are	extremely	lightweight	

❍  Very	liTle	creaYon	overhead	

❒  GPU	needs	1000s	of	threads	for	full	efficiency	
❍  MulR-core	CPU	needs	(relaRvely)	only	a	few	



Thread Batching: Grids and Blocks 

•  A	kernel	is	executed	as	a		
grid	of	thread	blocks	
❒  All	threads	share	data	memory	space	

•  A	thread	block	is	a	batch	of	threads	
that	can	cooperate	with	each	other	
by:	
❒  Synchronizing	their	execuYon	

❍  For	hazard-free	shared	memory	accesses	

❒  Efficiently	sharing	data	through	a	low	
latency	shared	memory	

•  Two	threads	from	two	different	blocks	
cannot	cooperate	
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Execution Model 
• Each	thread	block	is	executed	by	a	single	mulYprocessor	

❒  Synchronized	using	shared	memory	

• Many	thread	blocks	are	assigned	to	a	single	mulYprocessor	
❒  Executed	concurrently	in	a	Yme-sharing	fashion	
❒  Keep	GPU	as	busy	as	possible		

• Running	many	threads	in	parallel	can	hide	DRAM	memory	latency	
❒  Global	memory	access	:	2~300	cycles	



CUDA Device Memory Space Overview 

•  Each	thread	can:	
❒  R/W	per-thread	registers	
❒  R/W	per-thread	local	memory	
❒  R/W	per-block	shared	memory	
❒  R/W	per-grid	global	memory	
❒  Read	only	per-grid	constant	

memory	
❒  Read	only	per-grid	texture	memory	
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Example: Vector Addition Kernel 

 
// Pair-wise addition of vector elements 
// One thread per addition 
 
__global__ void 
vectorAdd(float* iA, float* iB, float* oC)  
{ 
    int idx = threadIdx.x  
        + blockDim.x * blockId.x; 
    oC[idx] = iA[idx] + iB[idx]; 
} 

Courtesy NVIDIA 



Example: Vector Addition Host Code 

float* h_A = (float*) malloc(N * sizeof(float)); 
float* h_B = (float*) malloc(N * sizeof(float)); 
// … initalize h_A and h_B 
 
// allocate device memory 
float* d_A, d_B, d_C; 
cudaMalloc( (void**) &d_A, N * sizeof(float) ); 
cudaMalloc( (void**) &d_B, N * sizeof(float) ); 
cudaMalloc( (void**) &d_C, N * sizeof(float) ); 
 
// copy host memory to device 
cudaMemcpy( d_A, h_A, N * sizeof(float),   

      cudaMemcpyHostToDevice ); 
cudaMemcpy( d_B, h_B, N * sizeof(float),          

      cudaMemcpyHostToDevice ); 

// execute the kernel on N/256 blocks of 256 threads each 
vectorAdd<<< N/256, 256>>>( d_A, d_B, d_C);	

Courtesy NVIDIA 



CUDA-Strengths 

•  (RelaYvely)	easy	to	program	(small	learning	curve)	
	
• Success	with	several	complex	applicaYons		

❒  At	least	7X	faster	than	CPU	stand-alone	implementaYons	
	

• Allows	us	to	read	and	write	data	at	any	locaYon	in	the	
device	memory	

	
• More	fast	memory	close	to	the	processors	(registers	+	
shared	memory)		



CUDA-Limitations 
• Some	hardwired	graphic	components	are	hidden	

• BeTer	tools	are	needed		
❒  Profiling	
❒  Memory	blocking	and	layout	
❒  Binary	TranslaYon	

• Difficult	to	find	opYmal	values	for	CUDA	execuYon	parameters	
❍  Number	of	thread	per	block	
❍  Dimension	and	orientaYon	of	blocks	and	grid	
❍  Use	of	on-chip	memory	resources	including	registers	and	shared	memory	

• Working	with	GPUs	is	an	acYve	area	of	research	
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GeForce GTX 680 – Streaming Processor Array (SPA) 

•  3.54bn transistors 
•  1536 CUDA cores 
•  Core: 1.006GHz 

–  Up to 1.1GHz 
•  Mem: 6.0 Gbps 

–  Lab machines 
report 3.004 Gbps 

•  3.09 TFLOPs 
•  195W 

Block scheduling 

ROP units (blending, 
Z-buffering, 
antialiasing) 

Memory access 

512KB L2 cache 



GeForce GTX 680 – Graphics Processing Cluster 



GeForce GTX 680 – Streaming Multiprocessor 
•  SM (a.k.a. SMX, SMP) 

–  Streaming Multiprocessor 
–  Multi-threaded processor 

•  192 CUDA cores 
•  1 to 2048 threads active 

–  Shared instruction fetch per 
32 threads 

–  Fundamental processing unit 
for CUDA thread block 

•  SP (a.k.a. CUDA core) 
–  Streaming Processor 
–  Scalar ALU for a single CUDA 

thread 

•  SFU 
–  Special function unit 

•  LDST 
–  Memory access unit 



Scheduling Threads for Execution 

•  Break data into Blocks (grid) 
•  Break Blocks into Warps 

– 32 consecutive threads (64 threads in an AMD wavefront) 
•  Allocate Resources 

– Registers, Shared Mem, Barriers 
•  Then allocate for execution 



Thread Life 

Host 

Kernel 
1 

Kernel 
2 

Device 

Grid 1 

Block 
(0, 0) 

Block 
(1, 0) 

Block 
(2, 0) 

Block 
(0, 1) 

Block 
(1, 1) 

Block 
(2, 1) 

Grid 2 

Block (1, 1) 

Thread 
(0, 1) 

Thread 
(1, 1) 

Thread 
(2, 1) 

Thread 
(3, 1) 

Thread 
(4, 1) 

Thread 
(0, 2) 

Thread 
(1, 2) 

Thread 
(2, 2) 

Thread 
(3, 2) 

Thread 
(4, 2) 

Thread 
(0, 0) 

Thread 
(1, 0) 

Thread 
(2, 0) 

Thread 
(3, 0) 

Thread 
(4, 0) 

•  Grid is launched on the SPA 
•  Kepler allows up to  

32-way grid concurrency 
(streams) 
•  GTX680: up to 16 grids 

•  Thread Blocks are serially 
distributed to all the SMs 
–  Potentially >1 Thread Block per SM 

•  Each SM launches Warps of 32 
Threads 
–  3 levels of parallelism 

•  SM schedules and executes  
Warps that are ready to run 

•  As Warps and Thread Blocks 
complete, resources are freed 
–  SPA can distribute more Thread Blocks 



Stream Multiprocessors Execute Blocks 

•  Threads are assigned to SMs  
at Block granularity 
–  Up to 16 Blocks per SM 
–  Up to 64 Resident Warps per SM 
–  Up to 2K threads per SM 

•  Could be 512 (threads/block) * 4 blocks  
•  Or 256 (threads/block) * 8 blocks, etc. 

–  NOTE: actual # as resources allow 

•  Threads run concurrently 
–  SM assigns/maintains thread id #s 
–  SM manages/schedules thread execution 

All numbers are for GTX680 (3.0 capability) 
 
More info on limits at: 
http://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications 

t0 t1 t2 … tm 

Blocks 

Texture L1 

SP 

Shared 
Memory 

MT IU 

TF 

L2 

Memory 

SM 0 



Thread Scheduling and Execution 

  •  Each Thread Blocks is divided in 
32-thread Warps 
–  This is an implementation decision, 

not part of the CUDA programming 
model 

•  Warp: primitive scheduling unit 

•  All threads in warp: 
–  same instruction 
–  control flow causes some to 

become inactive 
–  Up to 512M instructions per kernel 

…
t0 t1 t2 … t31 
…

…
t0 t1 t2 … t31 
…Block 1 Warps Block 2 Warps 

SP 
SP 
SP 
SP 

SFU 

SP 
SP 
SP 
SP 

SFU 

Instruction Fetch/Dispatch 
Instruction L1 Data L1 

Streaming Multiprocessor 

Shared Memory 

LDST 



Warp Scheduling 
•  SM hardware implements zero-

overhead Warp scheduling 
–  Scheduler masks out ineligible warps 

–  e.g., operands not ready 
–  Select warp to schedule next based 

on a prioritized scheduling policy 
–  Decode instruction 
–  Issue instruction 
–  All threads in a Warp execute the 

same instruction when selected 

 

warp 8 instruction 11 

SM multithreaded 
Warp scheduler 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

time 

warp 3 instruction 96 



SM Instruction Buffer – Warp Scheduling 
•  Fetch one warp instruction/cycle 

–  from instruction L1 cache  
–  into any instruction buffer slot 

•  Issue one “ready-to-go” warp 
instruction/cycle 
–  from any warp - instruction buffer slot 
–  operand scoreboarding used to prevent 

hazards 
•  Issue selection based on round-robin/

age of warp: not public 
•  SM broadcasts the same instruction to 

32 Threads of a Warp 
•  That’s the theory à warp scheduling 

may use heuristics 

I $ 
L 1 

Multithreaded 
Instruction Buffer 

R 
F C $ 

L 1 Shared 
Mem 

Operand Select 

MAD SFU 



Scoreboarding 
•  How to determine if a thread is ready to execute? 
•  A scoreboard is a table in hardware that tracks 

–  instructions being fetched, issued, executed  
–  resources they need (functional units and operands) 
– which instructions modify which registers 

•  Old concept from CDC 6600 (1960s) to separate memory and 
computation 

 



Scoreboarding 
•  All register operands of all instructions in the Instruction Buffer 

are scoreboarded 
–  Status becomes ready after the needed values are deposited 
–  prevents hazards 
–  cleared instructions are eligible for issue 

•  Decoupled Memory/Processor pipelines 
–  any thread can continue to issue instructions until scoreboarding 

prevents issue 
–  allows Memory/Processor ops to proceed in shadow of Memory/

Processor ops 



•  Consider three separate 
instruction streams: warp1, 
warp3 and warp8 

warp 8 instruction 11 t=k 

Warp	 Current	
InstrucRon	

InstrucRon	
State	

Warp	1	 42	 CompuYng	

Warp	3	 95	 WaiYng	

Warp	8	 11	 Operands	
ready	to	go	

…	

Schedule 
at time k 

Scoreboarding example 



•  Consider three separate 
instruction streams: warp1, 
warp3 and warp8 

warp 8 instruction 11 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

warp 3 instruction 96 

t=k 

t=k+1 

t=k+2 

t=l>k 

t=l+1 

Warp	 Current	
InstrucRon	

InstrucRon	
State	

Warp	1	 42	 Ready	to	
write	result		

Warp	3	 95	 WaiYng	

Warp	8	 11	 CompuYng	

…	

Schedule 
at time k+1 

Scoreboarding example 


