
EECS 570
1

EECS 570
Lecture 4
Synchronization
Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/

Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin,
Narayanasamy, Nowatzyk, Reinhardt, Roth, Smith, Singh, and Wenisch.

EECS 570
2

Synchronization objectives

• Low overhead
❒ Synchronization can limit scalability

(E.g., single-lock OS kernels)

• Correctness (and ease of programmability)
❒ Synchronization failures are extremely difficult to debug

• Coordination of HW and SW
❒ SW semantics must be tightly specified to prove correctness
❒ HW can often improve efficiency

EECS 570
3

Synchronization Forms

• Mutual exclusion (critical sections)
❒ Lock & Unlock

• Event Notification
❒ Point-to-point (producer-consumer, flags)
❒ I/O, interrupts, exceptions

• Barrier Synchronization

• Higher-level constructs
❒ Queues, software pipelines, (virtual) time, counters

• Next lecture: optimistic concurrency control
❒ Transactional Memory

EECS 570
4

Anatomy of a Synchronization Op

• Acquire Method
❒ Way to obtain the lock or proceed past the barrier

• Waiting Algorithm
❒ Spin (aka busy wait)

❍ Waiting process repeatedly tests a location until it changes
❍ Releasing process sets the location
❍ Lower overhead, but wastes CPU resources
❍ Can cause interconnect traffic

❒ Block (aka suspend)
❍ Waiting process is descheduled
❍ High overhead, but frees CPU to do other things

❒ Hybrids (e.g., spin, then block)
• Release Method

❒ Way to allow other processes to proceed

EECS 570
5

HW/SW Implementation Trade-offs

• User wants high-level (ease of programming)
❒ LOCK(lock_variable); UNLOCK(lock_variable)
❒ BARRIER(barrier_variable, numprocs)

• SW advantages: flexibility, portability
• HW advantages: speed
• Design objectives:

❒ Low latency
❒ Low traffic
❒ Low storage
❒ Scalability (“wait-free”-ness)
❒ Fairness

EECS 570
6

Challenges

• Same sync may have different behavior at different times
❒ Lock accessed with low or high contention
❒ Different performance needs: low latency vs. high throughput
❒ Different algorithms best for each, need different primitives

• Multiprogramming can change sync behavior
❒ Process scheduling or other resource interactions
❒ May need algorithms that are worse in dedicated case

• Rich area of SW/HW interactions
❒ Which primitives are available?
❒ What communication patterns cost more/less?

EECS 570
7

Locks

EECS 570
8

Lock-based Mutual Exclusion

xf
er

Cr
it.

 se
c

re
le

as
e

Acquire starts

w
ai

t

w
ai

t

xf
er

Cr
it.

 se
c

re
le

as
e

xf
er

Cr
it.

 se
c

Acquire done

Release starts

Release done

Synchronization
period

No contention:
• Want low latency

Contention:
• Want low period
• Low traffic
• Fairness

EECS 570
9

How Not to Implement Locks

•LOCK
while (lock_variable == 1);
lock_variable = 1;

•UNLOCK
lock_variable = 0;

Context switch!

EECS 570
10

Solution: Atomic Read-Modify-Write

• Test&Set(r,x)
{r=m[x]; m[x]=1;}

• Fetch&Op(r1,r2,x,op)
{r1=m[x]; m[x]=op(r1,r2);}

• Swap(r,x)
{temp=m[x]; m[x]=r; r=temp;}

• Compare&Swap(r1,r2,x)
{temp=r2; r2=m[x]; if r1==r2 then m[x]=temp;}

• r is register
• m[x] is memory location x

EECS 570
11

Implementing RMWs

• Bus-based systems:
❒ Hold bus and issue load/store operations without any

intervening accesses by other processors
• Perform operation at shared point in the memory hierarchy

❒ E.g., if L1s are private and L2 is shared, perform sync ops at L2
❍ Need to invalidate lines for the address in the private L1s!

• Scalable systems
❒ Acquire exclusive ownership via cache coherence
❒ Perform load/store operations without allowing external

coherence requests

EECS 570
12

Load-Locked Store-Conditional

• Load-locked
❒ Issues a normal load…
❒ …and sets a flag and address field

• Store-conditional
❒ Checks that flag is set and address matches…
❒ …only then performs store

• Flag is cleared by
❒ Invalidation
❒ Cache eviction
❒ Context switch
lock: while (1) {

 load-locked r1, lock_variable
 if (r1 == 0) {

 mov r2 = 1
 if (SC r2, lock_variable) break;

 }
 }

unlock:st lock_variable, #0

EECS 570
13

Coherence Protocol Example

• If P1 updates the value of x to 200, the stale value of x in other
processors must be invalidated

• If P3 wants to subsequently read/write x, it must request the new value
• SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

P1 P2 P3

x = 100 x = 100 x = 100

Processors

Caches x = 200

Invalidation
s

x = 100 x = 100

Request
Data

x = 200

St x = 200 Ld x

Data Response

EECS 570
14

Test-and-Set Spin Lock (T&S)

• Lock is “acquire”, Unlock is “release”
• acquire(lock_ptr):

while (true):
// Perform “test-and-set”
// UNLOCKED = 0, LOCKED = 1
test_and_set(old, lock_ptr)
if (old == UNLOCKED):

break // lock acquired!
// keep spinning, back to top of while loop

• release(lock_ptr):

store[lock_ptr] <- UNLOCKED

• Performance problem
❒ T&S is both a read and write; spinning causes lots of coherence traffic

EECS 570
15

• acquire(lock_ptr):
while (true):

// Perform “test”
load [lock_ptr] -> original_value
if (original_value == UNLOCKED):
 // Perform “test-and-set”

test_and_set(old, lock_ptr)
if (old == UNLOCKED):
 break // lock acquired!

// keep spinning, back to top of while loop

• release(lock_ptr):

store[lock_ptr] <- UNLOCKED

• Now “spinning” is read-only, on local cached copy

Test-and-Test-and-Set Spin Lock (TTS)

EECS 570
16

TTS Lock Performance Issues
• Performance issues remain

❒ Every time the lock is released…
❍ All spinning cores get invalidated -> lots of coherence traffic
❍ All spinning cores would then load the lock addr to keep spinning, and

likely try to T&S the block
❑ More coherence traffic!

❒ Causes a storm of coherence traffic, clogs things up badly
• One solution: backoff

❒ Instead of spinning constantly, check less frequently
❒ Exponential backoff works well in practice

• Another problem with spinning
❒ Processors can spin really fast, starve threads on the same core!
❒ Solution: x86 adds a “PAUSE” instruction

❍ Tells processor to suspend the thread for a short time

• (Un)fairness

EECS 570
17

Ticket Locks

• To ensure fairness and reduce coherence storms

• Locks have two counters: next_ticket, now_serving
❒ Deli counter

• acquire(lock_ptr):

❒ my_ticket = fetch_and_increment(lock_ptr->next_ticket)
❒ while(lock_ptr->now_serving != my_ticket); // spin

• release(lock_ptr):

❒ lock_ptr->now_serving = lock_ptr->now_serving + 1
❍ (Just a normal store, not an atomic operation, why?)

• Summary of operation
❒ To “get in line” to acquire the lock, CAS on next_ticket
❒ Spin on now_serving

EECS 570
18

Ticket Locks

• Properties
❒ Less of a “thundering herd” coherence storm problem

❍ To acquire, only need to read new value of now_serving
❒ No CAS on critical path of lock handoff

❍ Just a non-atomic store
❒ FIFO order (fair)

❍ Good, but only if the O.S. hasn’t swapped out any threads!

• Padding
❒ Allocate now_serving and next_ticket on different cache blocks

❍ struct { int now_serving; char pad[60]; int next_ticket; } …
❒ Two locations reduces interference

• Proportional backoff
❒ Estimate of wait time: (my_ticket - now_serving) * average hold time

EECS 570
19

Array-Based Queue Locks

• Why not give each waiter its own location to spin on?
❒ Avoid coherence storms altogether!

• Idea: “slot” array of size N: “go ahead” or “must wait”
❍ Initialize first slot to “go ahead”, all others to “must wait”
❍ Padded one slot per cache block,

❒ Keep a “next slot” counter (similar to “next_ticket” counter)
• Acquire: “get in line”

❒ my_slot = (atomic increment of “next slot” counter) mod N
❒ Spin while slots[my_slot] contains “must_wait”
❒ Reset slots[my_slot] to “must wait”

• Release: “unblock next in line”
❒ Set slots[my_slot+1 mod N] to “go ahead”

EECS 570
20

Array-Based Queue Locks

• Variants: Anderson 1990, Graunke and Thakkar 1990

• Desirable properties
❒ Threads spin on dedicated location

❍ Just two coherence misses per handoff
❍ Traffic independent of number of waiters

❒ FIFO & fair (same as ticket lock)

• Undesirable properties
❒ Higher uncontended overhead than a TTS lock
❒ Storage O(N) for each lock

❍ 128 threads at 64B padding: 8KBs per lock!
❍ What if N isn’t known at start?

• List-based locks address the O(N) storage problem
❒ Several variants of list-based locks: MCS 1991, CLH 1993/1994

EECS 570
21

List-Based Queue Lock (MCS)

• A “lock” is a pointer to a linked list node
❒ next node pointer
❒ boolean must_wait
❒ Each thread has its own local pointer to a node “I”

• acquire(lock):
I->next = null;
predecessor = fetch_and_store(lock,I)
if predecessor != nil //some node holds lock
 I->must_wait = true
 predecessor->next = I //predecessor must wake us
 repeat while I->must_wait //spin till lock is free

• release(lock):
if (I->next == null) //no known successor
 if compare_and_swap(lock,I,nil) //make sure…
 return //CAS succeeded; lock

freed
 repeat while I->next = nil //spin to learn successor
I->next->must_wait = false //wake successor

EECS 570
22

MCS Lock Example: Time 0

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil
 I->must_wait = true
 pred->next = I
 repeat while I->must_wait

• release(lock):
if (I->next == null)
 if CAS(lock,I,nil)
return

 repeat while I->next == nil
I->next->must_wait = false

False False False

Lock

I1 I2 I3

EECS 570
23

MCS Lock Example: Time 1

False False False

Lock

I1 I2 I3• t1: Acquire(L)

Holds lock

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil
 I->must_wait = true
 pred->next = I
 repeat while I->must_wait

• release(lock):
if (I->next == null)
 if CAS(lock,I,nil)
return

 repeat while I->next ==
nil

I->next->must_wait = false

EECS 570
24

MCS Lock Example: Time 2

False True False

Lock

I1 I2 I3• t1: Acquire(L)
• t2: Acquire(L)

Holds lock Spinning

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil
 I->must_wait = true
 pred->next = I
 repeat while I->must_wait

• release(lock):
if (I->next == null)
 if CAS(lock,I,nil)
return

 repeat while I->next ==
nil

I->next->must_wait = false

EECS 570
25

MCS Lock Example: Time 3

False True True

Lock

I1 I2 I3• t1: Acquire(L)
• t2: Acquire(L)
• t3: Acquire(L)

Holds lock Spinning Spinning

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil
 I->must_wait = true
 pred->next = I
 repeat while I->must_wait

• release(lock):
if (I->next == null)
 if CAS(lock,I,nil)
return

 repeat while I->next ==
nil

I->next->must_wait = false

EECS 570
26

MCS Lock Example: Time 4

False False True

Lock

I1 I2 I3• t1: Acquire(L)
• t2: Acquire(L)
• t3: Acquire(L)
• t1: Release(L)

Holds lock Spinning

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil
 I->must_wait = true
 pred->next = I
 repeat while I->must_wait

• release(lock):
if (I->next == null)
 if CAS(lock,I,nil)
return

 repeat while I->next ==
nil

I->next->must_wait = false

EECS 570
27

MCS Lock Example: Time 5

False False False

Lock

I1 I2 I3• t1: Acquire(L)
• t2: Acquire(L)
• t3: Acquire(L)
• t1: Release(L)
• t2: Release(L)

Holds lock

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil
 I->must_wait = true
 pred->next = I
 repeat while I->must_wait

• release(lock):
 if (I->next == null)
 if CAS(lock,I,nil)
return

repeat while I->next == nil
I->next->must_wait = false

EECS 570
28

MCS Lock Example: Time 6

False False False

Lock

I1 I2 I3• t1: Acquire(L)
• t2: Acquire(L)
• t3: Acquire(L)
• t1: Release(L)
• t2: Release(L)
• t3: Release(L)

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil
 I->must_wait = true
 pred->next = I
 repeat while I->must_wait

• release(lock):
if (I->next == null)
 if CAS(lock,I,nil)
return

 repeat while I->next ==
nil

I->next->must_wait = false

release() w/o CAS is more complex; see paper

EECS 570
29

Queue-based locks in HW: QOLB

• Queue On Lock Bit
❒ HW maintains doubly-linked list between requesters

❍ This is a key idea of “Scalable Coherence Interface”, see Unit 2
❒ Augment cache with “locked” bit

❍ Waiting caches spin on local “locked” cache line
❒ Upon release, lock holder sends line to 1st requester

❍ Only requires one message on interconnect

P1 P2 P3

L L

EECS 570
30

Fundamental Mechanisms to Reduce Overheads
[Kägi, Burger, Goodman ASPLOS 97]

• Basic mechanisms
❒ Local Spinning
❒ Queue-based locking
❒ Collocation
❒ Synchronous Prefetch

Local Spin Queue Collocation Prefetch

T&S No No Optional No

T&T&S Yes No Optional No

MCS Yes Yes Partial No

QOLB yes Yes Optional Yes

EECS 570
31

Microbenchmark Analysis

CPUs

Re
la

tiv
e

sy
nc

 p
er

io
d

[Kägi 97]

EECS 570
32

Performance of Locks

• Contention vs. No Contention
❒ Test-and-Set best when no contention
❒ Queue-based is best with medium contention
❒ Idea: switch implementation based on lock behavior

❍ Reactive Synchronization – Lim & Agarwal 1994
❍ SmartLocks – Eastep et al 2009

• High-contention indicates poorly written program
❒ Need better algorithm or data structures

EECS 570
33

Point-to-Point Event Synchronization

• Can use normal variables as flags
a = f(x); while (flag == 0);
flag = 1; b = g(a);

• Assumes Sequential Consistency!
• Full/Empty Bits

❒ Set on write
❒ Cleared on read
❒ Can’t write if set, can’t read if clear

EECS 570
34

Barriers

EECS 570
35

Barriers

• Physics simulation computation
❒ Divide up each timestep computation into N independent pieces
❒ Each timestep: compute independently, synchronize

• Example: each thread executes:
segment_size = total_particles / number_of_threads

my_start_particle = thread_id * segment_size

my_end_particle = my_start_particle + segment_size - 1
for (timestep = 0; timestep += delta; timestep < stop_time):

calculate_forces(t, my_start_particle, my_end_particle)
barrier()
update_locations(t, my_start_particle, my_end_particle)
barrier()

• Barrier? All threads wait until all threads have reached it

EECS 570
36

Example: Barrier-Based Merge Sort

Barrier

Barrier

t0 t1 t2 t3

Step 1

Step 2

Step 3

EECS 570
37

Global Synchronization Barrier

• At a barrier
❒ All threads wait until all other threads have reached it

• Strawman implementation (wrong!)

global (shared) count : integer := P

procedure central_barrier
 if fetch_and_decrement(&count) == 1
 count := P
 else
 repeat until count == P

• What is wrong with the above code?

Barrier

t0 t1 t2 t3

Barrier

EECS 570
38

Sense-Reversing Barrier

• Correct barrier implementation:

global (shared) count : integer := P
global (shared) sense : Boolean := true
local (private) local_sense : Boolean := true

procedure central_barrier
 // each processor toggles its own sense
 local_sense := !local_sense
 if fetch_and_decrement(&count) == 1
 count := P
 // last processor toggles global sense
 sense := local_sense
 else
 repeat until sense == local_sense

• Single counter makes this a “centralized” barrier

EECS 570
39

Other Barrier Implementations

• Problem with centralized barrier
❒ All processors must increment each counter
❒ Each read/modify/write is a serialized coherence action

❍ Each one is a cache miss
❒ O(n) if threads arrive simultaneously, slow for lots of processors

• Combining Tree Barrier
❒ Build a logk(n) height tree of counters (one per cache block)
❒ Each thread coordinates with k other threads (by thread id)
❒ Last of the k processors, coordinates with next higher node in tree
❒ As many coordination address are used, misses are not serialized
❒ O(log n) in best case

• Static and more dynamic variants
❒ Tree-based arrival, tree-based or centralized release

