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Synchronization objectives

• Low overhead 
❒ Synchronization can limit scalability 

(E.g., single-lock OS kernels) 

• Correctness (and ease of programmability) 
❒ Synchronization failures are extremely difficult to debug 

• Coordination of HW and SW 
❒ SW semantics must be tightly specified to prove correctness 
❒ HW can often improve efficiency 
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Synchronization Forms 

• Mutual exclusion (critical sections) 
❒ Lock & Unlock 

• Event Notification 
❒ Point-to-point (producer-consumer, flags) 
❒ I/O, interrupts, exceptions 

• Barrier Synchronization 

• Higher-level constructs 
❒ Queues, software pipelines, (virtual) time, counters 

• Next lecture: optimistic concurrency control 
❒ Transactional Memory
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Anatomy of a Synchronization Op

• Acquire Method 
❒ Way to obtain the lock or proceed past the barrier 

• Waiting Algorithm 
❒ Spin (aka busy wait)  

❍ Waiting process repeatedly tests a location until it changes 
❍ Releasing process sets the location 
❍ Lower overhead, but wastes CPU resources 
❍ Can cause interconnect traffic 

❒ Block (aka suspend)  
❍ Waiting process is descheduled 
❍ High overhead, but frees CPU to do other things 

❒ Hybrids (e.g., spin, then block) 
• Release Method 

❒ Way to allow other processes to proceed 
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HW/SW Implementation Trade-offs

• User wants high-level (ease of programming) 
❒ LOCK(lock_variable); UNLOCK(lock_variable) 
❒ BARRIER(barrier_variable, numprocs) 

• SW advantages: flexibility, portability 
• HW advantages: speed  
• Design objectives: 

❒ Low latency 
❒ Low traffic 
❒ Low storage 
❒ Scalability (“wait-free”-ness) 
❒ Fairness
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Challenges

• Same sync may have different behavior at different times 
❒ Lock accessed with low or high contention 
❒ Different performance needs: low latency vs. high throughput 
❒ Different algorithms best for each, need different primitives 

• Multiprogramming can change sync behavior 
❒ Process scheduling or other resource interactions 
❒ May need algorithms that are worse in dedicated case 

• Rich area of SW/HW interactions 
❒ Which primitives are available? 
❒ What communication patterns cost more/less?
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Locks
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Lock-based Mutual Exclusion
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No contention:
• Want low latency

Contention:
• Want low period
• Low traffic
• Fairness 
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How Not to Implement Locks

•LOCK 
while (lock_variable == 1); 
lock_variable = 1; 

•UNLOCK 
lock_variable = 0;

Context switch!
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Solution: Atomic Read-Modify-Write

• Test&Set(r,x)     
{r=m[x]; m[x]=1;} 

• Fetch&Op(r1,r2,x,op)     
{r1=m[x]; m[x]=op(r1,r2);} 

• Swap(r,x)     
{temp=m[x]; m[x]=r; r=temp;} 

• Compare&Swap(r1,r2,x)     
{temp=r2; r2=m[x]; if r1==r2 then m[x]=temp;}

• r is register
• m[x] is memory location x
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Implementing RMWs

• Bus-based systems: 
❒ Hold bus and issue load/store operations without any 

intervening accesses by other processors 
• Perform operation at shared point in the memory hierarchy 

❒ E.g., if L1s are private and L2 is shared, perform sync ops at L2 
❍ Need to invalidate lines for the address in the private L1s! 

• Scalable systems 
❒ Acquire exclusive ownership via cache coherence 
❒ Perform load/store operations without allowing external 

coherence requests
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Load-Locked Store-Conditional

• Load-locked 
❒ Issues a normal load… 
❒ …and sets a flag and address field 

• Store-conditional 
❒ Checks that flag is set and address matches… 
❒ …only then performs store 

• Flag is cleared by 
❒ Invalidation 
❒ Cache eviction 
❒ Context switch 
lock: while (1) {  

  load-locked r1, lock_variable 
    if (r1 == 0) {  

   mov r2 = 1 
   if (SC r2, lock_variable) break;  

   }  
        }

unlock:st lock_variable, #0
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Coherence Protocol Example

• If P1 updates the value of x to 200, the stale value of x in other 
processors must be invalidated 

• If P3 wants to subsequently read/write x, it must request the new value 
• SWMR = Single-Writer Multiple Readers, DVI = Data Value Invariant

P1 P2 P3

x = 100 x = 100 x = 100

Processors

Caches x = 200

Invalidation
s

x = 100 x = 100

Request 
Data

x = 200

St x = 200 Ld x

Data Response
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Test-and-Set Spin Lock (T&S)

• Lock is “acquire”, Unlock is “release” 
• acquire(lock_ptr): 

while (true): 
// Perform “test-and-set” 
// UNLOCKED = 0, LOCKED = 1  
test_and_set(old, lock_ptr) 
if (old == UNLOCKED): 

break   // lock acquired! 
// keep spinning, back to top of while loop  

• release(lock_ptr): 

store[lock_ptr] <- UNLOCKED 

• Performance problem 
❒ T&S is both a read and write; spinning causes lots of coherence traffic
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• acquire(lock_ptr): 
while (true): 

// Perform “test” 
load [lock_ptr] -> original_value 
if (original_value == UNLOCKED):  
 // Perform “test-and-set”  

test_and_set(old, lock_ptr) 
if (old == UNLOCKED): 
 break   // lock acquired! 

// keep spinning, back to top of while loop  

• release(lock_ptr): 

store[lock_ptr] <- UNLOCKED 

• Now “spinning” is read-only, on local cached copy

Test-and-Test-and-Set Spin Lock (TTS)
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TTS Lock Performance Issues
• Performance issues remain 

❒ Every time the lock is released… 
❍ All spinning cores get invalidated -> lots of coherence traffic 
❍ All spinning cores would then load the lock addr to keep spinning, and 

likely try to T&S the block 
❑ More coherence traffic! 

❒ Causes a storm of coherence traffic, clogs things up badly 
• One solution: backoff 

❒ Instead of spinning constantly, check less frequently 
❒ Exponential backoff works well in practice 

• Another problem with spinning 
❒ Processors can spin really fast, starve threads on the same core! 
❒ Solution: x86 adds a “PAUSE” instruction 

❍ Tells processor to suspend the thread for a short time 

• (Un)fairness
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Ticket Locks

• To ensure fairness and reduce coherence storms 

• Locks have two counters: next_ticket, now_serving 
❒ Deli counter 

• acquire(lock_ptr): 

❒ my_ticket = fetch_and_increment(lock_ptr->next_ticket) 
❒ while(lock_ptr->now_serving != my_ticket); // spin 

• release(lock_ptr): 

❒ lock_ptr->now_serving = lock_ptr->now_serving + 1 
❍ (Just a normal store, not an atomic operation, why?) 

• Summary of operation 
❒ To “get in line” to acquire the lock, CAS on next_ticket 
❒ Spin on now_serving
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Ticket Locks

• Properties 
❒ Less of a “thundering herd” coherence storm problem 

❍ To acquire, only need to read new value of now_serving 
❒ No CAS on critical path of lock handoff 

❍ Just a non-atomic store 
❒ FIFO order (fair) 

❍ Good, but only if the O.S. hasn’t swapped out any threads! 

• Padding 
❒ Allocate now_serving and next_ticket on different cache blocks 

❍ struct { int now_serving; char pad[60]; int next_ticket; } …   
❒ Two locations reduces interference 

• Proportional backoff 
❒ Estimate of wait time: (my_ticket - now_serving) * average hold time 
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Array-Based Queue Locks

• Why not give each waiter its own location to spin on? 
❒ Avoid coherence storms altogether! 

• Idea: “slot” array of size N: “go ahead” or “must wait” 
❍ Initialize first slot to “go ahead”, all others to “must wait” 
❍ Padded one slot per cache block,  

❒ Keep a “next slot” counter (similar to “next_ticket” counter) 
• Acquire: “get in line” 

❒ my_slot = (atomic increment of “next slot” counter) mod N 
❒ Spin while slots[my_slot] contains “must_wait” 
❒ Reset slots[my_slot] to “must wait” 

• Release: “unblock next in line” 
❒ Set slots[my_slot+1 mod N] to “go ahead”
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Array-Based Queue Locks

• Variants: Anderson 1990, Graunke and Thakkar 1990 

• Desirable properties 
❒ Threads spin on dedicated location 

❍ Just two coherence misses per handoff 
❍ Traffic independent of number of waiters  

❒ FIFO & fair (same as ticket lock) 

• Undesirable properties 
❒ Higher uncontended overhead than a TTS lock  
❒ Storage O(N) for each lock 

❍ 128 threads at 64B padding: 8KBs per lock! 
❍ What if N isn’t known at start? 

• List-based locks address the O(N) storage problem 
❒ Several variants of list-based locks: MCS 1991, CLH 1993/1994
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List-Based Queue Lock (MCS)

• A “lock” is a pointer to a linked list node 
❒ next node pointer 
❒ boolean must_wait 
❒ Each thread has its own local pointer to a node “I” 

• acquire(lock): 
I->next = null; 
predecessor = fetch_and_store(lock,I) 
if predecessor != nil   //some node holds lock 
 I->must_wait = true 
 predecessor->next = I    //predecessor must wake us 
 repeat while I->must_wait    //spin till lock is free 

• release(lock): 
if (I->next == null)   //no known successor 
 if compare_and_swap(lock,I,nil) //make sure… 
    return     //CAS succeeded; lock 

freed 
 repeat while I->next = nil  //spin to learn successor 
I->next->must_wait = false //wake successor
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MCS Lock Example: Time 0

• acquire(lock): 
I->next = null; 
pred = FAS(lock,I) 
if pred != nil  
 I->must_wait = true 
 pred->next = I  
 repeat while I->must_wait  

• release(lock): 
if (I->next == null)  
 if CAS(lock,I,nil)   
return    

 repeat while I->next == nil 
I->next->must_wait = false

False False False

Lock

I1 I2 I3
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MCS Lock Example: Time 1

False False False

Lock

I1 I2 I3• t1: Acquire(L)

Holds lock

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil 
 I->must_wait = true
 pred->next = I 
 repeat while I->must_wait   

• release(lock):
if (I->next == null) 
 if CAS(lock,I,nil)   
return   

 repeat while I->next == 
nil

I->next->must_wait = false
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MCS Lock Example: Time 2

False True False

Lock

I1 I2 I3• t1: Acquire(L)
• t2: Acquire(L)

Holds lock Spinning

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil 
 I->must_wait = true
 pred->next = I 
 repeat while I->must_wait   

• release(lock):
if (I->next == null) 
 if CAS(lock,I,nil)   
return   

 repeat while I->next == 
nil

I->next->must_wait = false
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MCS Lock Example: Time 3

False True True

Lock

I1 I2 I3• t1: Acquire(L)
• t2: Acquire(L)
• t3: Acquire(L)

Holds lock Spinning Spinning

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil 
 I->must_wait = true
 pred->next = I 
 repeat while I->must_wait   

• release(lock):
if (I->next == null) 
 if CAS(lock,I,nil)   
return   

 repeat while I->next == 
nil

I->next->must_wait = false



EECS 570
26

MCS Lock Example: Time 4

False False True

Lock

I1 I2 I3• t1: Acquire(L)
• t2: Acquire(L)
• t3: Acquire(L)
• t1: Release(L)

Holds lock Spinning

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil 
 I->must_wait = true
 pred->next = I 
 repeat while I->must_wait   

• release(lock):
if (I->next == null) 
 if CAS(lock,I,nil)   
return   

 repeat while I->next == 
nil

I->next->must_wait = false
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MCS Lock Example: Time 5

False False False

Lock

I1 I2 I3• t1: Acquire(L)
• t2: Acquire(L)
• t3: Acquire(L)
• t1: Release(L)
• t2: Release(L)

Holds lock

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil 
 I->must_wait = true
 pred->next = I 
 repeat while I->must_wait   

• release(lock):
 if (I->next == null) 
 if CAS(lock,I,nil)   
return   

repeat while I->next == nil
I->next->must_wait = false
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MCS Lock Example: Time 6

False False False

Lock

I1 I2 I3• t1: Acquire(L)
• t2: Acquire(L)
• t3: Acquire(L)
• t1: Release(L)
• t2: Release(L)
• t3: Release(L)

• acquire(lock):
I->next = null;
pred = FAS(lock,I)
if pred != nil 
 I->must_wait = true
 pred->next = I 
 repeat while I->must_wait   

• release(lock):
if (I->next == null) 
 if CAS(lock,I,nil)   
return   

 repeat while I->next == 
nil

I->next->must_wait = false

release() w/o CAS is more complex; see paper
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Queue-based locks in HW: QOLB

• Queue On Lock Bit 
❒ HW maintains doubly-linked list between requesters 

❍ This is a key idea of “Scalable Coherence Interface”, see Unit 2 
❒ Augment cache with “locked” bit 

❍ Waiting caches spin on local “locked” cache line  
❒ Upon release, lock holder sends line to 1st requester 

❍ Only requires one message on interconnect

P1 P2 P3

L L
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Fundamental Mechanisms to Reduce Overheads 
[Kägi, Burger, Goodman ASPLOS 97]

• Basic mechanisms 
❒ Local Spinning 
❒ Queue-based locking 
❒ Collocation 
❒ Synchronous Prefetch

Local Spin Queue Collocation Prefetch

T&S No No Optional No

T&T&S Yes No Optional No

MCS Yes Yes Partial No

QOLB yes Yes Optional Yes
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Microbenchmark Analysis
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[Kägi 97] 
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Performance of Locks

• Contention vs. No Contention 
❒ Test-and-Set best when no contention 
❒ Queue-based is best with medium contention 
❒ Idea: switch implementation based on lock behavior 

❍ Reactive Synchronization – Lim & Agarwal 1994 
❍ SmartLocks – Eastep et al 2009 

• High-contention indicates poorly written program 
❒ Need better algorithm or data structures
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Point-to-Point Event Synchronization

• Can use normal variables as flags 
a = f(x);    while (flag == 0); 
flag = 1;    b = g(a); 

• Assumes Sequential Consistency! 
• Full/Empty Bits 

❒ Set on write 
❒ Cleared on read 
❒ Can’t write if set, can’t read if clear



EECS 570
34

Barriers
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Barriers 

• Physics simulation computation 
❒ Divide up each timestep computation into N independent pieces 
❒ Each timestep: compute independently, synchronize 

• Example: each thread executes: 
segment_size = total_particles / number_of_threads 

my_start_particle = thread_id * segment_size 

my_end_particle =  my_start_particle + segment_size - 1  
for (timestep = 0; timestep += delta; timestep < stop_time): 

calculate_forces(t, my_start_particle, my_end_particle) 
barrier() 
update_locations(t, my_start_particle, my_end_particle) 
barrier() 

• Barrier? All threads wait until all threads have reached it
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Example: Barrier-Based Merge Sort

Barrier

Barrier

t0 t1 t2 t3

Step 1

Step 2

Step 3
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Global Synchronization Barrier

• At a barrier 
❒ All threads wait until all other threads have reached it 

• Strawman implementation (wrong!) 
   

global (shared) count : integer := P 
   
procedure central_barrier 
  if fetch_and_decrement(&count) == 1 
    count := P 
  else 
    repeat until count == P 

• What is wrong with the above code?

Barrier

t0 t1 t2 t3

Barrier
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Sense-Reversing Barrier

• Correct barrier implementation: 
   

global (shared) count : integer := P 
global (shared) sense : Boolean := true 
local (private) local_sense : Boolean := true 
   
procedure central_barrier 
  // each processor toggles its own sense 
  local_sense := !local_sense   
  if fetch_and_decrement(&count) == 1 
    count := P 
    // last processor toggles global sense 
    sense := local_sense    
  else 
    repeat until sense == local_sense 

• Single counter makes this a “centralized” barrier
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Other Barrier Implementations

• Problem with centralized barrier 
❒ All processors must increment each counter 
❒ Each read/modify/write is a serialized coherence action 

❍ Each one is a cache miss 
❒ O(n) if threads arrive simultaneously, slow for lots of processors 

• Combining Tree Barrier 
❒ Build a logk(n) height tree of counters (one per cache block) 
❒ Each thread coordinates with k other threads (by thread id)  
❒ Last of the k processors, coordinates with next higher node in tree 
❒ As many coordination address are used, misses are not serialized 
❒ O(log n) in best case 

• Static and more dynamic variants 
❒ Tree-based arrival, tree-based or centralized release 


