
Lecture 3 Slide 1
EECS 570

EECS	570	
Lecture	4	
GPUs	
Fall	2024	

Prof.	Ronald	Dreslinski	

h6p://www.eecs.umich.edu/courses/eecs570/	

	

Slides developed in part by Profs. Adve, Falsafi, Martin, Roth, Nowatzyk, Wenisch,
of EPFL, CMU, UPenn, U-M, UIUC.

•  Slides developed in part by Profs. Adve, Falsafi, Martin, Roth, Nowatzyk, and Wenisch of EPFL, CMU,
UPenn, U-M, UIUC.

Readings

Today:	
•  Tor	M.	Aamodt,	Wilson	Wai	Lun	Fung,	Timothy	G.	Rogers,	General-Purpose	
Graphics	Processor	Architectures,	Ch.	3.1-3.3,	4.1-4.3	

•  V.	Narasiman,	M.	Shebanow,	C.	J.	Lee,	R.	MiOakhutdinov,	O.	Mutlu,	and	Y.	N.	
PaT,	Improving	GPU	performance	via	large	warps	and	two-level	warp	
scheduling,	MICRO	2011.	

Project Discussion this Friday

• Project	ideas	will	be	released	
•  InformaYon	about	grading	of	projects	will	be	provided	

Lecture 3 Slide 5
EECS 570

Example Use of Vectors – 4-wide

OperaYons	
❒  Load	vector:	ldf.v [X+r1]->v1
❒  MulYply	vector	to	scalar:	mulf.vs v1,f2->v3
❒  Add	two	vectors:	addf.vv v1,v2->v3
❒  Store	vector:	stf.v v1->[X+r1]

• Performance?	
❒  Best	case:	4x	speedup	
❒  But,	vector	instrucYons	don’t	always	have	1-cycle	throughput	

❍  Execution width (implementation) vs vector width (ISA)

ldf [X+r1]->f1
mulf f0,f1->f2
ldf [Y+r1]->f3
addf f2,f3->f4
stf f4->[Z+r1]
addi r1,4->r1
blti r1,4096,L1

ldf.v [X+r1]->v1
mulf.vs v1,f0->v2
ldf.v [Y+r1]->v3
addf.vv v2,v3->v4
stf.v v4,[Z+r1]
addi r1,16->r1
blti r1,4096,L1

7x1024 instructions 7x256 instructions
(4x fewer instructions)

Lecture 3 Slide 6
EECS 570

Vector Datapath & Implementation
• Vector	insn.	are	just	like	normal	insn…	only	“wider”	

❒  Single	instrucYon	fetch	
❒  Wide	register	read	&	write	(not	mulYple	ports)	
❒  Wide	execute:	replicate	FP	unit	(same	as	superscalar)	
❒  Wide	bypass	(avoid	N2	bypass	problem)	
❒  Wide	cache	read	&	write	(single	cache	tag	check)	

• ExecuYon	width	(implementaYon)	vs	vector	width	(ISA)	
❒  E.g.	PenYum	4	and	“Core	1”	executes	vector	ops	at	half	width	
❒  “Core	2”	executes	them	at	full	width	

• Because	they	are	just	instrucYons…	
❒  …superscalar	execuYon	of	vector	instrucYons	
❒  MulYple	n-wide	vector	instrucYons	per	cycle		

Lecture 3 Slide 7
EECS 570

Intel’s SSE2/SSE3/SSE4…
• Intel	SSE2	(Streaming	SIMD	Extensions	2)	-	2001	

❒  16	128bit	floaYng	point	registers	(xmm0–xmm15)	
❒  Each	can	be	treated	as	2x64b	FP	or	4x32b	FP	(“packed	FP”)	

❍  Or	2x64b	or	4x32b	or	8x16b	or	16x8b	ints	(“packed	integer”)	
❍  Or	1x64b	or	1x32b	FP	(just	normal	scalar	floaYng	point)	

❒  Original	SSE:	only	8	registers,	no	packed	integer	support	

• Other	vector	extensions	
❒  AMD	3DNow!:	64b	(2x32b)	
❒  PowerPC	AlYVEC/VMX:	128b	(2x64b	or	4x32b)	

• Intel’s	AVX-512	
❒  Intel’s	“Haswell”	and	Xeon	Phi	brought	512-bit	vectors	to	x86	

Lecture 3 Slide 8
EECS 570

Other Vector Instructions
•  These	target	specific	domains:	e.g.,	image	processing,	crypto	

❒  Vector	reducYon	(sum	all	elements	of	a	vector)	
❒  Geometry	processing:	4x4	translaYon/rotaYon	matrices	
❒  SaturaYng	(non-overflowing)	subword	add/sub:	image	processing	
❒  Byte	asymmetric	operaYons:	blending	and	composiYon	in	graphics	
❒  Byte	shuffle/permute:	crypto	
❒  PopulaYon	(bit)	count:	crypto	
❒  Max/min/argmax/argmin:	video	codec	
❒  Absolute	differences:	video	codec	
❒  MulYply-accumulate:	digital-signal	processing	
❒  Special	instrucYons	for	AES	encrypYon	

• More	advanced	(but	in	Intel’s	Xeon	Phi)	
❒  ScaTer/gather	loads:	indirect	store	(or	load)	from	a	vector	of	pointers	
❒  Vector	mask:	predicaYon	(condiYonal	execuYon)	of	specific	elements	

Using Vectors in Your Code

Using Vectors in Your Code
• Write	in	assembly	

❒  Ugh	

• Use	“intrinsic”	funcYons	and	data	types	
❒  For	example:		_mm_mul_ps()	and		“__m128” datatype	

• Use	vector	data	types	
❒  typedef	double	v2df	__aTribute__	((vector_size	(16)));	

• Use	a	library	someone	else	wrote	
❒  Let	them	do	the	hard	work	
❒  Matrix	and	linear	algebra	packages	

• Let	the	compiler	do	it	(automaYc	vectorizaYon)	
❒  GCC’s	“-Oree-vectorize”	opYon,	-Oree-vectorizer-verbose=n	
❒  Limited	impact	for	C/C++	code	(old,	hard	problem)	

SAXPY Example: Best Case

• Code	
void saxpy(float* x, float* y,
 float* z, float a,
 int length) {
 for (int i = 0; i < length; i++) {
 z[i] = a*x[i] + y[i];
 }
}

• Scalar	
.L3:
 movss (%rdi,%rax), %xmm1
 mulss %xmm0, %xmm1
 addss (%rsi,%rax), %xmm1
 movss %xmm1, (%rdx,%rax)
 addq $4, %rax
 cmpq %rcx, %rax
 jne .L3

• Auto	Vectorized	
.L6:
 movaps (%rdi,%rax), %xmm1
 mulps %xmm2, %xmm1
 addps (%rsi,%rax), %xmm1
 movaps %xmm1, (%rdx,%rax)
 addq $16, %rax
 incl %r8d
 cmpl %r8d, %r9d
 ja .L6

❍  +	Scalar	loop	to	handle	last	few	
iteraYons	(if	length	%	4	!=	0)	

❍  “mulps”:	mulYply	
	packed	‘single’		

SAXPY Example: Actual

• Code	
void saxpy(float* x, float* y,
 float* z, float a,
 int length) {
 for (int i = 0; i < length; i++) {
 z[i] = a*x[i] + y[i];
 }
}

• Scalar	
.L3:
 movss (%rdi,%rax), %xmm1
 mulss %xmm0, %xmm1
 addss (%rsi,%rax), %xmm1
 movss %xmm1, (%rdx,%rax)
 addq $4, %rax
 cmpq %rcx, %rax
 jne .L3

• Auto	Vectorized	
.L8:
 movaps %xmm3, %xmm1
 movaps %xmm3, %xmm2
 movlps (%rdi,%rax), %xmm1
 movlps (%rsi,%rax), %xmm2
 movhps 8(%rdi,%rax), %xmm1
 movhps 8(%rsi,%rax), %xmm2
 mulps %xmm4, %xmm1
 incl %r8d
 addps %xmm2, %xmm1
 movaps %xmm1, (%rdx,%rax)
 addq $16, %rax
 cmpl %r9d, %r8d
 jb .L8

❍  +	Explicit	alignment	test	
❍  +	Explicit	aliasing	test		

Bridging “Best Case” and “Actual”
• Align arrays
typedef float afloat __attribute__ ((__aligned__(16)));
void saxpy(afloat* x,
 afloat* y,
 afloat* z,
 float a, int length) {
 for (int i = 0; i < length; i++) {
 z[i] = a*x[i] + y[i];
 }
}

• Avoid aliasing check
typedef float afloat __attribute__ ((__aligned__(16)));
void saxpy(afloat* __restrict__ x,
 afloat* __restrict__ y,
 afloat* __restrict__ z, float a, int length)

•  Even with both, still has the “last few iterations” code

Reduction Example

• Code	
void saxpy(float* x, float* y,
 float* z, float a,
 int length) {
 for (int i = 0; i < length; i++) {
 z[i] = a*x[i] + y[i];
 }
}

• Scalar	
.L3:
 movss (%rdi,%rax), %xmm1
 mulss %xmm0, %xmm1
 addss (%rsi,%rax), %xmm1
 movss %xmm1, (%rdx,%rax)
 addq $4, %rax
 cmpq %rcx, %rax
 jne .L3

• Auto	Vectorized	
.L7:
 movaps (%rdi,%rax), %xmm0
 incl %ecx
 subps (%rsi,%rax), %xmm0
 addq $16, %rax
 addps %xmm0, %xmm1
 cmpl %ecx, %r8d
 ja .L7

 haddps %xmm1, %xmm1
 haddps %xmm1, %xmm1
 movaps %xmm1, %xmm0
 je .L3

❍  “haddps”:	Packed	Single-FP	Horizontal	
Add		

SSE2 on Pentium 4

Tomorrow’s “CPU” Vectors

Beyond Today’s Vectors
• Today’s	vectors	are	limited	

❒  Wide	compute	
❒  Wide	load/store	of	consecuYve	addresses	
❒  Allows	for	“SOA”	(structures	of	arrays)	style	parallelism	

• Looking	forward	(and	backward)...	
❒  Vector	masks	

❍  CondiYonal	execuYon	on	a	per-element	basis	
❍  Allows	vectorizaYon	of	condiYonals	

❒  Sca6er/gather	
❍  a[i]	=	b[y[i]]									b[y[i]]	=	a[i]	
❍  Helps	with	sparse	matrices,	“AOS”	(array	of	structures)	parallelism	

• Together,	enables	a	different	style	vectorizaYon	
❒  Translate	arbitrary	(parallel)	loop	bodies	into	vectorized	code			

Vector Masks (Predication)

• Vector	Masks:	1	bit	per	vector	element	
❒  Implicit	predicate	in	all	vector	operaYons	

for (I=0; I<N; I++) if (maskI) { vop… }

❒  Usually	stored	in	a	“scalar”	register	(up	to	64-bits)		
❒  Used	to	vectorize	loops	with	condiYonals	in	them	

cmp_eq.v, cmp_lt.v, etc.:	sets	vector	predicates	

for (I=0; I<32; I++)
 if (X[I] != 0.0) Z[I] = A/X[I];

ldf.v [X+r1] -> v1
cmp_ne.v v1,f0 -> r2 // 0.0 is in f0
divf.sv {r2} v1,f1 -> v2 // A is in f1
stf.v {r2} v2 -> [Z+r1]

Scatter Stores & Gather Loads
• How	to	vectorize:	

for(int i = 1, i<N, i++) {
int bucket = val[i] / scalefactor;
found[bucket] = 1;

❒  	Easy	to	vectorize	the	divide,	but	what	about	the	load/store?	

• SoluYon:	hardware	support	for	vector	“scaTer	stores”	
❍  stf.v v2->[r1+v1]

❒  Each	address	calculated	from	r1+v1i	
stf v20->[r1+v10], stf v21->[r1+v11],
stf v22->[r1+v12], stf v23->[r1+v13]

• Vector	“gather	loads”	defined	analogously	
❒  ldf.v [r1+v1]->v2

• ScaTer/gathers	slower	than	regular	vector	load/store	ops	
❒  SYll	provides	throughput	advantage	over	non-vector	version	

Today’s GPU’s “SIMT” Model

CIS 501 (Martin): Vectors 20

Graphics Processing Units (GPU)
• Killer app for parallelism: graphics (3D games)

Tesla S870

What is Behind such an Evolution?
•  The	GPU	is	specialized	for	compute-intensive,	highly	data	parallel	

computaYon	(exactly	what	graphics	rendering	is	about)	
❒  So,	more	transistors	can	be	devoted	to	data	processing	rather	than	data	

caching	and	flow	control	

	

	

	

	

	

	

•  The	fast-growing	video	game	industry	exerts	strong	economic	
pressure	that	forces	constant	innovaYon	

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

GPUs and SIMD/Vector Data Parallelism

• Graphics	processing	units	(GPUs)	
❒  How	do	they	have	such	high	peak	FLOPS?	
❒  Ans:	exploit	massive	data	parallelism	

• “SIMT”	execuYon	model	
❒  Single	instrucYon	mulYple	threads	
❒  Similar	to	both	“vectors”	and	“SIMD”	
❒  A	key	difference:	beTer	support	for	condiYonal	control	flow	

• Program	it	with	CUDA	or	OpenCL	(or	Vulkan	or	Metal	or	…)	
❒  Extensions	to	C	(or	ObjecYve-C	in	the	case	of	Metal)	
❒  Perform	a	“shader	task”	(a	snippet	of	scalar	computaYon)	over	many	elements	
❒  Internally,	GPU	uses	scaTer/gather	and	vector	mask	operaYons	

Context: History of Programming GPUs

• “GPGPU”	
❒  Originally	could	only	perform	“shader”	computaYons	on	images	
❒  So,	programmers	started	using	this	framework	for	computaYon	
❒  Puzzle	to	work	around	the	limitaYons,	unlock	the	raw	potenYal	

• As	GPU	designers	noYce	this	trend…	
❒  Hardware	provided	more	“hooks”	for	computaYon	
❒  Provided	some	limited	soOware	tools	

• GPU	designs	are	now	fully	embracing	compute	
❒  More	programmability	features	to	each	generaYon	
❒  Industrial-strength	tools,	documentaYon,	tutorials,	etc.	
❒  Can	be	used	for	in-game	physics,	etc.	
❒  A	major	iniYaYve	to	push	GPUs	beyond	graphics	(HPC,	ML)	

GPU Architectures
•  NVIDIA	G80	–	extreme	SIMD	parallelism	in	shader	units	

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

Latency Hiding with “Thread Warps”
• Warp:	A	set	of	threads	that	
execute	the	same	instrucYon	
(on	different	data	elements)	

• Fine-grained	mulYthreading	
❒  One	instrucYon	per	thread	in	

pipeline	at	a	Yme	(No	branch	
predicYon)	

❒  Interleave	warp	execuYon	to	hide	
latencies	

•  Register	values	of	all	threads	stay	in	
register	file	

•  No	OS	context	switching	

• Memory	latency	hiding	
❒  Graphics	has	millions	of	pixels	

Decode

R F

R F

R F

A L U

A L U

A L U

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2 Data All Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp-based SIMD vs. Traditional SIMD
•  TradiYonal	SIMD	contains	a	single	thread		

❒  Lock	step	
❒  Programming	model	is	SIMD	(no	threads)	
❒  ISA	contains	vector/SIMD	instrucYons	

• Warp-based	SIMD	consists	of	mulYple	scalar	threads	execuYng	in	a	
SIMD	manner	(i.e.,	same	instrucYon	executed	by	all	threads)	
❒  Each	thread	can	be	treated	individually	(i.e.,	placed	in	a	different	warp)	à	

programming	model	not	SIMD	
❍  Enables	memory	and	branch	latency	tolerance	

❒  ISA	is	scalar	à	vector	instrucYons	formed	dynamically	

CUDA Devices and Threads

•  A	compute	device	
❒  Is	a	coprocessor	to	the	CPU	or	host	
❒  Has	its	own	DRAM	(device	memory)	
❒  Runs	many	threads	in	parallel	
❒  Is	typically	a	GPU	but	can	also	be	another	type	of		parallel	processing	

device		

•  Data-parallel	porYons	of	an	applicaYon	are	expressed	as	
device	kernels	which	run	on	many	threads	

•  Differences	between	GPU	and	CPU	threads		
❒  GPU	threads	are	extremely	lightweight	

❍  Very	liTle	creaYon	overhead	

❒  GPU	needs	1000s	of	threads	for	full	efficiency	
❍  MulR-core	CPU	needs	(relaRvely)	only	a	few	

Thread Batching: Grids and Blocks

•  A	kernel	is	executed	as	a		
grid	of	thread	blocks	
❒  All	threads	share	data	memory	space	

•  A	thread	block	is	a	batch	of	threads	
that	can	cooperate	with	each	other	
by:	
❒  Synchronizing	their	execuYon	

❍  For	hazard-free	shared	memory	accesses	

❒  Efficiently	sharing	data	through	a	low	
latency	shared	memory	

•  Two	threads	from	two	different	blocks	
cannot	cooperate	

Host

Kernel 1

Kernel 2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Execution Model
• Each	thread	block	is	executed	by	a	single	mulYprocessor	

❒  Synchronized	using	shared	memory	

• Many	thread	blocks	are	assigned	to	a	single	mulYprocessor	
❒  Executed	concurrently	in	a	Yme-sharing	fashion	
❒  Keep	GPU	as	busy	as	possible		

• Running	many	threads	in	parallel	can	hide	DRAM	memory	latency	
❒  Global	memory	access	:	2~300	cycles	

CUDA Device Memory Space Overview

•  Each	thread	can:	
❒  R/W	per-thread	registers	
❒  R/W	per-thread	local	memory	
❒  R/W	per-block	shared	memory	
❒  R/W	per-grid	global	memory	
❒  Read	only	per-grid	constant	

memory	
❒  Read	only	per-grid	texture	memory	

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host
•  The	host	can	R/W	

global,	constant,	and	
texture	memories	

Example: Vector Addition Kernel

// Pair-wise addition of vector elements
// One thread per addition

__global__ void
vectorAdd(float* iA, float* iB, float* oC)
{
 int idx = threadIdx.x
 + blockDim.x * blockId.x;
 oC[idx] = iA[idx] + iB[idx];
}

Courtesy NVIDIA

Example: Vector Addition Host Code

float* h_A = (float*) malloc(N * sizeof(float));
float* h_B = (float*) malloc(N * sizeof(float));
// … initalize h_A and h_B

// allocate device memory
float* d_A, d_B, d_C;
cudaMalloc((void**) &d_A, N * sizeof(float));
cudaMalloc((void**) &d_B, N * sizeof(float));
cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float),

 cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, N * sizeof(float),

 cudaMemcpyHostToDevice);

// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256>>>(d_A, d_B, d_C);	

Courtesy NVIDIA

CUDA-Strengths

•  (RelaYvely)	easy	to	program	(small	learning	curve)	
	
• Success	with	several	complex	applicaYons		

❒  At	least	7X	faster	than	CPU	stand-alone	implementaYons	
	

• Allows	us	to	read	and	write	data	at	any	locaYon	in	the	
device	memory	

	
• More	fast	memory	close	to	the	processors	(registers	+	
shared	memory)		

CUDA-Limitations
• Some	hardwired	graphic	components	are	hidden	

• BeTer	tools	are	needed		
❒  Profiling	
❒  Memory	blocking	and	layout	
❒  Binary	TranslaYon	

• Difficult	to	find	opYmal	values	for	CUDA	execuYon	parameters	
❍  Number	of	thread	per	block	
❍  Dimension	and	orientaYon	of	blocks	and	grid	
❍  Use	of	on-chip	memory	resources	including	registers	and	shared	memory	

• Working	with	GPUs	is	an	acYve	area	of	research	

Acknowledgements
	

Some	slides/material	from:	
• Nikos	Hardavellas	at	Northwestern	
• UToronto	course	by	Andreas	Moshovos	
• UIUC	course	by	Wen-Mei	Hwu	and	David	Kirk	
• UCSB	course	by	Andrea	Di	Blas	
• Universitat	Jena	by	Waqar	Saleem		
• NVIDIA	by	Simon	Green	and	many	others	
• Real	World	Techonologies	by	David	Kanter	
• Tyler	Sorensen	(UCSC)	
	

GeForce GTX 680 – Streaming Processor Array (SPA)

•  3.54bn transistors
•  1536 CUDA cores
•  Core: 1.006GHz

–  Up to 1.1GHz
•  Mem: 6.0 Gbps

–  Lab machines
report 3.004 Gbps

•  3.09 TFLOPs
•  195W

Block scheduling

ROP units (blending,
Z-buffering,
antialiasing)

Memory access

512KB L2 cache

GeForce GTX 680 – Graphics Processing Cluster

GeForce GTX 680 – Streaming Multiprocessor
•  SM (a.k.a. SMX, SMP)

–  Streaming Multiprocessor
–  Multi-threaded processor

•  192 CUDA cores
•  1 to 2048 threads active

–  Shared instruction fetch per
32 threads

–  Fundamental processing unit
for CUDA thread block

•  SP (a.k.a. CUDA core)
–  Streaming Processor
–  Scalar ALU for a single CUDA

thread

•  SFU
–  Special function unit

•  LDST
–  Memory access unit

Scheduling Threads for Execution

•  Break data into Blocks (grid)
•  Break Blocks into Warps

– 32 consecutive threads (64 threads in an AMD wavefront)
•  Allocate Resources

– Registers, Shared Mem, Barriers
•  Then allocate for execution

Thread Life

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

•  Grid is launched on the SPA
•  Kepler allows up to

32-way grid concurrency
(streams)
•  GTX680: up to 16 grids

•  Thread Blocks are serially
distributed to all the SMs
–  Potentially >1 Thread Block per SM

•  Each SM launches Warps of 32
Threads
–  3 levels of parallelism

•  SM schedules and executes
Warps that are ready to run

•  As Warps and Thread Blocks
complete, resources are freed
–  SPA can distribute more Thread Blocks

Stream Multiprocessors Execute Blocks

•  Threads are assigned to SMs
at Block granularity
–  Up to 16 Blocks per SM
–  Up to 64 Resident Warps per SM
–  Up to 2K threads per SM

•  Could be 512 (threads/block) * 4 blocks
•  Or 256 (threads/block) * 8 blocks, etc.

–  NOTE: actual # as resources allow

•  Threads run concurrently
–  SM assigns/maintains thread id #s
–  SM manages/schedules thread execution

All numbers are for GTX680 (3.0 capability)

More info on limits at:
http://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

TF

L2

Memory

SM 0

Thread Scheduling and Execution

 •  Each Thread Blocks is divided in
32-thread Warps
–  This is an implementation decision,

not part of the CUDA programming
model

•  Warp: primitive scheduling unit

•  All threads in warp:
–  same instruction
–  control flow causes some to

become inactive
–  Up to 512M instructions per kernel

…
t0 t1 t2 … t31
…

…
t0 t1 t2 … t31
…Block 1 Warps Block 2 Warps

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

LDST

Warp Scheduling
•  SM hardware implements zero-

overhead Warp scheduling
–  Scheduler masks out ineligible warps

–  e.g., operands not ready
–  Select warp to schedule next based

on a prioritized scheduling policy
–  Decode instruction
–  Issue instruction
–  All threads in a Warp execute the

same instruction when selected

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

SM Instruction Buffer – Warp Scheduling
•  Fetch one warp instruction/cycle

–  from instruction L1 cache
–  into any instruction buffer slot

•  Issue one “ready-to-go” warp
instruction/cycle
–  from any warp - instruction buffer slot
–  operand scoreboarding used to prevent

hazards
•  Issue selection based on round-robin/

age of warp: not public
•  SM broadcasts the same instruction to

32 Threads of a Warp
•  That’s the theory à warp scheduling

may use heuristics

I $
L 1

Multithreaded
Instruction Buffer

R
F C $

L 1 Shared
Mem

Operand Select

MAD SFU

Scoreboarding
•  How to determine if a thread is ready to execute?
•  A scoreboard is a table in hardware that tracks

–  instructions being fetched, issued, executed
–  resources they need (functional units and operands)
– which instructions modify which registers

•  Old concept from CDC 6600 (1960s) to separate memory and
computation

Scoreboarding
•  All register operands of all instructions in the Instruction Buffer

are scoreboarded
–  Status becomes ready after the needed values are deposited
–  prevents hazards
–  cleared instructions are eligible for issue

•  Decoupled Memory/Processor pipelines
–  any thread can continue to issue instructions until scoreboarding

prevents issue
–  allows Memory/Processor ops to proceed in shadow of Memory/

Processor ops

•  Consider three separate
instruction streams: warp1,
warp3 and warp8

warp 8 instruction 11 t=k

Warp	 Current	
InstrucRon	

InstrucRon	
State	

Warp	1	 42	 CompuYng	

Warp	3	 95	 WaiYng	

Warp	8	 11	 Operands	
ready	to	go	

…	

Schedule
at time k

Scoreboarding example

•  Consider three separate
instruction streams: warp1,
warp3 and warp8

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1

Warp	 Current	
InstrucRon	

InstrucRon	
State	

Warp	1	 42	 Ready	to	
write	result		

Warp	3	 95	 WaiYng	

Warp	8	 11	 CompuYng	

…	

Schedule
at time k+1

Scoreboarding example

