
EECS 570
1

EECS 570
Lecture 5
Transactional
Memory

Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/
Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin,
Narayanasamy, Nowatzyk, Reinhardt, Roth, Smith, Singh, and Wenisch.
Special acknowledgement to M. Martin for Transactional Memory slides.

Jim Gray

Maurice
Herlihy

EECS 570
2

Reading for Quiz 3

Reading 1

Michael Scott, Shared-
Memory Synchronization
Synthesis Lectures on
Computer Architecture (Ch.
9.0-9.2.3)

Reading 2

Vector parallelism

EECS 570
3

Performance of Locks

• Contention vs. No Contention
❒ Test-and-Set best when no contention
❒ Queue-based is best with medium contention
❒ Idea: switch implementation based on lock behavior

❍ Reactive Synchronization – Lim & Agarwal 1994
❍ SmartLocks – Eastep et al 2009

• High-contention generally indicates poorly written program
❒ Need better algorithm or data structures

EECS 570
4

Point-to-Point Event Synchronization

• Can use normal variables as flags
a = f(x); while (flag == 0);
flag = 1; b = g(a);

• If we know initial conditions
a = f(x); while (a == 0);
 b = g(a);

• Assumes Sequential Consistency!
• Full/Empty Bits

❒ Set on write
❒ Cleared on read
❒ Can’t write if set, can’t read if clear

EECS 570
5

Barriers

EECS 570
6

Barriers

• Physics simulation computation
❒ Divide up each timestep computation into N independent pieces
❒ Each timestep: compute independently, synchronize

• Example: each thread executes:
segment_size = total_particles / number_of_threads

my_start_particle = thread_id * segment_size

my_end_particle = my_start_particle + segment_size - 1
for (timestep = 0; timestep += delta; timestep < stop_time):

calculate_forces(t, my_start_particle, my_end_particle)
barrier()
update_locations(t, my_start_particle, my_end_particle)
barrier()

• Barrier? All threads wait until all threads have reached it

EECS 570
7

Example: Barrier-Based Merge Sort

Barrier

Barrier

t0 t1 t2 t3

Step 1

Step 2

Step 3

EECS 570
8

Global Synchronization Barrier

• At a barrier
❒ All threads wait until all other threads have reached it

• Strawman implementation (wrong!)

global (shared) count : integer := P

procedure central_barrier
 if fetch_and_decrement(&count) == 1
 count := P
 else
 repeat until count == P

• What is wrong with the above code?

Barrier

t0 t1 t2 t3

Barrier

EECS 570
9

Sense-Reversing Barrier

• Correct barrier implementation:

global (shared) count : integer := P
global (shared) sense : Boolean := true
local (private) local_sense : Boolean := true

procedure central_barrier
 // each processor toggles its own sense
 local_sense := !local_sense
 if fetch_and_decrement(&count) == 1
 count := P
 // last processor toggles global sense
 sense := local_sense
 else
 repeat until sense == local_sense

• Single counter makes this a “centralized” barrier

EECS 570
10

Other Barrier Implementations

• Problem with centralized barrier
❒ All processors must increment each counter
❒ Each read/modify/write is a serialized coherence action

❍ Each one is a cache miss
❒ O(n) if threads arrive simultaneously, slow for lots of processors

• Combining Tree Barrier
❒ Build a logk(n) height tree of counters (one per cache block)
❒ Each thread coordinates with k other threads (by thread id)
❒ Last of the k processors, coordinates with next higher node in tree
❒ As many coordination address are used, misses are not serialized
❒ O(log n) in best case

• Static and more dynamic variants
❒ Tree-based arrival, tree-based or centralized release

EECS 570
11

Transactional Memory

Thanks to M.M.K. Martin of U. Penn
for many of these slides

EECS 570
12

Motivational Challenge Problem

• A concurrent “set” data structure that supports:
❒ insert(Set s, key k)
❒ lookup(Set s, key k)
❒ delete(Set s, key k)

• Ok, now extend it to add:
❒ transfer(Set s1, Set s2, key k)
❒ Key k must always be in one set (never both or neither)

• Even with coarse-grained locking…
❒ Breaks abstraction: exposes internal lock
❒ Deadlock concern: which set’s lock to grab first?

EECS 570
13

“Ideal” Solution to Challenge

• How to transfer a key between two sets?
void transfer(Set s1, Set s2, key k) {

atomic {
delete(s1, k);
insert(s2, k);

}
}

• Where “atomic” has:
❒ Simplicity of coarse-grained locking
❒ Concurrency of fine-grained locking
❒ Without fine-grain locking overheads

The promise of “transactional memory”

EECS 570
14

Transactional Memory

• Region that executes serially (isolated/atomic)
❒ Inspired by database transactions, but different

• Implementation: speculative execution
❒ Serialize only on dynamic conflicts (eager or lazy)

❍ e.g., when key manipulated by different threads
❒ Partly overcomes the granularity/complexity tradeoff

❍ Avoid conservative serialization of locking

EECS 570
15

Hot, Hot, Hot!

• Pioneering work
❒ HTM [Herlihy+, ISCA’93], Oklahoma Update [Stone+, ‘93]

--- years pass ---

• Speculative locking
❒ E.g., SLE/TLR [Rajwar+, MICRO ‘01 & ASPLOS ‘02]

• Software Transactional Memory
❒ E.g., DSTM [Herlihy+, PODC ‘03], [Harris+, OOPSLA ‘03], more

• Hardware Transactional Memory
❒ E.g., TCC [Hammond+, ISCA ‘04 & ASPLOS ‘04],

UTM [Ananian+, HPCA ‘05], VTM [Rajwar+, ISCA ‘05]
LogTM [Moore+, HPCA ‘06], and more…

• Hardware/software hybrids…

Lots of TM papers…

300+ citations in “Transactional Memory”, 2nd Edition, 2010

EECS 570
16

Gartner’s Hype Cycle

Image source: Wikipedia

~2006

EECS 570
17

Speculative Locking

Correctly synchronizing a program with locks is hard

• Fine-grain locking
❒ difficult to program
❒ high overhead

• Coarse-grain locking
❒ poor performance
❒ poor scalability

• But, concurrent critical sections usually access disjoint data
❒ So, they could actually run in parallel…
❒ …except that they conflict on accessing the lock variable

EECS 570
18

Speculative Lock Elision
[Rajwar & Goodman, MICRO 2001]

• Speculatively execute critical sections in parallel

• Key Idea: Detect & elide the lock access
❒ Upon a lock acquire, don’t actually acquire lock
❒ Checkpoint processor state
❒ Run critical sections in parallel, buffering speculative state
❒ Detect conflicting data accesses via coherence protocol
❒ Any invalidates before lock release cause rollback, otherwise commit

❍ Then retry by acquiring lock normally

• Advantages
❒ No locking overhead, since don’t actually acquire lock
❒ Allows concurrent execution of non-conflicting critical sections.

• How to find critical sections?
❒ Detect particular instruction sequences

EECS 570
19

Transactional Memory: The Big Idea
• Big idea I: no locks, just shared data

• Big idea II: optimistic (speculative) concurrency
❒ Execute critical section speculatively, abort on conflicts
❒ “Better to beg for forgiveness than to ask for permission”

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt; }
end_transaction();

EECS 570
20

Transactional Memory: Read/Write Sets
• Read set: set of shared addresses critical section reads

❒ Example: accts[37].bal, accts[241].bal

• Write set: set of shared addresses critical section writes
❒ Example: accts[37].bal, accts[241].bal

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt; }
end_transaction();

EECS 570
21

Transactional Memory: Begin

• begin_transaction
❒ Take a local register checkpoint
❒ Begin locally tracking read set (remember addresses you read)

❍ See if anyone else is trying to write it
❒ Locally buffer all of your writes (invisible to other processors)
+ Local actions only: no lock acquire

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt; }
end_transaction();

EECS 570
22

Transactional Memory: End

• end_transaction
❒ Check read set: is all data you read still valid (no writes to any)
❒ Check if anyone else has written to an address in your write set
❒ All good? Commit transactions: commit writes
❒ No? Abort transaction: restore checkpoint

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {
 accts[id_from].bal -= amt;
 accts[id_to].bal += amt; }
end_transaction();

EECS 570
23

Transactional Execution I (More Likely)

• Critical sections execute in parallel

Thread 0

id_from = 241;
id_to = 37;

begin_transaction();
if(accts[241].bal > 100) {
 accts[241].bal -= amt;
 acts[37].bal += amt;
}
end_transaction();
// no conflicting rd/wr to

accts[241].bal
// no conflicting rd/wr to

accts[37].bal
// commit

Thread 1

id_from = 450;
id_to = 118;

begin_transaction();
if(accts[450].bal > 100) {
 accts[450].bal -= amt;
 acts[118].bal += amt;
}
end_transaction();
// no conflicting rd/wr to

accts[450].bal
// no conflicting rd/wr to

accts[118].bal
// commit

EECS 570
CIS 501
(Martin/
Roth):

2424

Transactional Execution II (Conflict)

Thread 0

id_from = 241;
id_to = 37;

begin_transaction();
if(accts[241].bal > 100) {
 …
 // write accts[241].bal
 // abort

Thread 1

id_from = 37;
id_to = 241;

begin_transaction();
if(accts[37].bal > 100) {
 accts[37].bal -= amt;
 acts[241].bal += amt;
}
end_transaction();
// no writes to accts[241].bal
// no writes to accts[37].bal
// commit

EECS 570
25

• Four main components:
❒ Logging/buffering/Version Management

❍ Registers & memory
❒ Conflict detection

❍ Two accesses to a location, at least one is a write
❒ Abort/rollback
❒ Commit

Many implementation approaches
(hardware, software, hybrids)

Implementation Design Space

EECS 570
26

Preserving Register Values

• Begin transaction
❒ Take register checkpoint

• Commit transaction
❒ Free register checkpoint

• Abort transaction
❒ Restore register checkpoint

EECS 570
27

Version Management for Memory - Lazy

• Store
❒ Put all writes into “write table”

• Load
❒ If address in “write table”, read value from “write table”
❒ Otherwise, read from memory

• Commit transaction (slow)
❒ Write all entries from “write table” to memory, clear it

• Abort transaction (fast)
❒ Clear “write table”

EECS 570
28

Version Management for Memory - Eager

• Store
❒ If address not in “write set”, then:

❍ 1. read old value and put it into “write log”
❍ 2. add address to “write set”

❒ Write stores directly to memory
• Load

❒ Read from directly from memory (fast)
• Commit transaction

❒ Nothing (fast)
• Abort transaction (slow)

❒ Traverse log, write logged values back into memory

EECS 570
29

Conflict Detection - Lazy

• Store
❒ Add address to “write set” (if not already present)

• Load
❒ Add address to “read set” (if not already present)

• Commit transaction
❒ For each address A in “write set”

❍ For each other thread T
❑ If A is in T’s “read set” or “write set”, abort T’s transaction

EECS 570
30

Conflict Detection - Eager

• Store
❒ Add address A to “write set” (if not already present)
❒ For each other thread T

❍ If A is in T’s “write set” or “read set”, trigger conflict

• Load
❒ Add address to “read set” (if not already present)
❒ For each other thread T

❍ If A is in T’s write set, trigger conflict

• Conflict: abort either transaction
• Commit transaction

❒ Ok if not yet aborted, just clear read and write sets

EECS 570
31

Software Transactional Memory (STM)

• Add extra software to perform TM operations
• Version management

❒ Software data structure for log or write table
❒ Eager or lazy

• Conflict detection
❒ Software data structure (lock table), mostly lazy
❒ “object” or “block” granularity

• Commit
❒ Need to ensure atomic update of all state
❒ Grabs lots of locks, or a global commit lock

• Many possible implementations & semantics

EECS 570
32

Hardware Transactional Memory (HTM)

• Leverage invalidation-based cache coherence
❒ Each cache block has “read-only” or “read-write” state
❒ Coherence invariant:

❍ Many “read-only” (shared) blocks -- or --
❍ Single “read-write” block

• Add pair of bits per cache block: “read” & “write”
❒ Set on loads/stores during transactional execution
❒ If another core steals block from cache, abort

❍ Read or write request to block with “write” bit set
❍ Write request to block with “read” bit set

• Low-overhead conflict detection…
❒ But only if all blocks fit in cache

EECS 570
33

HTM vs STM

• Hardware transactional memory (HTM)
❒ Requires hardware (Intel Haswell has Tx support*)
❒ Simple for “bounded” case
❒ Unbounded TM in hardware really complicated

❍ Size: tracking conflicts after cache overflow
❍ Duration: context switching transactions

❒ Cache block granularity for conflicts
• Software transactional memory (STM)

❒ Here today (prototype compilers from Intel & others)
❒ Slow (2x or more single-thread overhead)

❍ Lots of extra instructions on memory operations

EECS 570
34

Hybrid Transactional Memory

• Hardware-accelerated STM
❒ Add special hardware tracking features
❒ Under control of software
❒ Can reduce STM overhead, but perhaps not enough

• Hybrid HTM/STM
❒ Use HTM mode most of the time
❒ Resort to STM only on overflows and such
❒ Getting the interaction right is actually really tricky

EECS 570
35

TM for Performance
Intel Haswell

EECS 570
36

TM for Programmability

But, more important benefit of TM is programmability

Performance of fine-grained locks
Simplicity of using one coase-grained lock

Unlike locks, transactions are typically composable

EECS 570
37

So, Let’s Just Do Transactions?

• What if…
❒ Read-set or write-set bigger than cache?
❒ Transaction gets swapped out in the middle?
❒ Transaction wants to do I/O or SYSCALL (not-abortable)?

• HTM is not easy to do correctly
❒ 2014 bug in Intel TSX for Haswell and Broadwell

❍ Fixed by turning off TM for the affected processors
❍ 2021: disabling TM on more processors due to other bugs found

• How do we transactify existing lock based programs?
❒ Replace acquire with begin_trans does not always work

• Several different kinds of transaction semantics
❒ Are transactions atomic relative to code outside of transactions?
❒ Interactions with non-transactional code can cause issues

❍ e.g. [Chong et al. PLDI 2018]

EECS 570
38

Transactions ≠ Critical Sections
What is wrong with this program?

begin_transaction();
flagA = true;
while (!flagB) {}
//update m
end_transaction();

begin_transaction();
while (!flagA) {}
flagB = true;
//update n
end_transaction();

begin_transaction();
...
queueA->enqueue(val1);
while (queueB->empty()){}
//access queueB
...
end_transaction();

begin_transaction();
...
queueB->enqueue(val2);
while (queueA->empty()){}
//access queueA
...
end_transaction();

A less contrived example…
Queue* queueA = new Queue();
Queue* queueB = new Queue();

