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Reading for Quiz 3

Reading 1 

Michael Scott, Shared-
Memory Synchronization 
Synthesis Lectures on 
Computer Architecture (Ch. 
9.0-9.2.3)

Reading 2 

Vector parallelism
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Performance of Locks

• Contention vs. No Contention 
❒ Test-and-Set best when no contention 
❒ Queue-based is best with medium contention 
❒ Idea: switch implementation based on lock behavior 

❍ Reactive Synchronization – Lim & Agarwal 1994 
❍ SmartLocks – Eastep et al 2009 

• High-contention generally indicates poorly written program 
❒ Need better algorithm or data structures
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Point-to-Point Event Synchronization

• Can use normal variables as flags 
a = f(x);    while (flag == 0); 
flag = 1;    b = g(a); 

• If we know initial conditions 
a = f(x);    while (a == 0); 
      b = g(a); 

• Assumes Sequential Consistency! 
• Full/Empty Bits 

❒ Set on write 
❒ Cleared on read 
❒ Can’t write if set, can’t read if clear
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Barriers
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Barriers 

• Physics simulation computation 
❒ Divide up each timestep computation into N independent pieces 
❒ Each timestep: compute independently, synchronize 

• Example: each thread executes: 
segment_size = total_particles / number_of_threads 

my_start_particle = thread_id * segment_size 

my_end_particle =  my_start_particle + segment_size - 1  
for (timestep = 0; timestep += delta; timestep < stop_time): 

calculate_forces(t, my_start_particle, my_end_particle) 
barrier() 
update_locations(t, my_start_particle, my_end_particle) 
barrier() 

• Barrier? All threads wait until all threads have reached it
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Example: Barrier-Based Merge Sort

Barrier

Barrier

t0 t1 t2 t3

Step 1

Step 2

Step 3
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Global Synchronization Barrier

• At a barrier 
❒ All threads wait until all other threads have reached it 

• Strawman implementation (wrong!) 
   

global (shared) count : integer := P 
   
procedure central_barrier 
  if fetch_and_decrement(&count) == 1 
    count := P 
  else 
    repeat until count == P 

• What is wrong with the above code?

Barrier

t0 t1 t2 t3

Barrier
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Sense-Reversing Barrier

• Correct barrier implementation: 
   

global (shared) count : integer := P 
global (shared) sense : Boolean := true 
local (private) local_sense : Boolean := true 
   
procedure central_barrier 
  // each processor toggles its own sense 
  local_sense := !local_sense   
  if fetch_and_decrement(&count) == 1 
    count := P 
    // last processor toggles global sense 
    sense := local_sense    
  else 
    repeat until sense == local_sense 

• Single counter makes this a “centralized” barrier
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Other Barrier Implementations

• Problem with centralized barrier 
❒ All processors must increment each counter 
❒ Each read/modify/write is a serialized coherence action 

❍ Each one is a cache miss 
❒ O(n) if threads arrive simultaneously, slow for lots of processors 

• Combining Tree Barrier 
❒ Build a logk(n) height tree of counters (one per cache block) 
❒ Each thread coordinates with k other threads (by thread id)  
❒ Last of the k processors, coordinates with next higher node in tree 
❒ As many coordination address are used, misses are not serialized 
❒ O(log n) in best case 

• Static and more dynamic variants 
❒ Tree-based arrival, tree-based or centralized release 
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Transactional Memory

Thanks to M.M.K. Martin of U. Penn  
for many of these slides
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Motivational Challenge Problem

• A concurrent “set” data structure that supports: 
❒ insert(Set s, key k) 
❒ lookup(Set s, key k) 
❒ delete(Set s, key k) 

• Ok, now extend it to add: 
❒ transfer(Set s1, Set s2, key k) 
❒ Key k must always be in one set (never both or neither) 

• Even with coarse-grained locking… 
❒ Breaks abstraction: exposes internal lock 
❒ Deadlock concern: which set’s lock to grab first?
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“Ideal” Solution to Challenge

• How to transfer a key between two sets? 
void transfer(Set s1, Set s2, key k) { 

atomic { 
delete(s1, k); 
insert(s2, k); 

} 
} 

• Where “atomic” has: 
❒ Simplicity of coarse-grained locking 
❒ Concurrency of fine-grained locking 
❒ Without fine-grain locking overheads 

The promise of “transactional memory”
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Transactional Memory

• Region that executes serially (isolated/atomic) 
❒ Inspired by database transactions, but different 

• Implementation: speculative execution 
❒ Serialize only on dynamic conflicts (eager or lazy) 

❍ e.g., when key manipulated by different threads 
❒ Partly overcomes the granularity/complexity tradeoff 

❍ Avoid conservative serialization of locking
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Hot, Hot, Hot!

• Pioneering work 
❒ HTM [Herlihy+, ISCA’93], Oklahoma Update [Stone+, ‘93] 

--- years pass --- 

• Speculative locking 
❒ E.g., SLE/TLR [Rajwar+, MICRO ‘01 & ASPLOS ‘02] 

• Software Transactional Memory 
❒ E.g., DSTM [Herlihy+, PODC ‘03], [Harris+, OOPSLA ‘03], more 

• Hardware Transactional Memory 
❒ E.g., TCC [Hammond+, ISCA ‘04 & ASPLOS ‘04],  

UTM [Ananian+, HPCA ‘05], VTM [Rajwar+, ISCA ‘05] 
LogTM [Moore+, HPCA ‘06], and more… 

• Hardware/software hybrids… 

Lots of TM papers… 

300+ citations in “Transactional Memory”, 2nd Edition, 2010 
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Gartner’s Hype Cycle

Image source: Wikipedia

~2006
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Speculative Locking

Correctly synchronizing a program with locks is hard 

• Fine-grain locking 
❒ difficult to program 
❒ high overhead 

• Coarse-grain locking 
❒ poor performance 
❒ poor scalability 

• But, concurrent critical sections usually access disjoint data  
❒ So, they could actually run in parallel… 
❒ …except that they conflict on accessing the lock variable
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Speculative Lock Elision 
[Rajwar & Goodman, MICRO 2001]

• Speculatively execute critical sections in parallel 

• Key Idea: Detect & elide the lock access 
❒ Upon a lock acquire, don’t actually acquire lock 
❒ Checkpoint processor state 
❒ Run critical sections in parallel, buffering speculative state 
❒ Detect conflicting data accesses via coherence protocol 
❒ Any invalidates before lock release cause rollback, otherwise commit 

❍ Then retry by acquiring lock normally 

• Advantages 
❒ No locking overhead, since don’t actually acquire lock 
❒ Allows concurrent execution of non-conflicting critical sections. 

• How to find critical sections? 
❒ Detect particular instruction sequences
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Transactional Memory: The Big Idea
• Big idea I: no locks, just shared data  

• Big idea II: optimistic (speculative) concurrency 
❒ Execute critical section speculatively, abort on conflicts 
❒ “Better to beg for forgiveness than to ask for permission”

struct acct_t { int bal; };
shared struct acct_t  accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {
   accts[id_from].bal -= amt;
   accts[id_to].bal += amt; }
end_transaction();
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Transactional Memory: Read/Write Sets
• Read set: set of shared addresses critical section reads 

❒ Example: accts[37].bal, accts[241].bal 

• Write set: set of shared addresses critical section writes 
❒ Example: accts[37].bal, accts[241].bal

struct acct_t { int bal; };
shared struct acct_t  accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {
   accts[id_from].bal -= amt;
   accts[id_to].bal += amt; }
end_transaction();
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Transactional Memory: Begin

•  begin_transaction 
❒ Take a local register checkpoint 
❒ Begin locally tracking read set (remember addresses you read) 

❍ See if anyone else is trying to write it 
❒ Locally buffer all of your writes (invisible to other processors) 
+ Local actions only: no lock acquire

struct acct_t { int bal; };
shared struct acct_t  accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {
   accts[id_from].bal -= amt;
   accts[id_to].bal += amt; }
end_transaction();
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Transactional Memory: End

•  end_transaction 
❒ Check read set: is all data you read still valid (no writes to any) 
❒ Check if anyone else has written to an address in your write set 
❒ All good? Commit transactions: commit writes 
❒ No? Abort transaction: restore checkpoint

struct acct_t { int bal; };
shared struct acct_t  accts[MAX_ACCT];
int id_from,id_to,amt;

begin_transaction();
if (accts[id_from].bal >= amt) {
   accts[id_from].bal -= amt;
   accts[id_to].bal += amt; }
end_transaction();
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Transactional Execution I (More Likely)

• Critical sections execute in parallel

Thread 0

id_from = 241;
id_to = 37;

begin_transaction();
if(accts[241].bal > 100) {
   accts[241].bal -= amt;
   acts[37].bal += amt;
}
end_transaction();
// no conflicting rd/wr to 

accts[241].bal 
// no conflicting rd/wr to 

accts[37].bal 
// commit 
   

Thread 1

id_from = 450;
id_to = 118;

begin_transaction();
if(accts[450].bal > 100) {
   accts[450].bal -= amt;
   acts[118].bal += amt;
}
end_transaction();
// no conflicting rd/wr to 

accts[450].bal 
// no conflicting rd/wr to 

accts[118].bal 
// commit
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Transactional Execution II (Conflict)

Thread 0

id_from = 241;
id_to = 37;

begin_transaction();
if(accts[241].bal > 100) {
   …
   // write accts[241].bal 
   // abort

Thread 1

id_from = 37;
id_to = 241;

begin_transaction();
if(accts[37].bal > 100) {
   accts[37].bal -= amt;
   acts[241].bal += amt;
}
end_transaction();
// no writes to accts[241].bal 
// no writes to accts[37].bal 
// commit
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• Four main components: 
❒ Logging/buffering/Version Management 

❍ Registers & memory 
❒ Conflict detection 

❍ Two accesses to a location, at least one is a write 
❒ Abort/rollback 
❒ Commit

Many implementation approaches
(hardware, software, hybrids)

Implementation Design Space
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Preserving Register Values

• Begin transaction 
❒ Take register checkpoint 

• Commit transaction 
❒ Free register checkpoint 

• Abort transaction 
❒ Restore register checkpoint
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Version Management for Memory - Lazy

• Store 
❒ Put all writes into “write table” 

• Load 
❒ If address in “write table”, read value from “write table”  
❒ Otherwise, read from memory 

• Commit transaction     (slow) 
❒ Write all entries from “write table” to memory, clear it 

• Abort transaction   (fast) 
❒ Clear “write table”
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Version Management for Memory - Eager

• Store 
❒ If address not in “write set”, then: 

❍ 1. read old value and put it into “write log” 
❍ 2. add address to “write set” 

❒ Write stores directly to memory 
• Load 

❒ Read from directly from memory           (fast) 
• Commit transaction 

❒ Nothing                                                     (fast) 
• Abort transaction                                        (slow) 

❒ Traverse log, write logged values back into memory
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Conflict Detection - Lazy

• Store 
❒ Add address to “write set” (if not already present) 

• Load 
❒ Add address to “read set” (if not already present) 

• Commit transaction 
❒ For each address A in “write set” 

❍ For each other thread T 
❑ If A is in T’s “read set” or “write set”, abort T’s transaction



EECS 570
30

Conflict Detection - Eager

• Store 
❒ Add address A to “write set” (if not already present) 
❒ For each other thread T 

❍ If A is in T’s “write set” or “read set”, trigger conflict 

• Load 
❒ Add address to “read set” (if not already present) 
❒ For each other thread T 

❍ If A is in T’s write set, trigger conflict 

• Conflict: abort either transaction 
• Commit transaction 

❒ Ok if not yet aborted, just clear read and write sets
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Software Transactional Memory (STM)

• Add extra software to perform TM operations 
• Version management 

❒ Software data structure for log or write table 
❒ Eager or lazy 

• Conflict detection 
❒ Software data structure (lock table), mostly lazy 
❒ “object” or “block” granularity 

• Commit 
❒ Need to ensure atomic update of all state 
❒ Grabs lots of locks, or a global commit lock 

• Many possible implementations & semantics
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Hardware Transactional Memory (HTM)

• Leverage invalidation-based cache coherence 
❒ Each cache block has “read-only” or “read-write” state 
❒ Coherence invariant: 

❍ Many “read-only” (shared) blocks  -- or -- 
❍ Single “read-write” block 

• Add pair of bits per cache block: “read” & “write” 
❒ Set on loads/stores during transactional execution 
❒ If another core steals block from cache, abort 

❍ Read or write request to block with “write” bit set 
❍ Write request to block with “read” bit set 

• Low-overhead conflict detection… 
❒ But only if all blocks fit in cache 
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HTM vs STM

• Hardware transactional memory (HTM) 
❒ Requires hardware (Intel Haswell has Tx support*) 
❒ Simple for “bounded” case 
❒ Unbounded TM in hardware really complicated 

❍ Size: tracking conflicts after cache overflow 
❍ Duration: context switching transactions 

❒ Cache block granularity for conflicts 
• Software transactional memory (STM) 

❒ Here today (prototype compilers from Intel & others) 
❒ Slow (2x or more single-thread overhead) 

❍ Lots of extra instructions on memory operations
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Hybrid Transactional Memory

• Hardware-accelerated STM 
❒ Add special hardware tracking features 
❒ Under control of software 
❒ Can reduce STM overhead, but perhaps not enough 

• Hybrid HTM/STM 
❒ Use HTM mode most of the time 
❒ Resort to STM only on overflows and such 
❒ Getting the interaction right is actually really tricky
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TM for Performance
Intel Haswell
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TM for Programmability

But, more important benefit of TM is programmability

Performance of fine-grained locks
Simplicity of using one coase-grained lock 

Unlike locks, transactions are typically composable
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So, Let’s Just Do Transactions?

• What if… 
❒ Read-set or write-set bigger than cache? 
❒ Transaction gets swapped out in the middle? 
❒ Transaction wants to do I/O or SYSCALL (not-abortable)? 

• HTM is not easy to do correctly 
❒ 2014 bug in Intel TSX for Haswell and Broadwell 

❍ Fixed by turning off TM for the affected processors 
❍ 2021: disabling TM on more processors due to other bugs found 

• How do we transactify existing lock based programs? 
❒ Replace acquire with begin_trans does not always work 

• Several different kinds of transaction semantics 
❒ Are transactions atomic relative to code outside of transactions? 
❒ Interactions with non-transactional code can cause issues 

❍ e.g. [Chong et al. PLDI 2018]
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Transactions ≠ Critical Sections
What is wrong with this program?

begin_transaction(); 
flagA = true;
while (!flagB) {}
//update m
end_transaction();

begin_transaction(); 
while (!flagA) {}
flagB = true;
//update n
end_transaction();

begin_transaction(); 
...
queueA->enqueue(val1); 
while (queueB->empty()){} 
//access queueB 
...
end_transaction();

begin_transaction(); 
...
queueB->enqueue(val2); 
while (queueA->empty()){} 
//access queueA
...
end_transaction();

A less contrived example…
Queue* queueA = new Queue();
Queue* queueB = new Queue();


