
EECS 570

EECS 570
Lecture 8
Snooping
Coherence
Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/
Slides developed in part by Profs. Falsafi, Hardavellas, Nowatzyk, and Wenisch of
EPFL, Northwestern, CMU, U-M.

EECS 570

Readings

Daniel J. Sorin, Mark D. Hill, and David A. Wood, A Primer on Memory
Consistency and Cache Coherence (Ch. 6 & 7)

EECS 570

Unit 2 – Cache Coherence &
Memory Consistency

EECS 570

Cache Coherence

• Two $100 withdrawals from account #241 at two ATMs
❒ Each transaction maps to thread on different processor
❒ Track accts[241].bal (address is in r3)

Processor 0
0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

Processor 1

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

CPU0 MemCPU1

EECS 570

No-Cache, No-Problem

• Scenario I: processors have no caches
❒ No problem
❒ Only one location where the value can reside!

Processor 0
0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

Processor 1

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

500
500

400

400

300

EECS 570

Cache Incoherence

• Scenario II: processors have write-back caches	
❒ Potentially 3 copies of accts[241].bal: memory, p0$, p1$
❒ Can get incoherent (out of sync)

Processor 0
0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

Processor 1

0: addi r1,accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call spew_cash

500
V:500 500

D:400 500

D:400 500V:500

D:400 500D:400

EECS 570

Coherence, more formally defined

• Coherence can be thought of as two invariants:
• SWMR = Single-Writer Multiple Readers

❒ There is either one writer or zero or more readers of a cache
line at any (logical) time

• DVI = Data Value Invariant
❒ All cores see the values of the address/line update in the same

order
❒ e.g. if core 0 observes x go from 0 -> 1 -> 3, then all other

cores must observe this sequence of updates as well

EECS 570

Snooping Cache-Coherence Protocols

Bus provides serialization point

Each cache controller “snoops” all bus transactions
❒ take action to ensure coherence

❍ invalidate
❍ update
❍ supply value

❒ depends on state of the block and the protocol

EECS 570

Scalable Cache Coherence

• Scalable cache coherence: two part solution

• Part I: bus bandwidth
❒ Replace non-scalable bandwidth substrate (bus)…
❒ …with scalable bandwidth one (point-to-point network, e.g., mesh)

• Part II: processor snooping bandwidth
❒ Interesting: most snoops result in no action
❒ Replace non-scalable broadcast protocol (spam everyone)…
❒ …with scalable directory protocol (only spam processors that care)

EECS 570

Approaches to Cache Coherence

• Software-based solutions
❒ Mechanisms:

❍ Mark cache blocks/memory pages as cacheable/non-cacheable
❍ Add “Flush” and “Invalidate” instructions
❍ When are each of these needed?

❒ Could be done by compiler or run-time system
❒ Difficult to get perfect (e.g., what about memory aliasing?)
❒ Will revisit this briefly later

• Hardware solutions are far more common
❒ Today we will study schemes that rely on broadcast over a bus

EECS 570

Write-Through Scheme 1:
Valid-Invalid Coherence

Bus

P1t1: Store A=1 P2

A: 0

Valid-Invalid Coherence
• Allows multiple readers, but must write through to bus
Write-through, no-write-allocate cache

• All caches must monitor (aka “snoop”) all bus traffic
❒ simple state machine for each cache frame

A [V]: 0 A [V]: 0

Main Memory

Write-through
No-write-allocate

t2: BusWr A=1

t3: Invalidate AA [V I]: 0

A: 0 1

A [V]: 0 1

EECS 570

Valid-Invalid Snooping Protocol

Actions:
Ld, St, BusRd, BusWr

Write-through,
no-write-allocate
cache

1 bit of storage
overhead per
cache frame

Store / BusWr

Valid

BusWr

Invalid

Store / BusWr

Load / BusRd

Load / --

EECS 570

Write Through Scheme 2:
Write-Update Coherence

Bus

P1t1: Store A=1 P2

A: 0

Write-Update Coherence
• Instead of invalidation, “Snarf” new value of A off the Bus
• But, 15% of cache accesses are stores

❒ Tremendous bus and cache tag BW requirement

A [V]: 0 A [V]: 0

Main Memory

Write-through

t2: BusWr A=1

t3: Snarf AA [V]: 0 1

A: 0 1

A [V]: 0 1

EECS 570

Supporting Write-Back Caches

• Write-back caches drastically reduce bus write bandwidth

• Key idea: add notion of “ownership” to Valid-Invalid
❒ Mutual exclusion – when “owner” has only replica of a cache

block, it may update it freely
❒ Sharing – multiple readers are ok, but they may not write

without gaining ownership

❒ Need to find which cache (if any) is an owner on read misses
❒ Need to eventually update memory so writes are not lost

EECS 570

Modified-Shared-Invalid (MSI) Protocol

• Three states tracked per-block at each cache
❒ Invalid – cache does not have a copy
❒ Shared – cache has a read-only copy; clean

❍ Clean == memory is up to date
❒ Modified – cache has the only copy; writable; dirty

❍ Dirty == memory is out of date

• Three processor actions
❒ Load, Store, Evict

• Five bus messages
❒ BusRd, BusRdX, BusInv, BusWB, BusReply
❒ Could combine some of these

EECS 570

Modified-Shared –Invalid (MSI) Protocol

Invalid

Load / BusRd

Shared

Bus

A [I]

A: 0

P2

A [I]

P1
1: Load A

2: BusRd A

3: BusReply A

A [I S]: 0

EECS 570

Modified-Shared –Invalid (MSI) Protocol

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Bus

A [I]

A: 0

P2

A [S]: 0

P1
1: Load A

2: BusRd A
3: BusReply A

1: Load A

A [I S]: 0

EECS 570

Modified-Shared –Invalid (MSI) Protocol

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Evict / --

Bus

A [I]

A: 0

P2

A [S]: 0

P1

A [S]: 0A [S I]

Evict A

EECS 570

A [S]: 0

Modified-Shared –Invalid (MSI) Protocol
St

or
e

/ B
us

Rd
X

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Modified

Evict / --

BusRdX / [BusReply]

Bus

A [I]

A: 0

P2

A [S I]: 0

P1
1: Store A

2: BusRdX A
3: BusReply A

A [I M]: 0 1

Load, Store / --

EECS 570

Modified-Shared –Invalid (MSI) Protocol
St

or
e

/ B
us

Rd
X

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Modified

Evict / --

BusRd / B
usReply

Load, Store / --

BusRdX / [BusReply]

Bus

A [M]: 1

A: 0

P2

A [I]

P1
1: Load A

2: BusRd A
3: BusReply A

A [I S]: 1 A [M S]: 1

A: 0 1
4: Snarf A

EECS 570

Modified-Shared –Invalid (MSI) Protocol
St

or
e

/ B
us

Rd
X

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Modified

Evict / --

BusRd / B
usReply

Load, Store / --

Store / B
usIn

v

Bus

A [S]: 1

A: 1

P2

A [S]: 1

P1

1: Store A
aka “Upgrade”

2: BusInv A

A [S M]: 2 A [S I]

BusRdX / [BusReply]BusRdX / [BusReply], BusInv / --

EECS 570

Modified-Shared –Invalid (MSI) Protocol
St

or
e

/ B
us

Rd
X

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Modified

BusRdX / BusReply

Evict / --

BusRd / B
usReply

Load, Store / --

Store / B
usIn

v

BusRdX, BusInv / [BusReply]

Bus

A [I]

A: 1

P2

A [M]: 2

P1
1: Store A

2: BusRdX A
3: BusReply A

A [M I]: 2 A [I M]: 3

BusRdX / [BusReply], BusInv / --

EECS 570

Modified-Shared –Invalid (MSI) Protocol
St

or
e

/ B
us

Rd
X

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Modified

BusRdX / BusReply

Evict / --

BusRd / B
usReplyEvict / BusW

B

Load, Store / --

Store / B
usIn

v

BusRdX, BusInv / [BusReply]

Bus

A [M]: 3

A: 1

P2

A [I]

P1
1: Evict A

2: BusWB A

A [M I]: 3

A: 1 3

BusRdX / [BusReply], BusInv / --

EECS 570

MSI Protocol Summary
St

or
e

/ B
us

Rd
X

Invalid

Load / BusRd

Shared
Load / --

BusRd / [BusReply]

Cache Actions:
• Load, Store, Evict
Bus Actions:
• BusRd, BusRdX

BusInv, BusWB,
BusReplyModified

BusRdX / BusReply

Evict / --

BusRd / B
usReplyEvict / BusW

B

Load, Store / --

Store / B
usIn

v

BusRdX, BusInv / [BusReply]BusRdX / [BusReply], BusInv / --

EECS 570

Update vs. Invalidate

• Invalidation is bad when:
❒ Single producer and many consumers of data

• Update is bad when:
❒ Multiple writes by one CPU before read by another
❒ Junk data accumulates in large caches (e.g., process migration)

EECS 570

Coherence Decoupling
[Huh, Chang, Burger, Sohi ASPLOS04]

• After invalidate, keep stale data around
❒ On subsequent read, speculatively supply stale value
❒ Confirm speculation with a normal read operations
❒ Need a branch-prediction-like rewind mechanism
❒ Completely solves false sharing problem
❒ Also addresses “silent”, “temporally-silent” stores

• Can use update-like mechanisms to improve prediction
❒ Paper explores a variety of update heuristics
❒ E.g., piggy-back value of 1st write on invalidation message

EECS 570

MESI Protocol (aka Illinois)

• MSI suffers from frequent read-upgrade sequences
❒ Leads to two bus transactions, even for private blocks
❒ Uniprocessors don’t have this problem

• Solution: add an “Exclusive” state
❒ Exclusive – only one copy; writable; clean

❍ Can detect exclusivity when memory provides reply to a read
❒ Stores transition to Modified to indicate data is dirty

❍ Can design things so that there is no need for a BusWB from
Exclusive

EECS 570

MESI Protocol Summary
Lo

ad
/ B

us
Rd

 (r
ep

ly
 fr

om
 m

em
)

Invalid

Load / BusRd(reply from cache)

Shared
Load / --

BusRd / [BusReply]

Exclusive

BusRdX / BusReply

Evict / --

Evict /--

Load / --

BusRdX, BusInv / [BusReply]

Modified

Store / BusRdX

Store / --

Load, Store / --

BusR
d / B

usR
ep

ly

St
or

e/
 B

us
In

v BusRd / BusReply

BusRdX / BusReply

Evict / BusWB

BusRdX / [BusReply], BusInv / --

EECS 570

MOESI Protocol

• MESI must write-back to memory on MS transitions
❒ Because protocol allows “silent” evicts from shared state,

a dirty block might otherwise be lost
❒ But, the writebacks might be a waste of bandwidth

❍ E.g., if there is a subsequent store
❍ Common case in producer-consumer scenarios

• Solution: add an “Owned” state
❒ Owned – shared, but dirty; only one owner (others enter S)

❍ Entered on MS transition, aka “downgrade”
❒ Owner is responsible for writeback upon eviction

EECS 570

MOESI Framework

[Sweazey & Smith ISCA86]
M - Modified (dirty)
O - Owned (dirty but shared) WHY?
E - Exclusive (clean unshared) only copy, not dirty
S - Shared
I - Invalid

Variants
❒ MSI
❒ MESI
❒ MOSI
❒ MOESI

O

M

E
S

I

ownership

validity

exclusiveness

EECS 570

DEC Firefly

• An update protocol for write-back caches
• States

❒ Exclusive – only one copy; writable; clean
❒ Shared – multiple copies; write hits write-through to all

sharers and memory
❒ Dirty – only one copy; writeable; dirty

• Exclusive/dirty provide write-back semantics for private data
• Shared state provides update semantics for shared data

❒ Uses “shared line” bus wire to detect sharing status
• Well suited to producer-consumer; process migration hurts

EECS 570

DEC Firefly Protocol Summary
St

or
e

Exclusive Shared

Load/Store Miss & SL

BusRd / BusReply

Dirty

BusRd / B
usReply (u

pdate mem)

Load, Store / --

Store & !SL / BusWr

Load Miss & !SL

Store & SL / BusWr

BusRd, BusWr / BusReply

BusWr / snarf

BusW
r /

snarf
Load / --

Load / --

• Only evictions in Dirty
state trigger a Writeback

Store Miss & !SL

EECS 570

Non-Atomic State Transitions

Operations involve multiple actions
❒ Look up cache tags
❒ Bus arbitration
❒ Check for writeback
❒ Even if bus is atomic, overall set of actions is not
❒ Race conditions among multiple operations

Suppose P1 and P2 attempt to write cached block A
❒ Each decides to issue BusUpgr to allow S –> M

Issues
❒ Handle requests for other blocks while waiting to acquire bus
❒ Must handle requests for this block A

You’ll see a lot of this in PA2! ☺

EECS 570

Scalability problems of Snoopy Coherence

• Prohibitive bus bandwidth
❒ Required bandwidth grows with # CPUS…
❒ … but available BW per bus is fixed
❒ Adding busses makes serialization/ordering hard

• Prohibitive processor snooping bandwidth
❒ All caches do tag lookup when ANY processor accesses memory
❒ Inclusion limits this to L2, but still lots of lookups

• Upshot: bus-based coherence doesn’t scale beyond 8–16 CPUs

