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Reading this week

Daniel J. Sorin, Mark D. Hill, and David A. Wood, A Primer on Memory 
Consistency and Cache Coherence (Ch. 6 & 7)
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Announcements

• No discussion this week. 
• Next week discussion: PA2 

Midterm Exam  
 26th Wed 3-4:30pm, Location: TBD 

Alternate Exam Request from Online 
❍ Please request before 2/12.   
❍ Fill this out even if we have discussed on Piazza/Email/SSD 

already to ensure they are all tracked on one sheet.

https://docs.google.com/forms/d/e/1FAIpQLSc5cgLxvCkyVzlxZRV6CXbNbeeHjMO8sQmcdOXMGUuHT2jLGg/viewform?usp=sharing
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MESI Protocol (aka Illinois)

• MSI suffers from frequent read-upgrade sequences 
❒ Leads to two bus transactions, even for private blocks 
❒ Uniprocessors don’t have this problem  

• Solution: add an “Exclusive” state 
❒ Exclusive – only one copy; writable; clean 

❍ Can detect exclusivity when memory provides reply to a read 
❒ Stores transition to Modified to indicate data is dirty 

❍ No need for a BusWB from Exclusive
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MESI Protocol Summary
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MOESI Protocol

• MESI must write-back to memory on MS transitions 
❒ Because protocol allows “silent” evicts from shared state, 

a dirty block might otherwise be lost 
❒ But, the writebacks might be a waste of bandwidth 

❍ E.g., if there is a subsequent store 
❍ Common case in producer-consumer scenarios 

• Solution: add an “Owned” state 
❒ Owned – shared, but dirty; only one owner (others enter S) 

❍ Entered on MS transition, aka “downgrade”  
❒ Owner is responsible for writeback upon eviction
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MOESI Framework

[Sweazey & Smith ISCA86] 
M - Modified (dirty) 
O - Owned (dirty but shared)     WHY? 
E - Exclusive (clean unshared) only copy, not dirty 
S - Shared 
I - Invalid 

Variants 
❒ MSI 
❒ MESI 
❒ MOSI 
❒ MOESI
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DEC Firefly

• An update protocol for write-back caches 
• States 

❒ Exclusive – only one copy; writable; clean 
❒ Shared – multiple copies; write hits write-through to all 

sharers and memory 
❒ Dirty – only one copy; writeable; dirty 

• Exclusive/dirty provide write-back semantics for private data 
• Shared state provides update semantics for shared data 

❒ Uses “shared line” bus wire to detect sharing status 
• Well suited to producer-consumer; process migration hurts 
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DEC Firefly Protocol Summary
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Non-Atomic State Transitions

Operations involve multiple actions  
❒ Look up cache tags 
❒ Bus arbitration 
❒ Check for writeback 
❒ Even if bus is atomic, overall set of actions is not 
❒ Race conditions among multiple operations 

Suppose P1 and P2 attempt to write cached block A 
❒ Each decides to issue BusUpgr to allow S –> M 

Issues 
❒ Handle requests for other blocks while waiting to acquire bus  
❒ Must handle requests for this block A 

You’ll see a lot of this in PA2! ☺
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Scalability problems of Snoopy Coherence

• Prohibitive bus bandwidth 
❒ Required bandwidth grows with # CPUS… 
❒ … but available BW per bus is fixed 
❒ Adding busses makes serialization/ordering hard 

• Prohibitive processor snooping bandwidth 
❒ All caches do tag lookup when ANY processor accesses memory 
❒ Inclusion limits this to L2, but still lots of lookups 

• Upshot: bus-based coherence doesn’t scale beyond 8–16 CPUs
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Implementing Snoopy Coherent 
SMPs
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Outline

• Coherence Control Implementation 
• Writebacks, non-atomicity, serialization/order 
• Hierarchical caches 
• Split Busses 
• Deadlock, livelock & starvation 
• TLB Coherence
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Base Coherence SMP design

• Single-level write-back cache 
• MSI coherence protocol 
• One outstanding memory request per CPU 
• Atomic memory bus transactions 

❒ No interleaving of transactions 
• Atomic operations within process 

❒ One operation at a time in program order 

• We will incrementally add more concurrency/complexity
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Cache Controller & Tags

• On a miss in a uniprocessor 
❒ Assert request for bus 
❒ Wait for bus grant 
❒ Drive address & command lines 
❒ Wait for command to be accepted by target device 
❒ Transfer data 

• In a Snoop-based SMP, cache controller must: 
❒ Monitor bus and CPU 

❍ Can view as two controllers, bus-side and CPU-side 
❍ With a single cache level, tags often duplicated or dual-ported 

❒ Respond to bus transactions as needed
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Reporting Snoop results: How?

• Collective response from caches must appear on bus 
• Wired-OR signals (used in Firefly protocol) 

❒ Shared: assert if any cache has a copy 
❒ Dirty/Inhibit: asserted if some cache has a dirty copy 

❍ Needn’t indicate which; it knows what it needs to do 
❍ Also indicates that memory controller should ignore request 

❒ Snoop-valid: asserted when OK to check other two signals 
• Need arbitration/priority scheme for cache-to-cache xfers 

❒ Which cache should supply data in shared state?
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Reporting Snoop results: When?

• Memory needs to know what, if anything, to do 

• Solution 1: Fixed # of clocks after request message 
❒ Usually needs duplicate tags to avoid contention w/ CPU 
❒ Pentium Pro, HP Servers, Sun Enterprise 

• Solution 2: Variable delay 
❒ Memory assumes cache will supply data until all say “sorry” 
❒ Less conservative, more flexible, more complex
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Writebacks

• Allow CPU to proceed on a miss ASAP 
❒ Fetch the requested block 
❒ Do the writeback of the victim later 

• Requires write buffer 
❒ Must snoop/handle bus transactions in write buffer 
❒ Must maintain order of writes/reads (maintain consistency)
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Base Snoopy Organization
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Serialization and Ordering

• CPU-cache handshake must preserve serialization 
❒ E.g., write in S state  first obtain permission 

• Write completion for SC  need to send invalidations 
❒ Wait to get bus, then can consider writes complete 

❒ Must serialize bus transactions in program order 
❍ Split transaction bus still must retire transactions in order



EECS 570

The Inclusion Property
• Inclusion means L2 is a superset of L1 (ditto for L3…) 

❒ Also, must propagate “dirty” bit through cache hierarchy 
• Now, only need to snoop last level cache 

❒ If L2 says not present, can’t be in L1 either 
• Inclusion takes effort to maintain 

❒  L2 must track what is cached in L1 
❒  On L2 replacement, must flush corresponding blocks from L1 
 How can this happen? 
 Consider:  
  1. L1 block size < L2 block size  
  2. different associativity in L1 
  3. L1 filters L2 access sequence; affects LRU ordering
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Possible Inclusion Violation

a ba

b

a,b,c have same L1 idx bits
b,c have the same L2 idx bits

a,{b,c} have different L2 idx bits

step 1. L1 miss on c

step 2. a displaced
to L2

step 3. b replaced 
by c 

c
2-way set asso. L1

direct mapped L2
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Multi-level Cache Hierarchies

• How to snoop with multi-level caches? 
❒ Independent bus snooping at each level? 
❒ Multiple duplicate tag arrays 
❒ Maintain cache inclusion
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Is inclusion a good idea?

• Most common inclusion solution: 
❒ Ensure L2 holds a superset of L1I and L1D 
❒ On L2 replacement or coherence action that supplies data, 

forward actions to L1s  
• But… 

❒ Restricted L2 associativity may limit blocks in split L1s 
❒ Not that hard to always snoop the L1s 

• Many recent designs do not maintain inclusion 
❒ Leads to more complex coherence protocols
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Shared Caches
• Share low level caches among multiple processors 

❒ Sharing L1 adds to latency, unless multithreaded processor 
• Advantages 

❒ Eliminates need for coherence protocol at shared level 
❒ Reduces latency within sharing group 
❒ Processors essentially prefetch for each other 
❒ Can exploit working set sharing 
❒ Increases utilization of cache hardware 

• Disadvantages 
❒ Higher bandwidth requirements 
❒ Increased hit latency 
❒ May be more complex design 
❒ Lower effective capacity if working sets don’t overlap
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Split-transaction (Pipelined) Bus
• Supports multiple simultaneous transactions

Req
Delay

Response

Atomic Transaction Bus

Split-transaction Bus
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Potential Problems

• Two transactions to same block (conflicting)  
❒ Mid-transaction snoop hits 

• Buffer requests and responses 
❒ Need flow control to prevent deadlock 

• Ordering of Snoop responses 
❒ when does snoop response appear wrt data response
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Possible Solutions

• Disallow conflicting transactions 
• NACK for flow control 
• Out-of-order responses 

❒ snoop results presented with data response
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Case Study: Sun Enterprise 10000

• How far can you go with snooping coherence? 
• Quadruple request/snoop bandwidth using four address busses 

❒ each handles 1/4 of physical address space 
❒ impose logical ordering: for writes on same cycle, those on bus 0 occur 

“before” bus 1, etc. 
• Get rid of data bandwidth problem: use a network 

❒ E10000 uses 16x16 crossbar betw. CPU boards & memory boards 
❒ Each CPU board has up to 4 CPUs: max 64 CPUs total 

• 10.7 GB/s max BW, 468 ns unloaded miss latency 
• See “Starfire: Extending the SMP Envelope”, IEEE Micro 1998
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Split-Transaction Bus Example

Per-processor request table tracks all transactions
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(safety)

(liveness)
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