
EECS 570

EECS 570
Lecture 8
Bus-based SMPs

Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/

Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin,
Narayanasamy, Nowatzyk, Reinhardt, Roth, Smith, Singh, and Wenisch.

EECS 570

Reading this week

Daniel J. Sorin, Mark D. Hill, and David A. Wood, A Primer on Memory
Consistency and Cache Coherence (Ch. 6 & 7)

EECS 570

Announcements

• No discussion this week.
• Next week discussion: PA2

Midterm Exam
 26th Wed 3-4:30pm, Location: TBD

Alternate Exam Request from Online
❍ Please request before 2/12.
❍ Fill this out even if we have discussed on Piazza/Email/SSD

already to ensure they are all tracked on one sheet.

https://docs.google.com/forms/d/e/1FAIpQLSc5cgLxvCkyVzlxZRV6CXbNbeeHjMO8sQmcdOXMGUuHT2jLGg/viewform?usp=sharing

EECS 570

MESI Protocol (aka Illinois)

• MSI suffers from frequent read-upgrade sequences
❒ Leads to two bus transactions, even for private blocks
❒ Uniprocessors don’t have this problem

• Solution: add an “Exclusive” state
❒ Exclusive – only one copy; writable; clean

❍ Can detect exclusivity when memory provides reply to a read
❒ Stores transition to Modified to indicate data is dirty

❍ No need for a BusWB from Exclusive

EECS 570

MESI Protocol Summary
Lo

ad
/ B

us
Rd

 (r
ep

ly
 fr

om
 m

em
)

Invalid

Load / BusRd(reply from cache)

Shared
Load / --

BusRd / [BusReply]

Exclusive

BusRdX / BusReply

Evict / --

Evict /--

Load / --

BusRdX, BusInv / [BusReply]

Modified

Store / BusRdX

Store / --

Load, Store / --

BusR
d / B

usR
ep

ly

St
or

e/
 B

us
In

v BusRd / BusReply

BusRdX / BusReply

Evict / BusWB

BusRdX / [BusReply], BusInv / --

EECS 570

MOESI Protocol

• MESI must write-back to memory on MS transitions
❒ Because protocol allows “silent” evicts from shared state,

a dirty block might otherwise be lost
❒ But, the writebacks might be a waste of bandwidth

❍ E.g., if there is a subsequent store
❍ Common case in producer-consumer scenarios

• Solution: add an “Owned” state
❒ Owned – shared, but dirty; only one owner (others enter S)

❍ Entered on MS transition, aka “downgrade”
❒ Owner is responsible for writeback upon eviction

EECS 570

MOESI Framework

[Sweazey & Smith ISCA86]
M - Modified (dirty)
O - Owned (dirty but shared) WHY?
E - Exclusive (clean unshared) only copy, not dirty
S - Shared
I - Invalid

Variants
❒ MSI
❒ MESI
❒ MOSI
❒ MOESI

O

M

E
S

I

ownership

validity

exclusiveness

EECS 570

DEC Firefly

• An update protocol for write-back caches
• States

❒ Exclusive – only one copy; writable; clean
❒ Shared – multiple copies; write hits write-through to all

sharers and memory
❒ Dirty – only one copy; writeable; dirty

• Exclusive/dirty provide write-back semantics for private data
• Shared state provides update semantics for shared data

❒ Uses “shared line” bus wire to detect sharing status
• Well suited to producer-consumer; process migration hurts

EECS 570

DEC Firefly Protocol Summary
St

or
e

Exclusive Shared

Load/Store Miss & SL

BusRd / BusReply

Dirty

BusRd / B
usReply (u

pdate mem)

Load, Store / --

Store & !SL / --

Load Miss & !SL

Store & SL / BusWr

BusRd, BusWr / BusReply

BusWr / snarf

BusW
r /

snarf
Load / --

Load / --

• Only evictions in Dirty
state trigger a Writeback

Store Miss & !SL

EECS 570

Non-Atomic State Transitions

Operations involve multiple actions
❒ Look up cache tags
❒ Bus arbitration
❒ Check for writeback
❒ Even if bus is atomic, overall set of actions is not
❒ Race conditions among multiple operations

Suppose P1 and P2 attempt to write cached block A
❒ Each decides to issue BusUpgr to allow S –> M

Issues
❒ Handle requests for other blocks while waiting to acquire bus
❒ Must handle requests for this block A

You’ll see a lot of this in PA2! ☺

EECS 570

Scalability problems of Snoopy Coherence

• Prohibitive bus bandwidth
❒ Required bandwidth grows with # CPUS…
❒ … but available BW per bus is fixed
❒ Adding busses makes serialization/ordering hard

• Prohibitive processor snooping bandwidth
❒ All caches do tag lookup when ANY processor accesses memory
❒ Inclusion limits this to L2, but still lots of lookups

• Upshot: bus-based coherence doesn’t scale beyond 8–16 CPUs

EECS 570

Implementing Snoopy Coherent
SMPs

EECS 570

Outline

• Coherence Control Implementation
• Writebacks, non-atomicity, serialization/order
• Hierarchical caches
• Split Busses
• Deadlock, livelock & starvation
• TLB Coherence

EECS 570

Base Coherence SMP design

• Single-level write-back cache
• MSI coherence protocol
• One outstanding memory request per CPU
• Atomic memory bus transactions

❒ No interleaving of transactions
• Atomic operations within process

❒ One operation at a time in program order

• We will incrementally add more concurrency/complexity

EECS 570

Cache Controller & Tags

• On a miss in a uniprocessor
❒ Assert request for bus
❒ Wait for bus grant
❒ Drive address & command lines
❒ Wait for command to be accepted by target device
❒ Transfer data

• In a Snoop-based SMP, cache controller must:
❒ Monitor bus and CPU

❍ Can view as two controllers, bus-side and CPU-side
❍ With a single cache level, tags often duplicated or dual-ported

❒ Respond to bus transactions as needed

EECS 570

Reporting Snoop results: How?

• Collective response from caches must appear on bus
• Wired-OR signals (used in Firefly protocol)

❒ Shared: assert if any cache has a copy
❒ Dirty/Inhibit: asserted if some cache has a dirty copy

❍ Needn’t indicate which; it knows what it needs to do
❍ Also indicates that memory controller should ignore request

❒ Snoop-valid: asserted when OK to check other two signals
• Need arbitration/priority scheme for cache-to-cache xfers

❒ Which cache should supply data in shared state?

EECS 570

Reporting Snoop results: When?

• Memory needs to know what, if anything, to do

• Solution 1: Fixed # of clocks after request message
❒ Usually needs duplicate tags to avoid contention w/ CPU
❒ Pentium Pro, HP Servers, Sun Enterprise

• Solution 2: Variable delay
❒ Memory assumes cache will supply data until all say “sorry”
❒ Less conservative, more flexible, more complex

EECS 570

Writebacks

• Allow CPU to proceed on a miss ASAP
❒ Fetch the requested block
❒ Do the writeback of the victim later

• Requires write buffer
❒ Must snoop/handle bus transactions in write buffer
❒ Must maintain order of writes/reads (maintain consistency)

EECS 570

Base Snoopy Organization

Addr CmdSnoop state Data buffer

Write-back buffer

Cache data RAM

Comparator

Comparator

P

Tag

Addr Cmd

Data
Addr Cmd

To
controller

System bus

Bus-
side

controller
To
controller

Tags
and
state
for
snoop

Tags
and
state
for
P

Processor-
side

controller

EECS 570

Serialization and Ordering

• CPU-cache handshake must preserve serialization
❒ E.g., write in S state first obtain permission

• Write completion for SC need to send invalidations
❒ Wait to get bus, then can consider writes complete

❒ Must serialize bus transactions in program order
❍ Split transaction bus still must retire transactions in order

EECS 570

The Inclusion Property
• Inclusion means L2 is a superset of L1 (ditto for L3…)

❒ Also, must propagate “dirty” bit through cache hierarchy
• Now, only need to snoop last level cache

❒ If L2 says not present, can’t be in L1 either
• Inclusion takes effort to maintain

❒ L2 must track what is cached in L1
❒ On L2 replacement, must flush corresponding blocks from L1
 How can this happen?
 Consider:
 1. L1 block size < L2 block size
 2. different associativity in L1
 3. L1 filters L2 access sequence; affects LRU ordering

EECS 570

Possible Inclusion Violation

a ba

b

a,b,c have same L1 idx bits
b,c have the same L2 idx bits

a,{b,c} have different L2 idx bits

step 1. L1 miss on c

step 2. a displaced
to L2

step 3. b replaced
by c

c
2-way set asso. L1

direct mapped L2

EECS 570

Multi-level Cache Hierarchies

• How to snoop with multi-level caches?
❒ Independent bus snooping at each level?
❒ Multiple duplicate tag arrays
❒ Maintain cache inclusion

EECS 570

Is inclusion a good idea?

• Most common inclusion solution:
❒ Ensure L2 holds a superset of L1I and L1D
❒ On L2 replacement or coherence action that supplies data,

forward actions to L1s
• But…

❒ Restricted L2 associativity may limit blocks in split L1s
❒ Not that hard to always snoop the L1s

• Many recent designs do not maintain inclusion
❒ Leads to more complex coherence protocols

EECS 570

Shared Caches
• Share low level caches among multiple processors

❒ Sharing L1 adds to latency, unless multithreaded processor
• Advantages

❒ Eliminates need for coherence protocol at shared level
❒ Reduces latency within sharing group
❒ Processors essentially prefetch for each other
❒ Can exploit working set sharing
❒ Increases utilization of cache hardware

• Disadvantages
❒ Higher bandwidth requirements
❒ Increased hit latency
❒ May be more complex design
❒ Lower effective capacity if working sets don’t overlap

EECS 570

Split-transaction (Pipelined) Bus
• Supports multiple simultaneous transactions

Req
Delay

Response

Atomic Transaction Bus

Split-transaction Bus

EECS 570

Potential Problems

• Two transactions to same block (conflicting)
❒ Mid-transaction snoop hits

• Buffer requests and responses
❒ Need flow control to prevent deadlock

• Ordering of Snoop responses
❒ when does snoop response appear wrt data response

EECS 570

Possible Solutions

• Disallow conflicting transactions
• NACK for flow control
• Out-of-order responses

❒ snoop results presented with data response

EECS 570

Case Study: Sun Enterprise 10000

• How far can you go with snooping coherence?
• Quadruple request/snoop bandwidth using four address busses

❒ each handles 1/4 of physical address space
❒ impose logical ordering: for writes on same cycle, those on bus 0 occur

“before” bus 1, etc.
• Get rid of data bandwidth problem: use a network

❒ E10000 uses 16x16 crossbar betw. CPU boards & memory boards
❒ Each CPU board has up to 4 CPUs: max 64 CPUs total

• 10.7 GB/s max BW, 468 ns unloaded miss latency
• See “Starfire: Extending the SMP Envelope”, IEEE Micro 1998

EECS 570

Split-Transaction Bus Example

Per-processor request table tracks all transactions

EECS 570

EECS 570

EECS 570

(safety)

(liveness)

EECS 570

*

EECS 570

EECS 570

EECS 570

EECS 570

