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Directory-Based Coherence
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Scalable Cache Coherence

• Scalable cache coherence: two part solution 

• Part I: bus bandwidth 
❒ Replace non-scalable bandwidth substrate (bus)… 
❒ …with scalable bandwidth one (point-to-point network, e.g., mesh) 

• Part II: processor snooping bandwidth 
❒ Interesting: most snoops result in no action 
❒ Replace non-scalable broadcast protocol (spam everyone)… 
❒ …with scalable directory protocol (only spam processors that care)
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Directory Coherence Protocols

• Observe: physical address space statically partitioned 
+ Can easily determine which memory module holds a given line 

❍ That memory module sometimes called “home”  
– Can’t easily determine which processors have line in their caches 
❒ Bus-based protocol: broadcast events to all processors/caches 

± Simple and fast, but non-scalable 

• Directories: non-broadcast coherence protocol 
❒ Extend memory to track caching information 
❒ For each physical cache line whose home this is, track: 

❍ Owner: which processor has a dirty copy (I.e., M state) 
❍ Sharers: which processors have clean copies (I.e., S state) 

❒ Processor sends coherence event to home directory 
❍ Home directory only sends events to processors that care
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Basic Operation: Read

Load A (miss)
Node #1 Directory Node #2

Get-S A

Data A A: Shared, #1
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Basic Operation: Write

Read A (miss)
Node #1 Directory Node #2

Read A

Fill A
A: Shared, #1

Get-M A
Invalidate A

Data A
Inv-Ack A

A: Mod., #2
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Centralized Directory

• Single directory contains a copy of cache tags from all nodes 
• Advantages: 

❒ Central serialization point: easier to get memory consistency  
(just like a bus…) 

• Problems: 
❒ Not scalable (imagine traffic from 1000’s of nodes…) 
❒ Directory size/organization changes with number of nodes



EECS 570
8

Distributed Directory

• Distribute directory among memory modules 
❒ Memory block = coherence block (usually = cache line) 
❒ “Home node”  node with directory entry  
❒ Scalable – directory grows with memory capacity 

❍ Common trick: steal bits from ECC for directory state 
❒ Directory can no longer serialize accesses across all addresses 

❍ Memory consistency becomes responsibility of CPU interface
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What is in the directory?

• Directory State 
❒ Invalid, Exclusive, Shared, … (“stable” states) 
❒ # outstanding invalidation messages, … (“transient” states) 

• Pointer to exclusive owner 
• Sharer list 

❒ List of caches that may have a copy 
❒ May include local node 
❒ Not necessarily precise, but always conservative
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Directory State

• Few stable states – 2-3 bits usually enough 
• Transient states 

❒ Often 10’s of states (+ need to remember node ids, …) 
❒ Transient state changes frequently, need fast RMW access 
❒ Design options: 

❍ Keep in directory: scalable (high concurrency), but slow 
❍ Keep in separate memory 
❍ Keep in directory, use cache to accelerate access 
❍ Keep in protocol controller  

❑ Transaction State Register File – like MSHRs
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Pointer to Exclusive Owner

• Simple node id – log2 nodes 
• Can share storage with sharer list (don’t need both…) 
• May point to a group of caches that internally maintain 

coherence (e.g., via snooping) 
• May treat local node differently
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Sharer List Representation

• Key to scalability – must efficiently represent node subsets 
• Observation: most blocks cached by only 1 or 2 nodes 

❒ But, there are important exceptions (synchronization vars.)

OLTP workload
[Data from Nowatzyk]
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Idea #1: Sharer Bit Vectors

• One bit per processor / node / cache 
❒ Storage requirement grows with system size

1 1 0 0 0 00 1
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Idea #2: Limited Pointers

• Fixed number (e.g., 4) of pointers to node ids 
• If more than n sharers:	  

❒ Recycle one pointer (force invalidation) 
❒ Revert to broadcast 
❒ Handle in software (maintain longer list elsewhere)
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Idea #3: Linked Lists

• Each node has fixed storage for next (prev) sharer 
• Doubly-linked (Scalable Coherent Interconnect) 
• Singly-linked (S3.mp)  
• Poor performance: 

❒ Long invalidation latency 
❒ Replacements – difficult to get out of sharer list 

❍ Especially with singly-linked list… – how to do it?

X X
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Directory representation optimizations

• Coarse Vectors (CV) 
• Cruise Missile Invalidations (CMI) 
• Tree Extensions (TE) 
• List-based Overflow (LO)

1 0 00

CV
1 0 00

CMI TE

0 1 1 0

LO
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Clean Eviction Notification

• Should directory learn when clean blocks are evicted? 
• Advantages: 

❒ Avoids broadcast, frees pointers in limited pointer schemes 
❒ Avoids unnecessary invalidate messages 

• Disadvantages: 
❒ Read-only data never invalidated (extra evict messages) 
❒ Notification traffic may be unnecessary 
❒ New protocol races
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Sparse Directories

• Most of memory is invalid; why waste directory storage? 
• Instead, use a directory cache 

❒ Any address w/o an entry is invalid 
❒ If full, need to evict & invalidate a victim entry 
❒ Generally needs to be highly associative
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Cache Invalidation Patterns

• Hypothesis: On a write to a shared location, # of caches to be 
invalidated is typically small 

• If this isn’t true, directory is no better than broadcast/snoop 
• Experience tends to validate this hypothesis
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Common Sharing Patterns

• Code and read-only objects 
❒ No problem since rarely written 

• Migratory objects 
❒ Even as number of caches grows, only 1-2 invalidations 

• Mostly-read objects 
❒ Invalidations are expensive but infrequent, so OK 

• Frequently read/written objects (e.g., task queues) 
❒ Invalidations frequent, hence sharer list usually small 

• Synchronization objects 
❒ Low-contention locks result in few invalidations 
❒ High contention locks need to have good coherence performance (e.g. 

MCS) 
• Badly-behaved objects
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Designing a Directory Protocol: 
Nomenclature

• Local Node (L) 
❒ Node initiating the transaction we care about 

• Home Node (H) 
❒ Node where directory/main memory for the block lives 

• Remote Node (R) 
❒ Any other node that participates in the transaction
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Read Transaction

• L has a cache miss on a load instruction

L H

1: Get-S

2: Data
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4-hop Read Transaction  

• L has a cache miss on a load instruction 
❒ Block was previously in modified state at R

L H

1: Get-S

4: Data

R

State: M 
Owner: R

2: Recall

3: Data
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3-hop Read Transaction  

• L has a cache miss on a load instruction 
❒ Block was previously in modified state at R

L H

1: Get-S

3: Data

R

State: M 
Owner: R

2: Fwd-Get-S

3: Data
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An Example Race: Writeback & Read

• L has dirty copy, wants to write back to H 
• R concurrently sends a read to H

L H

1: Put-M+Data

5: Data

R

State: M 
Owner: L

2: Get-S

3: Fwd-Get-S

4:

Race !  
Put-M & Fwd-Get-S

6:MIA

State: SD 
Sharers: L,R

SIA

Race! 
Final State: S

7: Put-Ack

To make your head really hurt: 

Can optimize away SIA & Put-Ack! 

L and H each know the race 
happened, don’t need more msgs.
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Store-Store Race

• Line is invalid, both L and R race to obtain write permission

L H

1: Get-M

6: Fwd-Get-M

R

State: M 
Owner: L

Get-M

4: Data [ack=0]

7:

Race! Stall for 
Data, do 1 store, 

then Fwd to R

3:

Fwd-Get-M to L; 
New Owner: R

5:

8: Data [ack=0]

IMAD IMAD



EECS 570
27

Another store-store race

• L evicts dirty copy, R concurrently seeks write permission

L H

1: Put-M

6: Put-Ack

R

State: M 
Owner: L

2: Get-M

3: Fwd-Get-M

Race! Put-M 
floating around! 

Wait till its gone…

5:

Put-M from 
NonOwner: Race! 

L waiting to ensure 
Put-M gone…

4: Data [ack=0]

MIAIIA
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Design Principles

• Think of sending and receiving messages as separate events 
• At each “step”, consider what new requests can occur 

❒ E.g., can a new writeback overtake an older one? 
• Two messages traversing same direction implies a race 

❒ Need to consider both delivery orders 
❍ Usually results in a “branch” in coherence FSM to handle both 

orderings 
❒ Need to make sure messages can’t stick around “lost” 

❍ Every request needs an ack; extra states to clean up messages 
❒ Often, only one node knows how a race resolves 

❍ Might need to send messages to tell others what to do
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CC Protocol Scorecard

• Does the protocol use negative acknowledgments (retries)? 
• Is the number of active messages (sent but unprocessed) for 

one transaction bounded? 
• Does the protocol require clean eviction notifications? 
• How/when is the directory accessed during transaction? 
• How many lanes are needed to avoid deadlocks?
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NACKs in a CC Protocol

• Issues: Livelock, Starvation, Fairness 
• NACKs as a flow control method (“home node is busy”) 

❒ Really bad idea… 
• NACKs as a consequence of protocol interaction…

L H

1: Put-M

5: Get-S NACK

R

State: M 
Owner: L

2: Get-S

3: Fwd-Get-S

4:

Race !  
Put-M &  

Fwd-Get-S

6:

Race! 
Final State: S 

No need to Ack
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Bounded # Msgs / Transaction

• Scalability issue: how much queue space is needed 
• Coarse-vector vs. cruise-missile invalidation

L H

RR
R
R
R
R

2: Invalidate Req
3: Invalidate Ack

1: ReadEx Req

L H

R R R

RRR

2: Invalidate Req

3: Invalidate Ack

1: ReadEx Req
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Frequency of Directory Updates

• How to deal with transient states? 
❒ Keep it in the directory: unlimited concurrency 
❒ Keep it in a pending transaction buffer (e.g., transaction state 

register file): faster, but limits pending transactions 
• Occupancy free: Upon receiving an unsolicited request, can 

directory determine final state solely from current state?
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Required # of lanes

• Need at least 2: 

• More may be needed by I/O, complex forwarding 
• How to assign lane to message type? 

❒ Secondary (forced) requests must not be blocked by new 
requests 

❒ Replies (completing a pending transaction) must not be 
blocked by new requests

L H

1: Get-M

4: Data

R

2: Inv

3: Inv-Ack
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Some more guidelines

• All messages should be ack’d (requests elicit replies) 
• Maximum number of potential concurrent messages for one 

transaction should be small and constant (i.e., independent 
of number of nodes in system) 

• Use context information to avoid NACKs
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Optimizing coherence protocols

Read A (miss)
L H R

Get-S A

Data A

Recall A

Data AReadlatency
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Prefetching

Prefetch A

L H R

Get-S A

Data A

Recall A

Data A

Read latency

Read A (miss)
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3-hop reads

Read A (miss)
L H R

Get-S A

Data A

Fwd-Get-S A

Data ARead latency
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3-hop writes

Store A (miss)
L H R

Get-M A

Inv-Ack A

Invalidate A
Store latency Data [ack=x]

R



EECS 570
39

Migratory Sharing

Node 1 Node 2 Node 3

Read X 
Write X

Read X 
Write X

Read X 
Write X

• Each Read/Write pair results in read miss + upgrade miss 
• Coherence FSM can detect this pattern 

❒ Detect via back-to-back read-upgrade sequences 
❒ Transition to “migratory M” state 
❒ Upon a read, invalidate current copy, pass in “mig E” state
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Producer Consumer Sharing

Node 1 Node 2 Node 3

Read X 
Write X

Read X 
Read X

• Upon read miss, downgrade instead of invalidate 
❒ Detect because there are 2+ readers between writes 
❒ O state can help reduce number of writebacks 

• More sophisticated optimizations 
❒ Keep track of prior readers 
❒ Forward data to all readers upon downgrade

Read X 
Write X

Read X 
Read X



EECS 570
41

Shortcomings of Protocol Optimizations

• Optimizations built directly into coherence state machine 
❒ Complex! Adds more transitions, races 
❒ Hard to verify even basic protocols 
❒ Each optimization contributes to state explosion 
❒ Can target only simple sharing patterns 
❒ Can learn only one pattern per address at a time



EECS 570
42

Cache Only Memory Architecture  
(COMA) 
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Big Picture

• Centralized 
shared memory 

• Uniform access

• Distributed 
Shared memory

• Non-uniform 
access latency

• No notion of 
“home” node; data 
moves to wherever 

it is needed
• Individual 

memories behave 
like caches
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Cache Only Memory Architecture (COMA)

• Make all memory available for migration/replication 
• All memory is DRAM cache called attraction memory 

• Example systems 
❒ Data Diffusion Machine  
❒ KSR-1 (hierarchical snooping via ring interconnects) 
❒ Flat COMA (fixed home node for directory, but not data) 

• Key questions: 
❒ How to find data? 
❒ How to deal with replacements? 
❒ Memory overhead
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COMA Alternatives

• Flat-COMA 
❒ Blocks (data) are free to migrate 
❒ Fixed directory location (home node) for a  physical address 

• Simple-COMA 
❒ Allocation managed by OS and done at page granularity 

• Reactive-NUMA 
❒ Switches between Simple-COMA and NUMA with remote 

cache on per-page basis


