
EECS 570
1

EECS 570
Lecture 9
Directory-based
Coherence

Winter 2025

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/
Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin,
Narayanasamy, Nowatzyk, Reinhardt, Roth, Smith, Singh, and Wenisch.

EECS 570
2

Directory-Based Coherence

EECS 570
3

Scalable Cache Coherence

• Scalable cache coherence: two part solution

• Part I: bus bandwidth
❒ Replace non-scalable bandwidth substrate (bus)…
❒ …with scalable bandwidth one (point-to-point network, e.g., mesh)

• Part II: processor snooping bandwidth
❒ Interesting: most snoops result in no action
❒ Replace non-scalable broadcast protocol (spam everyone)…
❒ …with scalable directory protocol (only spam processors that care)

EECS 570
4

Directory Coherence Protocols

• Observe: physical address space statically partitioned
+ Can easily determine which memory module holds a given line

❍ That memory module sometimes called “home”
– Can’t easily determine which processors have line in their caches
❒ Bus-based protocol: broadcast events to all processors/caches

± Simple and fast, but non-scalable

• Directories: non-broadcast coherence protocol
❒ Extend memory to track caching information
❒ For each physical cache line whose home this is, track:

❍ Owner: which processor has a dirty copy (I.e., M state)
❍ Sharers: which processors have clean copies (I.e., S state)

❒ Processor sends coherence event to home directory
❍ Home directory only sends events to processors that care

EECS 570
5

Basic Operation: Read

Load A (miss)
Node #1 Directory Node #2

Get-S A

Data A A: Shared, #1

EECS 570
6

Basic Operation: Write

Read A (miss)
Node #1 Directory Node #2

Read A

Fill A
A: Shared, #1

Get-M A
Invalidate A

Data A
Inv-Ack A

A: Mod., #2

EECS 570
7

Centralized Directory

• Single directory contains a copy of cache tags from all nodes
• Advantages:

❒ Central serialization point: easier to get memory consistency
(just like a bus…)

• Problems:
❒ Not scalable (imagine traffic from 1000’s of nodes…)
❒ Directory size/organization changes with number of nodes

EECS 570
8

Distributed Directory

• Distribute directory among memory modules
❒ Memory block = coherence block (usually = cache line)
❒ “Home node”  node with directory entry
❒ Scalable – directory grows with memory capacity

❍ Common trick: steal bits from ECC for directory state
❒ Directory can no longer serialize accesses across all addresses

❍ Memory consistency becomes responsibility of CPU interface

EECS 570
9

What is in the directory?

• Directory State
❒ Invalid, Exclusive, Shared, … (“stable” states)
❒ # outstanding invalidation messages, … (“transient” states)

• Pointer to exclusive owner
• Sharer list

❒ List of caches that may have a copy
❒ May include local node
❒ Not necessarily precise, but always conservative

EECS 570
10

Directory State

• Few stable states – 2-3 bits usually enough
• Transient states

❒ Often 10’s of states (+ need to remember node ids, …)
❒ Transient state changes frequently, need fast RMW access
❒ Design options:

❍ Keep in directory: scalable (high concurrency), but slow
❍ Keep in separate memory
❍ Keep in directory, use cache to accelerate access
❍ Keep in protocol controller

❑ Transaction State Register File – like MSHRs

EECS 570
11

Pointer to Exclusive Owner

• Simple node id – log2 nodes
• Can share storage with sharer list (don’t need both…)
• May point to a group of caches that internally maintain

coherence (e.g., via snooping)
• May treat local node differently

EECS 570
12

Sharer List Representation

• Key to scalability – must efficiently represent node subsets
• Observation: most blocks cached by only 1 or 2 nodes

❒ But, there are important exceptions (synchronization vars.)

OLTP workload
[Data from Nowatzyk]

EECS 570
13

Idea #1: Sharer Bit Vectors

• One bit per processor / node / cache
❒ Storage requirement grows with system size

1 1 0 0 0 00 1

EECS 570
14

Idea #2: Limited Pointers

• Fixed number (e.g., 4) of pointers to node ids
• If more than n sharers:	

❒ Recycle one pointer (force invalidation)
❒ Revert to broadcast
❒ Handle in software (maintain longer list elsewhere)

EECS 570
15

Idea #3: Linked Lists

• Each node has fixed storage for next (prev) sharer
• Doubly-linked (Scalable Coherent Interconnect)
• Singly-linked (S3.mp)
• Poor performance:

❒ Long invalidation latency
❒ Replacements – difficult to get out of sharer list

❍ Especially with singly-linked list… – how to do it?

X X

EECS 570
16

Directory representation optimizations

• Coarse Vectors (CV)
• Cruise Missile Invalidations (CMI)
• Tree Extensions (TE)
• List-based Overflow (LO)

1 0 00

CV
1 0 00

CMI TE

0 1 1 0

LO

EECS 570
17

Clean Eviction Notification

• Should directory learn when clean blocks are evicted?
• Advantages:

❒ Avoids broadcast, frees pointers in limited pointer schemes
❒ Avoids unnecessary invalidate messages

• Disadvantages:
❒ Read-only data never invalidated (extra evict messages)
❒ Notification traffic may be unnecessary
❒ New protocol races

EECS 570
18

Sparse Directories

• Most of memory is invalid; why waste directory storage?
• Instead, use a directory cache

❒ Any address w/o an entry is invalid
❒ If full, need to evict & invalidate a victim entry
❒ Generally needs to be highly associative

EECS 570
19

Cache Invalidation Patterns

• Hypothesis: On a write to a shared location, # of caches to be
invalidated is typically small

• If this isn’t true, directory is no better than broadcast/snoop
• Experience tends to validate this hypothesis

EECS 570
20

Common Sharing Patterns

• Code and read-only objects
❒ No problem since rarely written

• Migratory objects
❒ Even as number of caches grows, only 1-2 invalidations

• Mostly-read objects
❒ Invalidations are expensive but infrequent, so OK

• Frequently read/written objects (e.g., task queues)
❒ Invalidations frequent, hence sharer list usually small

• Synchronization objects
❒ Low-contention locks result in few invalidations
❒ High contention locks need to have good coherence performance (e.g.

MCS)
• Badly-behaved objects

EECS 570
21

Designing a Directory Protocol:
Nomenclature

• Local Node (L)
❒ Node initiating the transaction we care about

• Home Node (H)
❒ Node where directory/main memory for the block lives

• Remote Node (R)
❒ Any other node that participates in the transaction

EECS 570
22

Read Transaction

• L has a cache miss on a load instruction

L H

1: Get-S

2: Data

EECS 570
23

4-hop Read Transaction

• L has a cache miss on a load instruction
❒ Block was previously in modified state at R

L H

1: Get-S

4: Data

R

State: M
Owner: R

2: Recall

3: Data

EECS 570
24

3-hop Read Transaction

• L has a cache miss on a load instruction
❒ Block was previously in modified state at R

L H

1: Get-S

3: Data

R

State: M
Owner: R

2: Fwd-Get-S

3: Data

EECS 570
25

An Example Race: Writeback & Read

• L has dirty copy, wants to write back to H
• R concurrently sends a read to H

L H

1: Put-M+Data

5: Data

R

State: M
Owner: L

2: Get-S

3: Fwd-Get-S

4:

Race !
Put-M & Fwd-Get-S

6:MIA

State: SD
Sharers: L,R

SIA

Race!
Final State: S

7: Put-Ack

To make your head really hurt:

Can optimize away SIA & Put-Ack!

L and H each know the race
happened, don’t need more msgs.

EECS 570
26

Store-Store Race

• Line is invalid, both L and R race to obtain write permission

L H

1: Get-M

6: Fwd-Get-M

R

State: M
Owner: L

Get-M

4: Data [ack=0]

7:

Race! Stall for
Data, do 1 store,

then Fwd to R

3:

Fwd-Get-M to L;
New Owner: R

5:

8: Data [ack=0]

IMAD IMAD

EECS 570
27

Another store-store race

• L evicts dirty copy, R concurrently seeks write permission

L H

1: Put-M

6: Put-Ack

R

State: M
Owner: L

2: Get-M

3: Fwd-Get-M

Race! Put-M
floating around!

Wait till its gone…

5:

Put-M from
NonOwner: Race!

L waiting to ensure
Put-M gone…

4: Data [ack=0]

MIAIIA

EECS 570
28

Design Principles

• Think of sending and receiving messages as separate events
• At each “step”, consider what new requests can occur

❒ E.g., can a new writeback overtake an older one?
• Two messages traversing same direction implies a race

❒ Need to consider both delivery orders
❍ Usually results in a “branch” in coherence FSM to handle both

orderings
❒ Need to make sure messages can’t stick around “lost”

❍ Every request needs an ack; extra states to clean up messages
❒ Often, only one node knows how a race resolves

❍ Might need to send messages to tell others what to do

EECS 570
29

CC Protocol Scorecard

• Does the protocol use negative acknowledgments (retries)?
• Is the number of active messages (sent but unprocessed) for

one transaction bounded?
• Does the protocol require clean eviction notifications?
• How/when is the directory accessed during transaction?
• How many lanes are needed to avoid deadlocks?

EECS 570
30

NACKs in a CC Protocol

• Issues: Livelock, Starvation, Fairness
• NACKs as a flow control method (“home node is busy”)

❒ Really bad idea…
• NACKs as a consequence of protocol interaction…

L H

1: Put-M

5: Get-S NACK

R

State: M
Owner: L

2: Get-S

3: Fwd-Get-S

4:

Race !
Put-M &

Fwd-Get-S

6:

Race!
Final State: S

No need to Ack

EECS 570
31

Bounded # Msgs / Transaction

• Scalability issue: how much queue space is needed
• Coarse-vector vs. cruise-missile invalidation

L H

RR
R
R
R
R

2: Invalidate Req
3: Invalidate Ack

1: ReadEx Req

L H

R R R

RRR

2: Invalidate Req

3: Invalidate Ack

1: ReadEx Req

EECS 570
32

Frequency of Directory Updates

• How to deal with transient states?
❒ Keep it in the directory: unlimited concurrency
❒ Keep it in a pending transaction buffer (e.g., transaction state

register file): faster, but limits pending transactions
• Occupancy free: Upon receiving an unsolicited request, can

directory determine final state solely from current state?

EECS 570
33

Required # of lanes

• Need at least 2:

• More may be needed by I/O, complex forwarding
• How to assign lane to message type?

❒ Secondary (forced) requests must not be blocked by new
requests

❒ Replies (completing a pending transaction) must not be
blocked by new requests

L H

1: Get-M

4: Data

R

2: Inv

3: Inv-Ack

EECS 570
34

Some more guidelines

• All messages should be ack’d (requests elicit replies)
• Maximum number of potential concurrent messages for one

transaction should be small and constant (i.e., independent
of number of nodes in system)

• Use context information to avoid NACKs

EECS 570
35

Optimizing coherence protocols

Read A (miss)
L H R

Get-S A

Data A

Recall A

Data AReadlatency

EECS 570
36

Prefetching

Prefetch A

L H R

Get-S A

Data A

Recall A

Data A

Read latency

Read A (miss)

EECS 570
37

3-hop reads

Read A (miss)
L H R

Get-S A

Data A

Fwd-Get-S A

Data ARead latency

EECS 570
38

3-hop writes

Store A (miss)
L H R

Get-M A

Inv-Ack A

Invalidate A
Store latency Data [ack=x]

R

EECS 570
39

Migratory Sharing

Node 1 Node 2 Node 3

Read X
Write X

Read X
Write X

Read X
Write X

• Each Read/Write pair results in read miss + upgrade miss
• Coherence FSM can detect this pattern

❒ Detect via back-to-back read-upgrade sequences
❒ Transition to “migratory M” state
❒ Upon a read, invalidate current copy, pass in “mig E” state

EECS 570
40

Producer Consumer Sharing

Node 1 Node 2 Node 3

Read X
Write X

Read X
Read X

• Upon read miss, downgrade instead of invalidate
❒ Detect because there are 2+ readers between writes
❒ O state can help reduce number of writebacks

• More sophisticated optimizations
❒ Keep track of prior readers
❒ Forward data to all readers upon downgrade

Read X
Write X

Read X
Read X

EECS 570
41

Shortcomings of Protocol Optimizations

• Optimizations built directly into coherence state machine
❒ Complex! Adds more transitions, races
❒ Hard to verify even basic protocols
❒ Each optimization contributes to state explosion
❒ Can target only simple sharing patterns
❒ Can learn only one pattern per address at a time

EECS 570
42

Cache Only Memory Architecture
(COMA)

EECS 570
43

Big Picture

• Centralized
shared memory

• Uniform access

• Distributed
Shared memory

• Non-uniform
access latency

• No notion of
“home” node; data
moves to wherever

it is needed
• Individual

memories behave
like caches

EECS 570
44

Cache Only Memory Architecture (COMA)

• Make all memory available for migration/replication
• All memory is DRAM cache called attraction memory

• Example systems
❒ Data Diffusion Machine
❒ KSR-1 (hierarchical snooping via ring interconnects)
❒ Flat COMA (fixed home node for directory, but not data)

• Key questions:
❒ How to find data?
❒ How to deal with replacements?
❒ Memory overhead

EECS 570
45

COMA Alternatives

• Flat-COMA
❒ Blocks (data) are free to migrate
❒ Fixed directory location (home node) for a physical address

• Simple-COMA
❒ Allocation managed by OS and done at page granularity

• Reactive-NUMA
❒ Switches between Simple-COMA and NUMA with remote

cache on per-page basis

