r Architecture Laboratory at Carnegie Mellon

Flexus CMP Coherence Protocol
- — e — 5) WriteReq(i) Sowner=L.2/
B — WteAck(i)
P . -\‘-«. Owner=|
- — sharers=|
‘4‘ Owner=i \
/ o) f
[= ___HQMDW — e/
- 6 / Accunte#Sharers-1
ke d
‘ \ ‘ /
‘.‘ ictClean(1)/
I I| B ‘
AN

#shares>1)

Directory-based

g Cl (i
ackACH(), / D s / [N
‘ . w / 8) WritoReq(Sawner:=2} \ \ 2) ReadReq(i)
) f \ mm
onerence /) =
| (sFwD)
f) ReadRea _
L]) P 2 ReturmReply(¥

Transitions labeled *Aux” and (transactions which require
off-chip memory accesses and on-chip evictions) appear on
a separate diagram.

Winter 2025

2

Prof. Satish Narayanasamy

http://www.eecs.umich.edu/courses/eecs570/

Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin,
Narayanasamy, Nowatzyk, Reinhardt, Roth, Smith, Singh, and Wenisch.

EECS 570

Directory-Based Coherence

EECS 570

Scalable Cache Coherence

 Scalable cache coherence: two part solution

e Part I: bus bandwidth
A Replace non-scalable bandwidth substrate (bus)...
A ...with scalable bandwidth one (point-to-point network, e.g., mesh)

 Part II: processor snooping bandwidth
3 Interesting: most snoops result in no action
7 Replace non-scalable broadcast protocol (spam everyone)...
A ..with scalable directory protocol (only spam processors that care)

EECS 570

Directory Coherence Protocols

e Observe: physical address space statically partitioned

+ Can easily determine which memory module holds a given line
O That memory module sometimes called “home”

- Can’t easily determine which processors have line in their caches

7 Bus-based protocol: broadcast events to all processors/caches
+ Simple and fast, but non-scalable

 Directories: non-broadcast coherence protocol
3 Extend memory to track caching information

3 For each physical cache line whose home this is, track:
O Owner: which processor has a dirty copy (l.e., M state)
O Sharers: which processors have clean copies (l.e., S state)

A Processor sends coherence event to home directory
O Home directory only sends events to processors that care

EECS 570

Basic Operation: Read

Node #1 Directory Node #2

Load A (miss)
Get-S A

—>
Data A A: Shared, #1

EECS 570

Basic Operation: Write

Node #1 Directory Node #2
Read A (miss)
Read A
>
: 1
il A | A: Shared, #
<
Get-M A
Invalidate A —
«— A: Mod., #2
[nv-Ack A
—> Data A
—
v v v

EECS 570

Centralized Directory

* Single directory contains a copy of cache tags from all nodes

» Advantages:
3 Central serialization point: easier to get memory consistency
(just like a bus...)
* Problems:
3 Not scalable (imagine traffic from 1000’s of nodes...)
3 Directory size/organization changes with number of nodes

EECS 570

Distributed Directory

e Distribute directory among memory modules
7 Memory block = coherence block (usually = cache line)
3 “Home node” = node with directory entry

3 Scalable — directory grows with memory capacity
O Common trick: steal bits from ECC for directory state

3 Directory can no longer serialize accesses across all addresses
O Memory consistency becomes responsibility of CPU interface

Dir m Bl

Dir| Mem

C Interconnect)

EECS 570

What is in the directory?

e Directory State
7 Invalid, Exclusive, Shared, ... (“stable” states)
7 # outstanding invalidation messages, ... (“transient” states)

e Pointer to exclusive owner

* Sharer list
3 List of caches that may have a copy
3 May include local node
3 Not necessarily precise, but always conservative

EECS 570

Directory State

* Few stable states — 2-3 bits usually enough

e Transient states
3 Often 10’s of states (+ need to remember node ids, ...)
3 Transient state changes frequently, need fast RMW access
3 Design options:
O Keep in directory: scalable (high concurrency), but slow
O Keep in separate memory

O Keep in directory, use cache to accelerate access
O Keep in protocol controller

Q Transaction State Register File — like MSHRs

10
EECS 570

Pointer to Exclusive Owner

» Simple node id — log, nodes
e Can share storage with sharer list (don’t need both...)

e May point to a group of caches that internally maintain
coherence (e.g., via snooping)

* May treat local node differently

EECS 570

11

Sharer List Representation

 Key to scalability — must efficiently represent node subsets

» Observation: most blocks cached by only 1 or 2 nodes
7 But, there are important exceptions (synchronization vars.)

Number of sharers at an exclusive request (P=32)

1400000

1200000

1000000

800000

600000

400000

200000

O o e L o e e L e RS e
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

OLTP workload

[Data from Nowatzyk] 12
EECS 570

Idea #1: Sharer Bit Vectors

* One bit per processor / node / cache
3 Storage requirement grows with system size

EECS 570

13

Idea #2: Limited Pointers

e Fixed number (e.g., 4) of pointers to node ids

* [f more than n sharers:
3 Recycle one pointer (force invalidation)
7 Revert to broadcast
3 Handle in software (maintain longer list elsewhere)

1

EECS 570

14

Idea #3: Linked Lists

 Each node has fixed storage for next (prev) sharer
» Doubly-linked (Scalable Coherent Interconnect)
« Singly-linked (S3.mp)

 Poor performance:
A Long invalidation latency

3 Replacements — difficult to get out of sharer list
O Especially with singly-linked list... — how to do it?

d

EECS 570

Directory representation optimizations

e Coarse Vectors (CV)
 Cruise Missile Invalidations (CMI)

* Tree Extensions (TE)
e List-based Overflow (LO)

TE LO

yalels sl |
AN

!

[E

EECS 570

Clean Eviction Notification

» Should directory learn when clean blocks are evicted?

» Advantages:
3 Avoids broadcast, frees pointers in limited pointer schemes
3 Avoids unnecessary invalidate messages

 Disadvantages:
7 Read-only data never invalidated (extra evict messages)
3 Notification traffic may be unnecessary
3 New protocol races

17
EECS 570

Sparse Directories

* Most of memory is invalid; why waste directory storage?

* Instead, use a directory cache
3 Any address w/o an entry is invalid
3 If full, need to evict & invalidate a victim entry
3 Generally needs to be highly associative

EECS 570

18

Cache Invalidation Patterns

* Hypothesis: On a write to a shared location, # of caches to be
invalidated is typically small

e If this isn’t true, directory is no better than broadcast/snoop

* Experience tends to validate this hypothesis

19
EECS 570

Common Sharing Patterns

e Code and read-only objects
3 No problem since rarely written

e Migratory objects
3 Even as number of caches grows, only 1-2 invalidations

* Mostly-read objects
3 Invalidations are expensive but infrequent, so OK

* Frequently read/written objects (e.g., task queues)
3 Invalidations frequent, hence sharer list usually small

e Synchronization objects
7 Low-contention locks result in few invalidations
3 High contention locks need to have good coherence performance (e.g.
MCS)

» Badly-behaved objects

20
EECS 570

Designing a Directory Protocol:
Nomenclature

 Local Node (L)
7 Node initiating the transaction we care about

e Home Node (H)
3 Node where directory/main memory for the block lives

e Remote Node (R)
3 Any other node that participates in the transaction

EECS 570

21

Read Transaction

e L has a cache miss on a load instruction

1: Get-S

VR

& @

.

2: Data

EECS 570

22

4-hop Read Transaction

e L has a cache miss on a load instruction
3 Block was previously in modified state at R

State: M
Owner: R

1: Get-S O 2:Recall

EECS 570

23

3-hop Read Transaction

e L has a cache miss on a load instruction
3 Block was previously in modified state at R

State: M
Owner: R

1: Get-S O 2:Fwd-Get-S

EECS 570

24

An Example Race: Writeback & Read

e L has dirty copy, wants to write back to H

* R concurrently sends a read to H (" Tomake your head really hurt:

Can optimize away SIA & Put-Ack!

Race !

Put-M & Fwd-Get-S L and H each know the race

\happened, don’t need more msgs./

. Final State: S\

1: Put M+Data @ 2: Get-S

3: Fwd-Get-S

7: Put-Ack

5: Data

25
EECS 570

Store-Store Race

e Line is invalid, both L and R race to obtain write permission

Race! Stall for
Data, do 1 store,
then Fwd to R

Fwd-Get-M to L;
New Owner: R ~

%~ . £, TN aw

_/ 4: Data [ack=0]

6: Fwd-Get-M

8: Data [ack=0]

EECS 570

Another store-store race

o L evicts dirty copy, R concurrently seeks write permission

Put-M from
NonOwner: Race!

L waiting to ensure \
Put-M gone.

Race! Put-M
floating around!
Wait till its gone...

\/ 3: Fwd-Get-M

6: Put-Ack

4: Data [ack=0]

EECS 570

27

Design Principles

* Think of sending and receiving messages as separate events

» At each “step”, consider what new requests can occur
3 E.g., can a new writeback overtake an older one?

 Two messages traversing same direction implies a race

7 Need to consider both delivery orders

O Usually results in a “branch” in coherence FSM to handle both
orderings

7 Need to make sure messages can’t stick around “lost”
O Every request needs an ack; extra states to clean up messages

3 Often, only one node knows how a race resolves
O Might need to send messages to tell others what to do

EECS 570

28

CC Protocol Scorecard

* Does the protocol use negative acknowledgments (retries)?

* s the number of active messages (sent but unprocessed) for
one transaction bounded?

* Does the protocol require clean eviction notifications?
 How/when is the directory accessed during transaction?

* How many lanes are needed to avoid deadlocks?

29
EECS 570

NACKs in a CC Protocol

e Issues: Livelock, Starvation, Fairness

* NACKs as a flow control method (“home node is busy”)
3 Really bad idea...

 NACKs as a consequence of protocol interaction...

Race!
Final State: S ~

No need to Ack
N -

L putM @ 2:GetS

Oo K— | Om

6:
:
4.

J 3: Fwd-Get-S

5: Get-S NACK

Race !
Put-M &
Fwd-Get-S

EECS 570

30

Bounded # Msgs / Transaction

* Scalability issue: how much queue space is needed
» Coarse-vector vs. cruise-missile invalidation

1: ReadEx Req

K—\ 1: ReadEx Req

2: Invalidate Req 2: Invalidate Req

R «R &R

3: Invalidate Ack

3: Invalidate Ack

X)))

R,<R,<R

31
EECS 570

Frequency of Directory Updates

* How to deal with transient states?
3 Keep it in the directory: unlimited concurrency

7 Keep it in a pending transaction buffer (e.g., transaction state
register file): faster, but limits pending transactions

e Occupancy free: Upon receiving an unsolicited request, can
directory determine final state solely from current state?

32
EECS 570

Required # of lanes

* Need at least 2:

H
®\/ \/R

4: Data 3: Inv-Ack

e More may be needed by I/O, complex forwarding

e How to assign lane to message type?

7 Secondary (forced) requests must not be blocked by new
requests

7 Replies (completing a pending transaction) must not be
blocked by new requests

EECS 570

33

Some more guidelines

 All messages should be ack’d (requests elicit replies)

 Maximum number of potential concurrent messages for one
transaction should be small and constant (i.e., independent
of number of nodes in system)

» Use context information to avoid NACKs

34
EECS 570

Optimizing coherence protocols

L H R
Read A (miss) Get-S A
— Recall A
Readlatency Data A
—
Data A
—
v v v

EECS 570

Prefetching

L H
Prefetch A Get-S A
— Recall A
Read A (miss) Data A
—
Read latency -[Data A
—
v v

EECS 570

36

Read A (miss)

Read latency

EECS 570

L

3-hop reads

H
Get-S A
—f___Fwd-Get-s 4
Data A
Data A <«
4
v

37

3-hop writes

L H
Store A (miss) Get-M 4
7 Invalidate A
Store latency Data [ack=x]
Inv-Ack A
—
v v

EECS 570

38

Migratory Sharing

Node 1 Node 2 Node 3
Read X
Write X
Read X
Write X
Read X
Write X

* Each Read/Write pair results in read miss + upgrade miss

* Coherence FSM can detect this pattern
3 Detect via back-to-back read-upgrade sequences
3 Transition to “migratory M” state
3 Upon a read, invalidate current copy, pass in “mig E” state

39
EECS 570

Producer Consumer Sharing

Node 1 Node 2 Node 3
Read X
Write X
Read X
Read X
Read X
Write X
Read X
Read X

e Upon read miss, downgrade instead of invalidate
7 Detect because there are 2+ readers between writes
3 O state can help reduce number of writebacks

* More sophisticated optimizations
3 Keep track of prior readers
3 Forward data to all readers upon downgrade

40
EECS 570

Shortcomings of Protocol Optimizations

e Optimizations built directly into coherence state machine
3 Complex! Adds more transitions, races
3 Hard to verify even basic protocols
3 Each optimization contributes to state explosion
3 Can target only simple sharing patterns
3 Canlearn only one pattern per address at a time

EECS 570

EECS 570

Cache Only Memory Architecture
(COMA)

42

Memory

Big Picture

Network

Network

Cache] .

Mem

Proc

Cache

Mem

Cache

Shared Memory (UMA)

Proc

Cache

Proc

e Centralized

shared memory
e Uniform access

EECS 570

Proc

Shared Memory (NUMA)

Distributed

Shared memory

Non-uniform

access latency

Network

AM AM

Cachel ... Cache
Proc Proc

Cache Only Memory (COMA)
. No notion of
“home” node; data
moves to wherever
it is needed

. Individual
memories behave

like caches
43

Cache Only Memory Architecture (COMA)

* Make all memory available for migration/replication

e All memory is DRAM cache called attraction memory

* Example systems
3 Data Diffusion Machine
3 KSR-1 (hierarchical snooping via ring interconnects)
3 Flat COMA (fixed home node for directory, but not data)

e Key questions:
7 How to find data?
3 How to deal with replacements?
3 Memory overhead

44
EECS 570

COMA Alternatives

e Flat-COMA
7 Blocks (data) are free to migrate
3 Fixed directory location (home node) for a physical address

e Simple-COMA
3 Allocation managed by OS and done at page granularity

* Reactive-NUMA

3 Switches between Simple-COMA and NUMA with remote
cache on per-page basis

EECS 570

45

