
Lecture Note #1
EECS 571

 Principles of Real-Time and
Embedded Systems

Kang G. Shin
EECS Department

University of Michigan

General Course Information

  Instructor: Kang G. Shin, 4605 CSE, 763-0391;
kgshin@umich.edu

  # of credit hours: 4
  Class meeting time and room:

  Regular classes: MW 10:30am – noon @1012 EECS
  Makeup/discussion (as needed): F 10:30 – 11:30am @1012 EECS

  Office hours: MW 9:30 – 10:30am, or by appointment but email is
the best way to get hold of me.

  Course homepage: http://www.eecs.umich.edu/courses/eecs571

Important Dates and Class Email

  Important Dates
 Start of class: Sep. 8 (Wed)
 Study break: Oct. 18-19 (Mon-Tue)
 One-page project proposal due: Oct. 13 (Wed)
  Thanksgiving break: 5pm Nov. 24 (Wed)–8am Nov. 29 (Mon)
 Comprehensive exam: Dec. 1, Wed (tentative)
  Last day of class: Dec. 13 (Mon)
  Term project presentations: 6pm-midnight 12/13, 3725 CSE
  Term project report due: electronically by 4pm 12/17 (Fri)

 Email group: Subscribe to the mail list by sending email
to eecs571-request@eecs with “subscribe” in the Subject
field. You may use this email group (eecs571@eecs) only
for the class.

Course Materials

  Copies of ``Real-Time Systems,'' Krishna and Shin, McGraw-Hill,
1997 will be made available at Dollar Bill. Errata is maintained
on the course URL
http://www.eecs.umich.edu/courses/eecs571/book_correction.pdf and
typos and other errors should be reported to me or
rtbook@tikva.ecs.umass.edu.

  Reference: ``Designing Embedded Processors,” edited by J.
Henkel and S. Parameswaran, Springer, 2007.

  Four key sources of reading are:
  IEEE Real-Time Systems Symposium (RTSS) (1980 –)
  IEEE Real-Time Technology and Applications Symposium (RTAS)

(1995 –)
  International Journal of Time-Critical Computing (1989 –)
  ACM Transactions on Embedded Sysems (2002–)

  University Digital Library (http://www.ieeexplore.org and
http://www.acm.org)

Pre-requisites and Grading Policy

 Pre-requisites: EECS 482 or EECS 470, or basic
knowledge in system software and computer
architecture is required, or instructor's approval.

 Grading Weights
 Bi-weekly homeworks: 15%
 Comprehensive midterm on Dec. 3, 2010: 25%
  Term project: 55% (presentation 30% and report 25%)
 Class participation: 5%

 Collaboration and Regrading Policies: see the
handout or course homepage.

  Important Information on HWs and Term Projects: see
the handout or course homepage.

General Concepts of Real-Time Embedded Systems

  What's a real-time system and what’s not?
  What’s an embedded system?
  Types of real-time systems

  Hard real-time systems: definition and examples
  Soft real-time systems: definition and examples

  What's a deadline and where is it coming from?
  Law of physics
  Artifcially imposed.

  A task/message/packet may be critical or non-critical,
depending on its function and system state.

  Based on invocation/triggering behavior, a task/message/
packet is periodic, aperiodic, or sporadic.

  How do we derive message/packet deadlines?

A Typical Real-Time Embedded System

Controlled
Process

Execution Unit
 Processors, Networks

OS, App SW

Store of
Jobs

Real-time
Clock

Trigger
Generator

Human
Operators

Displays

Actuators

Sensors

Environment

Real-time Embedded Systems

 Embedded system
 The software and hardware component that is an

essential part of, and inside another system
 Real-time system

 needs timely
 computation

 deadlines, jitters,
 periodicity

 temporal dependency Plant sensor actuator

Control-raw
computation

A/D

A/D
D/A Reference

input

Controller

Real-time Embedded Systems

 Conventional Dedicated Systems
 Unique solution (HW/SW/tool) for each application
 System + domain knowledge

Hardware
(processor, memory,

I/O, bus, etc.)

Software (OS,
libraries, application,

GUI, etc.)

Design process
(specification,
development,
testing, etc.)

Tool chain
(analysis, compiler,

debugging, integration,
etc.)

Embedded Systems

  are everywhere
 How many embedded processors in your home?

 What are they?
40-50 estimated in 1999.

Hardware (chips) + Software (program)

 CPU processor (ARM, PowerPC, Xscale/SA, 68K)
 Memory (256MB or more)
 Input/output interfaces (parallel and serial ports)

Requirements for RTES

 Environmental – size, power (heat), weight, and
radiation-hardened

 Performance –responsive, predictable (fast?)
 Economics – low cost and time-to-market
 Consequence – safety, faulty-tolerance, security
 Standards –http://www.opengroup.org/rtforum/oct2001/

minutes.html
 DO 178b (avionics)
  FDA 247 (medical devices)
 ANS 7.4.3.2 (nuclear power plants)
 Mil-Std 882d (weapon systems)

 Smaller, cheaper, better, and faster

SW Development for RTES

  To write the control software for
a smart washer
  initialize
  read keypad or control knob
  read sensors
  take an action

 Current system state
  state transition diagram
  external triggers via

polling or ISR
  If there are multiple triggers and

external conditions – single or
multiple control loops

initialization

external trigger?

Take actions

Change system state

ISR: to set/clear
events

Read sensors

Periodic Tasks

  Invoke computation periodically
  Adjust pressure valves at a 20 Hz rate

 wait for the interrupt
event

Task initialization
(set up periodic
 timer interrupts)

computation

 start_time=time()

Task initialization

computation

Sleep(period -
(time() -start_time))

SW Development for RTES

 Never-ending in a single control loop
 Single execution thread and one address space
 Event- and/or time-driven state transitions
 Small memory footprint (?)

 What are missing in the previous example?
  no concurrency (real-world events occur near

simultaneously)
  no explicit timing control (add a timer)
  difficult to develop and maintain large embedded systems –

verifiable, reusable, and maintainable

SW Development for RTES, cont’d

 Multi-tasking for concurrent events
 Machine dependency and portability
 Software abstraction, modular design

  information hiding, OO, separate compilation, reusable
  a sorting procedure – function, input, output specification

 Control timing
 Resource constraints and sharing

 CPU time, stack, memory, and bandwidth
 Scheduling

  Tasks, messages, and I/O

Timing Constraints and Characteristics

 Predicting and controlling timing and events
  Timing relationship: (can you guarantee it?)

  predictable actions in response to external stimuli
  deadline (absolute or relative), and jitter

  Instruments play in a band
 miss a note or timing

 Difficult to control timing
  all players of an interactive game in Internet see the actions

at the same time
 Sequence, order, and race condition

Timing Constraints and Multi-threading

  Given input x1 at time t1, produce output y1 at time t2

  Non-deterministic operation, time-dependent behavior, and
race condition
  difficult to model, analyze, test, and re-produce.

  Easy to identify the faults and fix them once the failing
sequences are reproduced (or observed), but
  The failures are rooted in the interaction of multiple concurrent

operations/threads and are based on timing dependencies

Embedded System Development

 Need a real-time (embedded) operating system?
 Need a development and test environment?

 Use the host to edit, compile, and build application programs,
and configure the target

 At the target embedded system, use tools to load, execute,
debug, and monitor (performance and timing)

Ethernet

Simulated signal source

(Workstation, embedded
system development tools)

(workstation, interface cards),
& test harness

Development workstation Embedded systems

Real-time Operating System (RTOS)

  Functions:
  task management,

  scheduling, dispatcher
  communication (pipe, queue)
  synchronization (semaphore, event)

  memory management
  time management
  device driver
  interrupt service

Interrupt
dispatch

Interrupt
service

Time service &
events

Services (create thread,
sleep, notify, send,…)

Scheduling
&

dispatcher

System calls
(trap)

External
interrupt

Timer
interrupt

kernel

Task
execution

Development Environment
  Use the host to

  edit, compile, build application programs, and configure the target
  At the target embedded system, use tools to

  load, execute, debug, and monitor (performance and timing)
  The target server manages the interactions with the target

  communication channel
  symbol table for the target

target server

Debug agent

vxWorks

network-independent
communication

WindSh (shell)

WindView
(timing monitor)

CrssWind
(debugger)

Registry
Daemon

License
management

Custom-built
tool

WTX
protocol

Trends in Embedded Systems

  Data from Japan ITRON survey for new embedded systems

Trends in Embedded Systems

Difficulties with RTOS

Major Topics of RT ES

  Performance measures & task execution time estimation
  Task assignment & scheduling
  Real-time OS and other system software
  Power management for CPU, memory and disk
  Time-sensitive wired and wireless networking
  Security and privacy of embedded systems and devices
  Model-based integration of embedded real-time software
  Formal methods
  Fault-tolerance of embedded real-time systems
  Clock synchronization
  Applications: multimedia, VoIP/VoWLAN, VoD, info and

home appliances, medical devices, sensors & actuators,
virtual reality, automotive electronics (powertrain controls
and infotainment systems, ITS), automated manufacturing, I
large embedded systems (ships, planes),…

