
EECS 571 “Principles of Real-Time Embedded
Systems”

Lecture Note #10: More on Scheduling and
Introduction of Real-Time OS

Kang G. Shin
EECS Department

University of Michigan



Mode Changes

• Changes in mission phase or processor failures

• Easy to deal with if no critical section is involved

• A task may be added if

o Addition preserves RM-schedulability
o Raise ceilings before addition if it increases

priority ceilings of any semaphore.

• Rules of changing ceiling: indivisible action when
a semaphore is unlocked.

Kang Shin (kgshin@eecs.umich.edu)



Quick Recovery from Failure

• Useful for static schedules: sufficient reserve

capacity and fast failure-response mechanism.

• Incorporate ghost clones into schedule which
can be activated when a processor on which a
primary clone was scheduled crashes.

• 2 types of tasks affected by a processor failure
o Running at time of failure ⇒ FEC
o Scheduled to run in future on the failed processor

• Assume there is a non-fault-tolerant algorithm for
given assignment and scheduling

Kang Shin (kgshin@eecs.umich.edu)



Fault-Tolerant Scheduling

• If up to f processor failures are to be withstood,
each task must have f ghost clones

• A primary and a ghost clone of the same task
cannot be allocated to the same processor

• A ghost schedule and a primary schedule are
said to form a feasible pair if deadlines continue
to be met even if primaries are shifted right by
the time needed to execute ghosts

Kang Shin (kgshin@eecs.umich.edu)



More on FT Scheduling

• Ghosts are conditionally transparent. They can
overlap primary clones or other ghost clones in
the schedule, subject to certain correctness
restrictions.

• When a ghost clone is activated, the schedule is
moved appropriately.

• A ghost clone is never moved.

Kang Shin (kgshin@eecs.umich.edu)



Correctness Restrictions

• Primary clones moved by a ghost activation
should still meet their deadlines

• Two ghosts may overlap so long as at most one
of the two ghosts is activated.

Kang Shin (kgshin@eecs.umich.edu)



Real-Time Operating Systems

• 4 main functions:

o Process management and synchronization
o Memory management
o IPC
o I/O

• Must support predictability and real-time
constraints

• 3 types of RTOS:

o small proprietary (homegrown and
commercial) kernels

o RT extensions to UNIX and others
o research kernels

Kang Shin (kgshin@eecs.umich.edu)



Proprietary Kernels

Small and fast commercial RTOSs: QNX, pSOS,
VxWorks, Nucleus, ERCOS, EMERALDS, Windows
CE,...

• fast context switch and fast interrupt response

• small in size

• No virtual memory and can lock code & data in memory

• Multitasking and IPC via mailboxes, events, signals, and
semaphores

• How to support real-time constraints
o Bounded primitive exec time
o real-time clock
o priority scheduling
o special alarms and timeouts

• Standardization via POSIX RT extensions

Kang Shin (kgshin@eecs.umich.edu)



RT extensions

• RT-UNIX, RT-LINUX, RT-MACH, RT-POSIX

• Slower, less predictable, but more functions and
better development envs.

• RT-POSIX: timers, priority scheduling, rt files,
semaphores, IPC, async event notification,
process mem locking, threads, async and sync
I/O.

• Problems: coarse timers, system interface and
implementation, long interrupt latency, FIFO
queues, no locking pages in memory, no
predictable IPC

Kang Shin (kgshin@eecs.umich.edu)



Research RTOSs

• Support rt sched algorithms and timing analysis

• RT sync primitives, e.g., priority ceiling.

• Predictability over avg performance

• Support for fault-tolerance and I/O

• Examples: Spring, Mars, HARTOS, MARUTI,
ARTS, CHAOS, EMERALDS

Kang Shin (kgshin@eecs.umich.edu)



RT-Mach: Predictable Task Execution

• Tasks = RT-Mach threads

• Bounded blocking delays

• Real-time scheduling of threads

o Hard periodic: pi, worst-case exec time ei,
deadline di.

o Hard aperiodic: ai, ei, di.
o Soft periodic or aperiodic: abort times can be

specified.

Kang Shin (kgshin@eecs.umich.edu)



Thread Scheduling

Scheduling Policies:

• Mach: RR, FP
• RT-Mach: RM, RM/DS, RM/SS, RM/PS

Each thread can pick its own policy and go in the
corresponding queue.

Capacity Reserves:

• CPU cycles required by hard RT tasks first
reserved

• Remaining cycles used for soft RT tasks

Kang Shin (kgshin@eecs.umich.edu)



Thread Synchronization

• Priority inversion and solutions

• Implementation

o Scenario: One thread in CS and many others
waiting (in queue) to get in

o Issues: Allow preemption in CS or not?
Which thread to pick next from the queue?

• Preemption in CS: a thread inside CS may be
non-preemptable, preemptable, and restartable

Kang Shin (kgshin@eecs.umich.edu)



Synchronization Policies

• Kernelized Monitor (KM): non-preemptable mode

• Basic priority (BP): preemptable mode and
priority scheduling

• Basic Priority Inheritance (BPI): BP + Priority
Inheritance

• Priority Ceiling Protocol (PCP)

o Priority ceiling of lock = priority of
highest-priority thread that may lock this lock

o Those threads execute which are associated
with lock with highest-priority ceiling

o avoids deadlock

• Restartable Critical Section (RCS): Restartable
mode

Kang Shin (kgshin@eecs.umich.edu)



Schedulability Analysis

KM: Like EDF, except threads preemptable only
when not in CS:

n∑

j=1

ej + es

pj
≤ 1

Priority Inheritance: Like RM, except lower priority
thread can block higher-priority threads

∀ i
Bi

pi
+

i∑

j=1

ej

pj
≤ i(21/i − 1)

Kang Shin (kgshin@eecs.umich.edu)



Which Policy is Best?

• KM: Good only if very short CS

• BP: Not good — priority inversion

• PCP: Use if possibility of deadlock

• RCS: Use if high-priority thread cannot wait for
CS and Restart costs are low.

• BPI: Simple and fast
Use if no deadlock conditions and high-priority
threads can wait for CS

Kang Shin (kgshin@eecs.umich.edu)


