
ACM SOSP’99 paper by Zuberi et
al.

11/17/10 2

  Motivation
  Overview of EMERALDS
  Minimizing Code Size
  Minimizing Execution Overheads
  Conclusions

11/17/10 3

  Small-memory embedded systems used everywhere!
–  automobiles
–  home appliances
–  telecommunication devices, PDAs,…
–  factory automation and avionics

  Massive volumes (10K-10M units per annum)
 Saving even a few dollars per unit is important:

–  cheap, low-end processors (Motorola 68K, Hitachi SH-2)
–  max. 32-64 KB SRAM, often on-chip
–  low-cost networks, e.g., Controller Area Network (CAN)

11/17/10 4

  Despite restrictions, must perform increasingly
complex functions

  General-purpose RTOSs (VxWorks, pSOS, QNX) too
large or inefficient

  Some vendors provide smaller RTOSs (pSOS Select,
RTXC, Nucleus) by carefully handcrafting code to get
efficiency

11/17/10 5

  Code size ~ 20 kB
  Must provide all basic OS services: process

management, IPC, task synchronization, scheduling,
I/O

  All aspects must be re-engineered to suit small-
memory embedded systems:
–  API
–  IPC, synchronization, and other OS mechanisms
–  Task scheduling
–  Networking

11/17/10 6

  Extensible Microkernel for Embedded ReAL-time
Distributed Systems

11/17/10 7

  Location of resources known
–  allocation of threads on nodes
–  compile-time allocation of mailboxes => no naming

services
  Memory-resident applications:

–  no disks or file systems
  Simple messages

–  e.g., sensor readings, actuator commands
–  often can directly interact with network device driver

11/17/10 8

  Task Scheduling: EDF/RM can ``consume’’ 10-15%
of CPU

  Task Synchronization: semaphore operations incur
context switch overheads

  Intertask Communication: often exchange 1000’s of
short messages, especially if OO is used

11/17/10 9

  Problems with cyclic time-slice schedulers
–  Poor aperiodic response time
–  Long schedules

  Problems with common priority-driven schedulers
–  EDF: High run-time overheads
–  RM: High schedulability overheads

11/17/10 10

  Run-time Overheads: Execution time of scheduler
–  RM: static priorities, low run-time overheads
–  EDF: high run-time overheads

  Schedulability Overhead: 1 - U*
–  U* is ideal utilization attainable, assuming no run-time

overheads
–  EDF: U* = 1 (no schedulability overhead)
–  RM: U* > 0.69 with avg. 0.88

  Total Overhead: Sum of these overheads
–  Combined static/dynamic (CSD) scheduler finds a balance

between RM and EDF

11/17/10 11

  Example of RM schedulability issue

  U = 0.88; EDF schedulable, but not under RM

0 1 2 3 4 5 6 7 8

T1 T2 T3 T4 T1 T2 T3 T4

T5 misses deadline

time

11/17/10 12

  CSD maintains two task queues:
–  Dynamic Priority (DP) scheduled by EDF
–  Fixed Priority (FP) scheduled by RM

  Given workload {Ti : i = 1,2,...,n } sorted by RM-
priority
–  Let r be smallest index such that Tr +1 - Tn are RM-

schedulable
–  T1 - Tr are in DP queue
–  Tr +1 - Tn are in FP queue
–  DP is given priority over FP queue

11/17/10 13

  CSD has near zero schedulability overhead
–  Most EDF schedulable task sets can work under CSD

  Run-time overheads lower than EDF
–  r-long vs. n-long DP queue
–  FP tasks incur only RM-like overhead

  Reducing CSD overhead further
–  split DP queue into multiple queues
–  shorter queues for dynamic scheduling
–  need careful allocation, since schedulability overhead

incurred between DP queues

11/17/10 14

  Comparison of CSD-x, EDF, and RM
–  20-40% lower overhead than EDF for 20-30 tasks
–  CSD-x improves performance, but diminishing returns

11/17/10 15

  Concurrency control among tasks
  May cause a large number of context switches
  Typical scenario: Tx>T2 > T1 and T1 is holding lock

unblock T2
context switch C1
T2 calls acquire_sem()
priority inheritance
 (bump-up T1 to T2‘s)
block T2
context switch C2
T1 calls release_sem()
undo T1 priority
 inheritance
unblock T2
context switch C3

11/17/10 16

  For each acquire_sem(S) call:
–  pass S as an extra parameter to blocking call
–  if S unavailable at end of call, stay blocked
–  unblock when S is released
–  acquire_sem(S) succeeds without blocking

11/17/10 17

  For DP tasks, change one variable, since they are in
unsorted queue

  For FP tasks, must remove T1 from queue and
reinsert according to new priority assignment
–  Solution: switch positions of T1 and T2
–  Avoids parsing queue
–  Since T2 is blocked, can be put anywhere as position holder

to remember T1’s original position

11/17/10 18

  DP tasks - fewer context switches
  FP tasks - optimized PI steps

FP Tasks DP Tasks

11/17/10 19

  Tasks in embedded systems may need to exchange
1000’s of short messages per second, e.g., OO

  Traditional IPC mechanisms (e.g., mailbox-based
IPC) do not work well
–  high overheads
–  no “broadcast” to send to multiple receivers

  For efficiency, application writers forced to use global
variables to exchange information
–  unsafe if access to global variables is not regulated

11/17/10 20

  Uses single-writer, multiple-reader paradigm
  Writer-associated state message

“mailbox” (SMmailbox)
–  A new message overwrites previous message
–  Reads do not consume messages
–  Reads and writes are non-blocking, synchronization-free

  Read and write operations through user-level macros
–  Much less overhead than traditional mailboxes
–  A tool generates customized macros for each state message

11/17/10 21

  Problem with global variables: a reader may
read a half-written message as there is no
synchronization

  Solution: N-deep circular message buffer for
each state message
–  Pointer is updated atomically after write
–  if writer has period 1 ms and reader 5 ms, then

N=6 suffices
  New Problem: N may need to be in the 100’s

11/17/10 22

  Writers and “normal” readers use user-level macros
  Slow readers use atomic read system call
  N depends only on faster readers (saves memory)

11/17/10 23

  Needed for fault-tolerance, isolating SW bugs
  Embedded tasks have small memory footprints

–  use only 1 or 2 page tables from lowest level of hierarchy
–  use common upper-level tables to conserve kernel memory

  Map kernel into all task address spaces
–  Minimize user-kernel copying as task data and pointers

accessible to kernel
–  Reduce system call overheads to a little more than for

function calls

11/17/10 24

  OSEK OS standard consists of
–  API: system call interface
–  Internal OS algorithms: scheduling and

semaphores
  OSEK Communication standard (COMM) is

based on CAN
  Developed an OSEK-compliant version of

EMERALDS for Hitachi SH-2 microprocessor

11/17/10 25

  Features
–  Optimized context switching for basic and

extended tasks
–  Optimized RAM usage

  Developed OSEK-COMM over CAN for
EMEMRALDS-OSEK

  Hitachi’s application development and
evaluation: collision-avoidance and adaptive
cruise control systems

11/17/10 26

  Small, low-cost embedded systems place stringent
constraints on OS efficiency and size

  EMERALDS achieves good performance by re-
designing basic services for such embedded systems
–  Scheduling overhead reduced 20-40%
–  Semaphore overheads reduced 15-25%
–  Messaging passing overheads 1/4 to 1/5 that of

mailboxes
–  complete code ~ 13 kB

11/17/10 27

  Implemented on Motorola 68040
  Ported to 68332, PPC, x86, and strong ARM
  Also investigated networking issues: devicenet,

wireless LANs, rt-ethernet, TCP and UDP/IP
  OS-dependent and independent development tools
  Energy-Aware EMERALDS

–  extend to support energy saving hardware (DVS, sprint &
halt)

–  Energy-aware storage systems (momory and disks)
–  Energy-aware Quality of Service (EQoS)
–  Applications to info appliances and home networks

11/17/10 28

  RTAS ‘96 - original EMERALDS
  RTAS ‘97 - semaphore optimizations
  NOSSDAV ‘98 - protocol processing optimizations
  SAE ’99 - EMERALDS-OSEK
  SOSP ‘99 - EMERALDS with re-designed services
  RTSS’00 – Energy-aware CSD
  IEEE-TSE’00 –complete version with schedulability analysis
  SOSP’01- Exploitation of DVS
  ACM TECS (pending) - EQoS
  UNSENIX’03, PACS’04: power-aware memory
  SOSP’05: high-performnace, low-power disk I/O
  USENIX’02 – totally non-blocking IPC
 URL: http://kabru.eecs.umich.edu/rtos

