Exam Review

TavPoint fonte 1iced in EFNMF



Generics

Definitions: hard & soft real-time

Task/message classification based on
criticality and invocation behavior

Why special performance measures for
RTES?

What's deadline and where is it coming
from?



Estimation of task exec time

Factors affecting task exec time

Data-dependent exec path (conditional
branches), interrupts

What are 3 main features used to improve
avg performance, and how (un)helpful to
predictability?

Why is cache OK, but not virtual memory?



Concurrent task exec time

4 basic building blocks for task
composition

Contiguous stretches of code=>activities

GSPN->CTMC->concurrent task exec
stages->task completion times

Modeling of send-receive-reply with GSPN



Task scheduling

Uniprocessor or multiprocessor
Preemptive or non-preemptive
Offline or online

Static or dynamic priority assignment

Common approaches

— Time-driven, e.g., cyclic executive
- WRR

— Priority-driven



Classical uniprocessor scheduling

* Rate Monotonic (RM)

* Deadline Monotonic (DM)

» Earliest-Deadline-First (EDF)
* Minimum-Laxity-First (MLF)
Common task models

» Characterized by period/interarrival time, phase,
exec time, absolute/effective release time &
deadline

 Task vs. job

Common assumptions: fully preemptable,
independent, CPU only, relative deadline=period



Rate Monotonic Scheduling

« Optimal fixed priority sched alg

o Sufficient condition based on utilization
bound

* Necessary & sufficient condition based on
time demand analysis



Important Concepts

Critical time instant: worst time x™ at which to
release T;, i.e., R(x)=zR,(x)Vx

Critical time zone: [x", x +R.(x)]

Full utilization of a processor by a set of tasks

— if RM schedule meets all deadlines, and

— if increase of the execution time of any task in the set
violates the RM schedulability.

What if relative deadline !=period?



Sporadics and transient overload

« Sporadic tasks
— Treat them as periodic
— Use a periodic polling server
— Use a deferred server
— Which one is better and why?

* Transient overload
— Period aggregation
— Period splitting



Priority Inversion and Resolution

* Resource sharing via semaphore may
cause priority inversion

* Solutions:
— Priority inheritance: simple but deadlock

— Priority ceiling protocol: complex but no
deadlock

— How to modify schedulability condition?

— Need to be careful when priority ceiling is to
be changed.



Preemptive EDF

Dynamic priority scheduling algorithm
Tasks don't have to be periodic
Optimal uniprocessor sched alg.

When all tasks are periodic and have relative
deadlines = their periods, the task set is
schedulable on a uniprocessor by EDF alg iff

U=S%<10
27

If relative deadlines !'= periods, the problem is
complex



Precedence and Exclusion Constraints

* A excludes B<& A is not allowed to preempt B

« Task containing OR subgraphs must be
converted to one without them

A schedule is valid if

— processor is not left idle when Q One or more tasks
ready to run

— precedence, exclusion, and preemption constraints
are all met throughout the schedule



Scheduling general task sets

 Generate valid initial schedule

 Partition tasks into subsets based on busy
periods

« Shuffle the order of execution within each
busy period using lateness-based
heuristics



Other important special cases

When there are primary and alternative versions
for each task (interesting special case with
harmonically-related task periods)

When there are mandatory and optional parts of
each real-time task=>IRIS (increased reward

with increased service) or imprecise computation
model

Mode changes
Fault-tolerant scheduling



Multiprocessor scheduling

Utilization-balancing algorithm
Next-fit alg for RM scheduling
Bin-packing assignment for EDF
Myopic offline scheduling alg

Combined assignment and scheduling
— System hazard as objective

— Two B&B (one for assignment and the other
for scheduling assigned tasks)



Online load sharing of aperiodics

« 3 policies: xfer, location and info
 Bidding with focused addressing

« Adaptive LS
— Buddy sets and preferred list
— Bayesian decision to cope with comm delays
— Operations at each node
— How to model performance?



Real-Time Operating Systems

« Small proprietary (homegrown and commercial)
kernels

« RT extensions to UNIX and others

* Research kernels

— EMERALDS: CSD scheduling, task synchronization,
IPC

— RTDVS: CPU power conservation



