
EECS 571 “Principles of Real-Time Embedded 
Systems” 

Lecture Note #15: 

RT extensions/applications of 
general-purpose OSs 



General-Purpose OSs for Real-Time 

•  Why? (as discussed before) 
–   App timing requirements are not hard  
–  Costs less 
–  Large user base 

•  How? 
–  App developers should know sources of 

unpredictability 
–  Use app SW architecture that minimizes use of 

problematic OS features. 
–  Use sched and resource access-control strategies. 

•  Two most widely-used OSs: Windows NT and 
Linux 



OS Requirements for Real-Time Apps 

•  Multi-threaded and preemptable 
•  Notion of thread priorities must exist 
•  Support for synchronization mechanisms 
•  Priority inheritance or ceiling must exist 
•  Predictable/fast interrupt latency 



Windows NT 
•  Strengths: threads, priority interrupts, events, 

sufficiently-fine timer and clock resolution. 
•  Weaknesses: 

–  Large memory footprint 
–  Weak support for RT scheduling and resource-acces 

control 
–  Unpredictable interrupt-handling and IPC 

mechanisms 
•  Approach: Avoid system services that can 

introduce unpredictable and prolonged blocking, 
and keep processor utilization low, and provide 
priority-inversion control at the user level. 



Windows NT Scheduler 
•   Designed for good avg performance for time-shared 

apps 
•   Only 32 priority levels! 

–  0--15: variable-priority class for threads of  time-shared apps. OS 
can boost priority and adjust sched quantum of a thread. (9 Idle, 
Normal, High classes.) 

–  16--32: real-time priority class. OS never adjusts (thus static) 
priorities of threads in this class 

•  Small # of priority levels ) low schedulable processor 
untilization, why? 

•  Many kernel-mode threads run at real-time priority level 
16 ) High-priority RT threads may delay system threads 
(for memory managers, file systems, etc.) 



Jobs, Scheduling Classes and FIFO Policy 

•  NT 4.0 doesn't support FIFO with equal priority but NT 2K 
gives the FIFO option to choose. 

•  A job may contain multiple processes but each process can 
belong to only one job 

•  Can set (e.g., exec time or memory usage) limits of a job 
object that controls all of its processes. NT 2K terminates 
an offending job. 

•  NT 4.0 allows a user thread to specify only 7 out of 16 real-
time priority levels, while NT 2K makes all 16 RT priority 
levels available to a user thread. 

•  NT 2K offers 9 job scheduling classes; class 9 is for RT 
applications. 

•  Do all processes of a job belong to the same scheduling 
class? Yes (no) if the sched class limit is enabled  
(disabled). 



Resource Access Control 
•  NT doesn't support priority inheritance 
•   9 2 ways at user level to (incompletely) control 

priority inversion in a uniprocessor. 
–  Employ user-level non-preemptive critical section 

(NPCS). How can NPCS be achieved in NT 4.0 
(supports RR for equal priority tasks) and NT 2K 
(supports FIFO for equal priority tasks)? 

–  Use the ceiling priority protocol, i.e., a thread holding 
any resource executes at the highest priority ceiling of 
all the resources it holds. For NT 4.0, restrict RT 
threads to have even priority (16, 18,…, 30), why? 



Interrupt Handling 
•  Two-level (split) interrupt handling 

–  Interrupt Service Routine (ISR) 
–  Deferred Procedure Call (DPC) 

•  ISRs can be preempted by higher priority ISRs 

•  DPCs queued and handled by the I/O Manager 

•  All DPCs run in FIFO order at the same priority lower than HW 
interrupt priorities but higher than that of scheduler/dispatcher. 

   ) A higher-priority thread can be blocked by DPCs in response 
to the interrupts caused by lower-priority threads. 

•  DPCs cannot be preempted by other DPCs 



Interrupt Event Flow 
•  Interrupt occurs 
•  Processor calls the dispatcher 
•  OS calls the ISR 
•  ISR does critical work 
•  Device driver calls a DPC function 
•  Exit ISR 
•  Pending DPC is scheduled 
•  After completion of all DPCs, user applications 

resume 



Rehashing Problems with NT 
•  Very small number of real-time priority levels 
•  No priority inheritance, so priority inversion can occur 
•  Kernel threads are not preemptable by user threads 
•  Interrupt management can take an unbounded amount 

of time 
•  Scheduler is not fair when dealing with mouse, keyboard 

or display events 
•  Minor problems: 

–  For embedded applications, memory footprint is huge 
–  Licensing is expensive 



Recommended Solutions 

•  DPCs should have many priority levels 
•  DPCs should be preemptable by higher priority 

DPCs 
•  Third party drivers should be configurable (ISR 

and DPC priority) 
•  Third party drivers should provide the maximum 

time it can take during a ISR or DPC 
•  System call times should be specified to the 

developer 



Commercial Solutions 

•  Use NT as it is, but with care 
•  Implement a Win32 API on top of a RTOS 

–  QNX using the Willow library 
–  VxWorks using the Willow library 

•  Make NT and a RTOS (or part of it) coexist 
–  Imagination Systems (HyperKernel) 
–  Radisys (INtime with RT API) 
–  Venturcom (RTX, KPX, RTAPI) 



Implementation of Win32 API on Top of RTOS 

•  Advantages: 
–  Portability between real-time and non-real time 

approaches 
–  Small footprint 
–  Real-time behavior from these RTOSs is known 

•  Disadvantages: 
–  Standard NT applications cannot be used 
–  No NT device drivers 
–  NT graphic devices cannot be used 
–  Limited expandability 
–  Special tools for development and compilations 



Make NT and a RTOS Coexist 
•  Possible approaches: 

–  Modify the HAL by intercepting interrupts and including a small 
scheduler or RTOS 

–  Run NT as one of the tasks on top of a RTOS 
•  Advantages: 

–  Compatibility with NT is maintained 
–  Protection for the RT tasks may be included in the RTOS 

•  Disadvantages: 
–  Non-portability unless a RT-API is provided 
–  Device drivers for NT cannot be used in the RT part (non-

predictable timing guarantees) 
–  Many task levels and context definitions may exist 



Real-Time Networking 

•   Also want predictability in the network 
subsystem 

•  How to achieve it? 
–   Quality of Service (QoS) 
– Admission control protocols (RSVP) 
– Priority packet scheduler 



Current Implementations 

•  Windows NT 4.0 has no support for QoS 
•  Windows NT 2K has: 

– The RSVP protocol has been implemented 
– APIs for QoS and Admission Control are in 

place 
•  Now available: 

– Traffic control API (packet scheduler)  
– QoS API  



Linux and Real-Time 

There are several problems when using 
Linux for RT apps 

•  Interrupts are disabled by Linux 
subsystems when they are in CS 

•  Coarse timer resolution (10 ms) 
•  Time-sharing, dynamic priority adjustment 
•  Non-preemptable kernel but changed to 

"preemptable" in 2003 (2.2.16) 
•  Virtual memory. 



Linux Scheduling 
•  Provides processes with choices among SCHED_FIFO, 

SCHED_RR, or SCHED_OTHER policies 

•  SCHED_FIFO and SCHED_RR are for RT processes 
scheduled with fixed priorities 

•  Processes with SCHED_OTHER are scheduled on a 
time-sharing basis with priorities lower than RT 
processes. 

•   Nine 100 priority levels, and one can determine max 
and min priorities of a schedling policy using 
sched_get_priority_min() and sched_get_priority_max(), 
and size of the time slices given to processes scheduled 
by RR using sched_rr_get_interval(). One can also 
change these parameters. 



Interrupt Handling in RT-Linux 

Interrupts are first captured by the real-time executive 

•  If Linux kernel enables interrupts, interrupts are 
passed to Linux kernel which runs ISR. 

•  If Linux kernel disables interrupts, interrupts are 
queued in the real-time executive. When Linux re-
enables interrupts, all pending interrupts are 
passed to Linux kernel, which runs ISR  

   => interrupts are never disabled. 



RT-Linux Applications 

•  RT-Linux applications consist of: 
–  Hard RT component that consists of one or more real-

time tasks 

–  Non-real-time component that consists of one or more 
non-real-time Linux processes. 

•  Linux processes and real-time tasks 
communicate via fifos or shared memory 

•  Real-time tasks cannot access any system 
services such as X Window, networking, and 
disk. They can't make any syscalls. 



KURT Linux 

•  Increased the timer resolution to µ sec level 
without significant interrupt overhead 

•  Modified Linux scheduler to include static plan-
based scheduling 

•  Full set of system services available, but using 
them may result in scheduling distortion: 
–  Some subsystems support real-time better than 

others 
–  Disk subsystem is the largest source of distortion. 



KURT Linux, cont’d 
Suited for soft RT apps and consists of 2 parts: 

•  Core that takes care of scheduling real-time 
events 

•  Real-time modules (RTMods) which implement 
functionality of a specific real-time task. The only 
built-in real-time module is Process RTMod, 
which provides the user processes with syscalls 
for registering and unregistering KURT real-time 
processes, as well as suspending the calling 
process until next time it is to be scheduled 



KURT Core 

•  Responsible for scheduling all real-time 
events 
– Adds timer for each event 
– Calls the appropriate RTMod when an event 

occurs 

•  Provides syscalls to 
– switch the kernel between real-time and 

normal mode 
– schedule real-time events. 



KURT Scheduling 
•  Explicit, static plan-based scheduler: 

    RT events (i.e., invocation of RT Mods) are 
specified in a schedule file and passed to KURT 
core before running 

•  Three modes of operation 
–  Normal mode: no real-time features 

–  Real-time sharing mode: both RT and non-RT 
processes are allowed to run 

–  Real-time exclusive mode: only RT processes are 
allowed to run. 



UTIME: Microsecond Resolution On-
Demand Timers 

Two approaches to increasing timer resolution in 
Linux 

•  Increase timer interrupt rate 
–  Unnecessary overhead as interrupts need to be 

serviced even when no events are scheduled 

–  Observation: There is a significant disparity between 
temporal resolution and frequency of events 

•  Interrupt only when there are events scheduled 



UTIME, cont’d 
•  Timer chip is programmed in one-shot 

(instead of periodic) mode --- timer chip 
has to be re-programmed to generate the 
next interrupt 

•  Within the ISR, timer chip is re-
programmed to interrupt just in time to 
service the next event 

•  Fake events are scheduled every 10 ms in 
absence of any scheduled events 



UTIME in Detail 
•  Uses both HW clock and the Pentium timestamp counter 

•  Uses the Pentium timestamp counter to maintain the SW clock 
which is programmed to interrupt periodically at system boot 

•  During initialization, UTIME reads and stores the timestamp counter 
periodically and calculates the length of a jiffy (clock interrupt period) 
in terms of the number of timestamp cycles per jiffy and per second. 
It then calibrates the timestamp counter and reprograms the clock to 
run in one-shot mode. 

•  Whenever a timer interrupt occurs, the ISR first updates the SW 
clock based on the timestamp readings at current time and the 
previous timer interrupt. It then queues timer functions to be 
executed at current timer interrupt, finds the next timer expiration 
time from the timer queue, and sets the clock to interrupt at that 
time. 

•  Exec time of timer ISR in Linux with UTIME is several times larger 
than in the standard Linux. 


