EECS 571 Principles of Real-Time Embedded Systems Lecture Note #16:

Real-Time Communications

Real-Time Communication

- Between sensors & control panel and processors Between processors
- Non-RT protocols: throughput RT protocols: (absolute/prob.) delay guarantees
- Message delay = formatting and/or packetization + queueing + xmission + depacketization
- How to derive message deadlines?
- Message drop preference in case of congestion (pkt marking and classification).
- RT traffic sources:
 - o Constant rate
 - o Variable rate
- Traffic characteristics may change inside the network

Network Topologies

- Diameter, node degree, fault-tolerance
- Types:
 Shared:
 Point-to-point:
- Switching
 Packet SW: routing, flow control, & scheduling
 Circuit SW:
 Cut-thru SW: Wormhole, virtual cut-thru
- Interconnections: system and node levels, I/O connectivity

Virtual-time CSMA

- 2 synchronized clocks, "real" and "virtual," for each station.
 - RC: to record message arrival times
 - VC: to count up to a virtual time to start xmission, VSX(M). freezes when channel is busy and runs faster than RC when channel is idle.

- When VC ≥ VSX(M), packet M becomes eligible for xmission.
 If collision, modify VSX value.
- Question: How to initialize VC when channel becomes free, and how to modify VSX(M) when ∃ a collision involving M?

More on VTCSMA

 $\begin{array}{ll} \tau \colon & \text{Signal propagation time} \\ A_M \colon & \text{Arrival time of message M} \\ T_M \colon & \text{Time required to xmit M} \\ D_M \colon & \text{Deadline of M} \\ L_M \colon & \text{Latest time M to be sent to meet } D_M \\ \Lambda_M(t) \colon & D_M - T_M - \tau - t \end{array}$

$$VSX(M) = \begin{cases} A_M & \text{for VTCSMA-A} \\ T_M & \text{for VTCSMA-T} \\ L_M & \text{for VTCSMA-L} \\ D_M & \text{for VTCSMA-D} \end{cases}$$

In case of collision, M is rexmitted immediately with prob p; and VSX(M) is modified to be a random # in

$$I = \begin{cases} (\text{current VC}, L_M) & \text{for VTCSMA-A} \\ (0, T_M) & \text{for VTCSMA-T} \\ (\text{current RC}, L_M) & \text{for VTCSMA-L} \\ (\text{current RC}, D_M) & \text{for VTCSMA-D} \end{cases}$$

More on VTCSMA

• When channel changes from busy to idle

$$VC = \begin{cases} no change & for VTCSMA-A \\ 0 & for VTCSMA-T \\ RC & for VTCSMA-L and -D \end{cases}$$

•	Effects of	fects of clock skew						
	Node	Μ	Actual RC at	RC at node	D_M	L_M		
			M's arrival					
	1	1	8	actual RC-1	32	16		
	2	2	9	actual RC+1	36	20		

VC runs twice faster than RC.

 N_1 and N_2 xmit M_1 and M_2 at their VC values 16 and 20, corresponding to their RC values 8 and 10 which are identical.

• Lower loss rate than CSMA but wastes net bandwidth by idling the net.

- Use events on the bus to synchronize node actions
- Each node maintains a time "window"
- When *L_M* of a packet falls in this window and the channel is idle, the packet is *eligible* for xmission.
- Each node maintains a stack of window history, (upper bound of window, ID of collided message or 0).
- Shrink or enlarge window based on the events on the bus.
- What does a collision even when w = 1 mean and what to do?
- What's a slot?

Ethernet-based RT Communication

- Advantages
 - o low price & simple management
 - o mature technology
- Difficult to provide RT guarantees CSMA/CD
 - o packet collision
 - o multiple collisions due to bursty non-RT packets

Ethernet MAC protocol

- CSMA/CD protocol
 - o No exclusive medium control
 - o Listen before transmit
 - o Stop transmission upon sensing collision
- Binary Exponential Backoff (BEB): backoff range increases with collisions.

A New Solution

Fixed-Rate Traffic Smoothing

Smoothed stream

Kang Shin (kgshin@eecs.umich.edu)

Disadvantages of Fixed-Rate Smoothing

- Poor scalability due to network-wide input limit distributed to stations
- Low network utilization by non-RT traffic o constant station input limit
- Solution adaptive-rate traffic smoothing

Fixed-Rate vs. Adaptive-Rate Smoothing

Harmonic-Increase and Multiplicative-Decrease Adaptation

- Parameter: minimum packet inter-arrival time or refreshing period (RP)
- Uses NIC-collected collision statistics
- Adaptation
 - o No collision: RP decreased by Δ periodically
 - o Upon collision: RP doubled

- 11 PCs
- 10BASE-T Ethernet LAN
- Collision domain diameter = 10 m

Topology

Traffic Generation Statistics

- RT traffic
 - o a 100 byte long message every 0.3 sec from PC-n
 - o total RT traffic generation rate 53.3 kbps
 - o roundtrip deadline 129.6 msec
- non-RT traffic
 - o non-greedy mode
 - a burst (1 MB) every 25 sec from an activated node
 - 320 kbps from a single node
 - o greedy mode
 - zero burst inter-arrival time
 - variable throughput

RT Message-Loss Ratio (non-greedy mode)

Avg Xmit Time of non-RT Bursts (non-greedy mode)

RT Traffic Roundtrip Delays

No smoothing

adaptive smoothing

Throughput of non-RT Traffic

- Ethernet augmented with middleware for soft RT guarantees
 - o compatible with TCP/IP, UDP/IP and Ethernet standard
 - o implemented on Linux and Windows NT
- Prioritization and traffic smoothing
- Fixed-rate traffic smoothing
- Adaptive-rate traffic smoothing

Token-Passing Protocols

Overheads: med. propagation time, token xmission time and capture delay, and NI latency.

Timed-Token Protocol (TTP): 2 types of traffic

- Synchronous/RT: xmit up to h units of time (UOTs) every T UOTs.
- Asynchronous/non-RT: uses any bandwidth left unused by synchronous traffic.

Target Token Rotation Time (TTRT)

- Token cycle time ≤ 2 × TTRT How do you determine TTRT?
- Time available to xmit packets per TTRT $t_p = \text{TTRT} \Theta$
- Node *i* gets SBA, $B \times \frac{h_i}{t_p}$.
- If cycle time > (<) TTRT token is *late* (*early*).
 Xmit only synch. traffic up to h_i (AND a certain amount of asynch. traffic).
- Questions
 - o How to determine h_i ?
 - o Why token early or late?
 - o Is avg token cycle time still \leq TTRT?

- Node i needs to xmit c_i bits of RT traffic every P_i UOTs
 - o TTRT $\leq P_i/2$
 - o Synch. bandwidth is greater than $t_p B c_i / \lfloor \frac{P_i}{\mathsf{TTRT}} 1 \rfloor$
- How to deal with token loss? *Claim-token* (contains TTRT it requests) *Beacon packet* if every node doesn't receive its own claim-token or a normal packet within TTRT(*i*) after xmitting claim-token. Station immediately downstream from a break is the only node that will keep xmitting.

IEEE 802.5 Token Ring Protocol

SD	AC	ED	Token						
SD	AC	ED	DA	SA	Message	ECC	ED	FS	
SD: Starting DelimterSA: Source AddressAC: Access ControlFS: Frame StatusED: Ending Delimiter00 dest unavailable									

DA: Destination Address

00 dest unavailable 10 frame uncopiable

- 11 frame copied
- FS field checked by the sender
- Sender removes data frame it sent
- Priority arbitration via AC field
 - o 3 bits for current and reserved priorities
 - o When data frame or a token goes by, a node checks the reserved priority: do nothing if higher, else write its priority into AC
 - o Upon completion of current xmission, the sender issues a token with priority in AC
 - Node that increased priority is responsible for restoring it to prior priority value
- Schedulability Analysis of Token Ring T_1, T_2, \ldots, T_n are schedulable iff $\forall i \; \exists t \leq d_i$ such that $\sum_{j+1}^{i} e_j \left[\frac{t}{P_i} \right]$ + system overhead + $b_i \leq t$.

Polled Bus Protocol

- Synchronous contention resolution
- Stations contend for the channel during a contention period
- The station with the highest priority message gets access to the medium
- Example: Controller Area Network (CAN)

Bus Acquisition Algorithm

- Calculate a unique ID of m bits.
- If bus not busy then
 - o Write its ID to the bus, one bit at a time, starting with MSB
 - o Wait for a finite time and sample the bus
 - If the value read by the processor is different from the value it wrote into the bus, it drops out
 - o After m rounds, the processor with the highest ID has sole control of the bus.
- The bus is assumed to wired-OR all impinging signals and all stations are synchronized.
- Key: how to design station IDs?

Stop-and-Go or Framing Protocol

- Frame = a time interval Each frame type represents a diff time interval and is associated with a *traffic class*.
- Upon arrival of a type- f_i pkt at an intermediate node n, it's held by n at least till the beginning of next instance of f_i .

propagation delay

- All nodes eligible for xmission are served in nonpreemptive priority order, with shorter-frame pkts having priority over longer-frame pkts
- If net load ≤ a certain limit, a type-*m* pkt will be xmitted within *f_m* time units of being eligible for xmission, i.e., bounded delay at each hop

Hierarchical Round-Robin Protocol

- Guarantees each traffic class i to xmit m_i pkts every T_i UOTs.
- Traffic is classified into n classes, where each class i is associated with (n_i, b_i, Φ_i)
 - o n_i : max # of class-*i* pkts xmitable during any given frame of which source *j* is allocated a certain max # $\alpha_i(j)$.
 - o If $\alpha_i(j)$ pkts are xmitted or no class-*i* pkts left for xmission, class-(*i* + 1) pkts if any are xmitted, etc., for a max of b_i pkts during that class-*i* frame
 - o Φ_i = frame associated with class i $\Phi_1 < \Phi_2 < \ldots < \Phi_n$.