
EECS 571 Principles of Real-Time Embedded
Systems

Lecture Note #19:

Real-Time Communications in Point-to-Point
Networks

Kang Shin (kgshin@eecs.umich.edu)

Point-to-Point Networks

• Attractive because of fault-tolerance capability

• Allow multiple conversations to go on
simultaneously on different links

• Access to the links can be controlled easily

• Drawback: Higher latency

• Desirable: efficient broadcast algorithms

Kang Shin (kgshin@eecs.umich.edu)

Guaranteed Delivery

• Message generation characteristics

o Source, Destination
o Maximum message length: Smax (bytes)
o Minimum inter-arrival time: Rmax (msgs/sec)
o Maximum burst size: Bmax (msgs)
o Desired bound on message latency: D

• In any time interval of length t, the number of
messages generated may not exceed
Bmax + t · Rmax.

• A pair of uni-directional real-time channels
should be established between source and
destination before messages can be transmitted
on them.

Kang Shin (kgshin@eecs.umich.edu)

Delivery Time Guarantee

• The logical generation time, ℓ(m), for a message
m is defined as

ℓ(m0) = t0

ℓ(mi) = max{ℓ(mi−1) + Imin, ti}

where ti denotes the actual generation time of
message mi, and Imin is the reciprocal of Rmax.

• If D is the end-to-end delay for the channel, the
system guarantees that any message mi will be
delivered to the destination node by time
ℓ(mi) + D.

Kang Shin (kgshin@eecs.umich.edu)

Illustration

r0 = lm(0) r1

lm(1) = lm(0) + Imin

d1 = lm(1) + D

A0 A1

d0

Kang Shin (kgshin@eecs.umich.edu)

Channel Establishment

• Select a source to destination route for the
channel

• Compute a feasible worst-case delay at each link
(if possible) based on the characteristics of all
channels in the system

• Check whether the total delay is acceptable and
redistribute the delays

• Compute the buffer requirement at each link
Note: This computation is dependent upon the link

message scheduling algorithm used during transmission.

Kang Shin (kgshin@eecs.umich.edu)

Delay Computation

• should maintain the feasibility of existing
channels

• should obtain the minimum feasible delay

• should be linked to the run-time message
scheduling policy

• distinguish between the feasibility testing and the
run-time message scheduling policy

• use an optimality result proved by Dertouzos
(’74)

Kang Shin (kgshin@eecs.umich.edu)

Assignment Procedure

• Arrange the channels in ascending order of their
associated delay di.

• Assign the highest priority to the new channel
Mk+1. Assign priorities to the other channels
based on their delay.

• Compute the new (worst-case) response times r′i
for the existing channels based on this priority
assignment.

• Find the smallest position q such that r′i ≤ di for
all channels with priority less than q.

• Assign priority q + 1 to the new channel and
compute the response time r′k+1.

Kang Shin (kgshin@eecs.umich.edu)

Response Time

Consider a set of channels
{Mi = (Ci, di, pi), i = 1, . . . , m} which share a
common link ℓ.

Si = {di}
⋃
{kpj | j = 1, .., i−1; k = 1, .., ⌊(di/pj)⌋}

Wi(t) =
i−1∑

j=1

Cj · ⌈t/pj⌉ + Ci

The worst-case response time for messages
belonging to Mi is the smallest value of t such that
Wi(t) = t.

Kang Shin (kgshin@eecs.umich.edu)

Run-time Scheduling

• Problem with fixed-priority scheduling: arrivals
are not strictly periodic

o arrival time at a node depends on the actual
delay at the previous node

o model allows burst arrivals

• High priority arrivals can disrupt the scheduling
of lower priority messages

Kang Shin (kgshin@eecs.umich.edu)

Illustration

C1 C2 C1

normal arrivals
d1 d2

C1 C2 C1 C2

early arrival
d1 d2

Kang Shin (kgshin@eecs.umich.edu)

Run-time Scheduling

• Deadline Scheduling can be used to overcome
this problem

• Based on the logical arrival time of the message
at a node

The logical arrival time for mi at node b, ℓc,b(mi), is
defined as

ℓc,b(mi) = ℓc,a(mi) + dc,a

where dc,a is the worst-case delay for messages on
channel Mc at node a.

• Is the feasibility testing still valid?

Kang Shin (kgshin@eecs.umich.edu)

Run-time Scheduling

Uses a multi-class Earliest Due Date (EDD) algorithm

Queue 1 Packets belonging to real–time channels
with ℓc(mi) ≤ current time, arranged in the
order of increasing deadlines.

Queue 2 Other packets arranged in the order of
increasing deadlines.

Queue 3 Packets belonging to real–time channels
with ℓc(mi) > current time, arranged in the
order of increasing logical arrival time.

Kang Shin (kgshin@eecs.umich.edu)

Buffer Management

• Buffer space is reserved for channels at the
source, destination, and at intermediate nodes.

– depends on Bmax, Rmax, and the link delays

• Flow–control enforced: time-based

– packets in Queue 3 are considered for
transmission only when their logical arrival
time ≤ current time + horizon

Kang Shin (kgshin@eecs.umich.edu)

Buffer Requirement

• min space = Smax · ⌈(dprev + dnode)/Imin⌉

• buf space = Smax · ⌈(dprev +dnode +H)/Imin⌉

• max space
= Smax · ⌈ dcumul/Imin ⌉ + Smax · Bmax

Kang Shin (kgshin@eecs.umich.edu)

Requirements and Implementation Architecture

Requirements:

• Setup and teardown of real-time channels

• QoS-sensitive data transfer to/from the network.

Shared host resources: bandwidth for bus, link, and
protocol processing.
⇒ consumption consistent with relative importance
of active real-time channels.

Key architectural features:

• Dedicated protocol processor

• Split-architecture for accessing real-time
communication services

• Decoupling of data transfer and control in the
communication protocol stack.

Kang Shin (kgshin@eecs.umich.edu)

Host Architecture

CIM

AP AP DEVICE DEVICE

NPAPI BUFFERS

Kang Shin (kgshin@eecs.umich.edu)

Experimentation Platform

E

T

H

E

R

N

E

T

x-kernel protocol stack

HARTOS protocol

CIM/Ethernet driver

+m
pSOS

HARTOS device driver

+m
pSOS

HARTOS device driver

+m
pSOS

HARTOS device driver

communication subsystem
under study

Ancor CIM 250

AP 1

AP 2

NP

SPIDER

CIM

Scalable
Point-to-point
Interface DrivER

To
HARTS
Nodes

VME BUS

To

CXT 250
Ancor

Switch

HARTS Node

AP 3

Kang Shin (kgshin@eecs.umich.edu)

Communication Subsystem Protocol Stack

Name Service

Reliable Datagram

FRAG

+m
pSOS HARTOS DEVICE DRIVER

HARTOS Protocol - Application Processor Interface

(real-time channel)
Network Manager

RPC

HNET Protocol - Network Layer and Device Drivers

PHYSICAL LAYER

Clock
Synchronization

Kang Shin (kgshin@eecs.umich.edu)

Communication Software Structure

NETWORK
ADAPTER

API ENTRY

PROTOCOL PROCESSING

PACKET TRANSMISSION

SCHEDULING

SCHEDULING
LINK

CPU

Kang Shin (kgshin@eecs.umich.edu)

Software Architecture on NP

API ENTRY

MESSAGE HANDLERS

CPU

PACKET QUEUES

LINK SCHEDULER

NETWORK ADAPTER

RUN QUEUES (FIFOs)

Kang Shin (kgshin@eecs.umich.edu)

Experimental Evaluation of Implementation

How effective is the current implementation in
insulating

• real-time traffic from best-effort traffic, and

• well-behaved real-time channels from ill-behaved
ones?

Evaluation experiments:

• Effects of best-effort traffic load on real-time
traffic

• Effects of burstiness and message size on delay
guarantees

Kang Shin (kgshin@eecs.umich.edu)

Experiments

2-host experiments with measurements at source
(transmitting) host.

Traffic sources:

• bursty best-effort “channel”
• bursty real-time channel
• two real-time channels

Processing priority:

• higher priority for processing of real-time
traffic

• all real-time channels processed at same
priority

Traffic violations: violation of specified message
rate

Parameters measured: packet latency, packet
queueing delay, and packet loss rate

Kang Shin (kgshin@eecs.umich.edu)

Summary of Experimental Results

Insulation between best-effort and real-time traffic:

• no real-time packets dropped

• real-time message latencies independent of
offered (best-effort) load

• early real-time traffic consumes CPU bandwidth
out of turn → more jitter

• higher queueing delay for bursty real-time
channel

• early real-time traffic does not affect best-effort
performance

• best-effort throughput increases with load until
system saturates

Kang Shin (kgshin@eecs.umich.edu)

Summary of Experimental Results (cont’d)

Insulation between ill-behaved and well-behaved
real-time channels:

• ill-behaved channels experience significant
degradation in performance

• well-behaved channels suffer higher jitter

Inferences:

• more channels or larger messages further
exacerbate jitter and delay

• deadline violations may occur

⇒ interference more pronounced with faster medium
access latency and faster networks since CPU
becomes bottleneck.

Kang Shin (kgshin@eecs.umich.edu)

Fault-Tolerant Real-Time Channel

• Static routing makes real-time channels unable
to tolerate component failures

• Dynamic routing would make it difficult to
guarantee delivery-delay bounds

• Possible solutions:

o Partially-dynamic routing or local detours
o Multiplexed backup channels
o Reactive approach, i.e., do nothing until

breaks.

Kang Shin (kgshin@eecs.umich.edu)

Partially-Dynamic Routing

• Set up a primary real-time channel

• Enhance the channel with some extra links and
nodes

• Use the primary under normal circumstances,
and use the extra links/nodes when the primary
breaks down.

Kang Shin (kgshin@eecs.umich.edu)

Single Failure Immune RTC

DESTINATION NODE 1

SOURCE NODE 1 SOURCE NODE 2

DESTINATION NODE 2

12

12

36

12

12

12

12

Kang Shin (kgshin@eecs.umich.edu)

Isolated Failure Immune RTC

1 3

2

4

5 6

destination

Kang Shin (kgshin@eecs.umich.edu)

Backup Channels

Approach:

• A dependable connection = a primary
channel + backup channels

• Reservation of spare resources in advance
• Advance recovery-route selection (off-line

end-to-end rerouting)

Issues:

• Per-connection dependability-QoS control
• Spare resource alllocation
• Channel failure detection
• Time-bounded failure recovery
• Resource reconfiguration

Kang Shin (kgshin@eecs.umich.edu)

Overview of Self-Healing Recovery

Primary Channel Setup

Failure Detection

Normal Operation

Failure Reporting &
Channel Switching

Backup Channel Setup

Kang Shin (kgshin@eecs.umich.edu)

Summary

• E2E real-time communication is achieved via

o connection establishment
o run-time scheduling
o buffer management

• Extensions for fault-tolerance

o Local detours: SFI and IFI
o Backup channels and their multiplexing
o Reactive approach

References can be found from
http://kabru.eecs.umich.edu

Kang Shin (kgshin@eecs.umich.edu)

