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Characterization of RTES

Two big questions:
How to measure ``goodness'' of RTS ?
How to estimate exec time of a program given 
source code & target architecture?



Which System Is Better?

Time 

P
rob. density

System A
System B

W.r.t. average execution time?
W.r.t. predictability?
What about aM+bV, or (M,V)?
How do we rank the two?



How to Measure Performance of RTES?

Why not traditional measures, e.g., MIPS?
System A is a RISC with 1 instruction per 1.2 
clock cycles
Sysemt B is a CISC with 1 instruction per 1.8 
clock 

Want RTS performance measures:
efficient encoding of relevant information
objective means for ranking candidate systems 
for a given application
represent verifiable facts



Traditional Perf. Measures

Reliability: R(t)
Availability:  A(t)
Throughput
Capacity reliability: Prob. not being in any of failure states 
over [0,T].
Computational reliability, R(s,t,T): Prob. system can start 
task T at time t and successfully complete it, where s is 
system state at time t
Performability: Given n accomplishment levels, A1, 
A2,…,An, performability is (P(A1), P(A2),…, P(An)), where 
P(Ai) is probability the computer functions to allow the 
controlled process to reach Ai.



Hierarchical View of Performability

View 0

View 1

View 2

View 3

Accomplishment levels: User’s view of controlled process

Accomplishment of controlled-process tasks as a 
function of operating environment

Capacity of RTES to execute specified algs for control tasks

HW structure, operating system, application SW



Cost Functions and Hard Deadlines

Hard deadline: max controller (computer) ``think'' time 
that will allow the controlled process to be kept within 
allowed state space SA.
Cost function: of the response time ξ
C (ξ) = P (ξ) - P (0)
where P(ξ) = performability associated with response 
time ξ.
Example 2.8 on pp. 23--25, keeping a body of mass m
in SA = [-b, b].



Estimation of Task Execution Times

Reading: Revised chapter on WCET estimation
Task execution time depends on

Source code
Compiler: non-unique mapping of source to object code
Machine architecture: regs, cache, memory, pipeline,...
OS: task scheduling, memory management,...

Need an ideal tool:

Task Execution

Time Estimator

OS Description

Machine
Architecture

Compiler

Source code
Task Execution 

Time



Analysis of Straight-line Source Code
1. L1:  a := b*c;
2. L2:  b := d+e;
3. L3:  d := a-f;

L1 can be translated to:

L1.1   Get the address of c
L1.2   Load c
L1.3   Get the address of b
L1.4   Load b
L1.5   Multiply
L1.6   Store into a

When does the execution time of L1 become
∑i=1

6 Texec(L1.i) ?

no pipeline, no interrupts
multiply time depends on data



What about loops and condtional 
branches?

L4:    while (p) do
L5:            Q1;
L6:            Q2;
L7:            Q3;
L8:    end_while;

L9:    if B1 then S1;
else if B2 then S2;

else if B3 then S3;
else S4;

end_if;

If B1 is true then T(B1)+T(S1)+ T(JMP).

If (not B1) · B2 then T(B1)+T(B2)+T(S2)+T(JMP).
…..

What if interrupts?



Why is it hard to estimate (worst-case) 
task execution time?

Difficult to determine # of times an instruction will be 
executed
Time to execute an instruction is not constant. Why?

Pipelining: data, control, and structural hazards
Out-of-order execution
Cache
Branch prediction
Multiple instructions per clock cycle are issued
Multiple cores on a single die

Instruction execution time depends  not only on the 
instruction itself and the data it operates on, but also 
on the state of the machine (execution of previous 
instructions)



Pipelining and Caches

Fetch →Decode →Operand Fetch→Execute
4 concurrent instructions in ``execution''
Timing complexity arises due to:

data inter-dependencies
(conditional) branches
interrupts

Caches to neutralize speed disparity between CPU and 
memory

Instruction cache (flushed due to branches and context switches)
Data cache (dependent on application)

SMART cache to avoid cache misses: divide into exclusive
and shared areas.
Why not virtual memory for real-time systems?



Features for Improving Processor 
Performance

Caches: to offset the gap between processor and 
main memory speeds
Pipelining: to speed up the execution by 
overlapping the execution of different instructions
Control speculation: to avoid pipeline stalls 
caused by conditional branches

How do these affect the estimation of WCET?
1. R. Heckmann et al.: Proceedings of the IEEE, July 

2003.
2. Krishna and Shin ``Estimating WCET”, Sep. 2008



Execution Times of Concurrent Tasks

So far, we discussed a single task/thread, but 
many RTESes require multiple dependent tasks to 
run concurrently on a multiprocessor/multicore 
system
Need to model concurrent tasks for their 
execution times and scheduling, e.g., article by 
Peng and Shin 1987
The system model must simultaneously consider  
both the processing architecture (platform) and 
the tasks (application)



The System Model

Platform architecture: distributed by connecting 
processing nodes (PNs) with an interconnection 
network

Each PN’s architecture, e.g., uni-/multi-processor, registers, 
pipeline, cache.
Operating system, e.g., VxWorks, QNX, WinCE, Greenhills
Network protocols, CAN, FlexRay, Ethernet, WLAN, p2p.

Task system: 
Application→communicating tasks →activities/modules.  
Object of assignment: tasks
Object of scheduling: modules or activities
Activities are modeled by GSPNs (Generalized Stochastic 
Petri Nets) then converted to CTMCs (Continuous-Time 
Markov Chains)
Precedence constraints on tasks



Applications modeling

Task-oriented: too coarse to capture 
details we want

Module-oriented: difficult to study
message scheduling policies
communication protocols
task execution stage of each PN

⇒ Need a new module-oriented model with 
finer granularity



Peng’s Approach

Contiguous stretches of code are combined into activities
while preserving precedence constraints and avg exec 
times.
GSPN to model activities and precedence constraints
⇒a sequence of CTMCs for modeling evolution of a task 
system.

State of each CTMC = execution stage each PN is in
State transition = execution of an activity

TFG (Task Flow Graph)  describes a task to be executed by 
a PN and consists of: Chain, AND-FORK & AND-JOIN, OR-
FORK & OR-JOIN, Loop
Task tree describes organization TFG with 4 subgraphs and 
basic execution objects (BEOs) with Root=TFG, leaf = BEO, 
layer #



Example Task Flow Graph



Task Tree for the Example TFG



Combination Process for an OR Graph



Definitions

Module: combination of 2 or more code stretches 
or modules (recursive)
Activity: largest module that can be formed w/o 
violating any precedence constraints
Marked Petri Net, C = (P,T,I,O, μ ) where μ: P→# of 
tokens for place p ∈ P.
GSPN: marked Petri Net w/ a nonnegative random 
firing delay for each transition t ∈ T.
Example GSPN models for SEND-RECEIVE-
REPLY, REQUEST-RESPONSE, WAITFOR



GPSN Model for SEND-RECEIVE-REPLY



GSPN Model for REQUEST-REPLY



GSPN Model for WAITFOR



System-Wide GSPN Example



CTMC Model
Tasks are invoked at t0=w1, w2, L, wl+1 = t0 +L
Sequence of CMTCs {Sk, Λk, Θk): k=1,2,L,  } where 

Sk =set of states reachable in [wk, wk+1); 
Λk: Sk × Sk → T = event-driven transition function;
Θκ: Sk → Sk+1 time-driven transition function.

At the beginning of L, mark system-wide GSPN by generating a 
token in each START place

Determine marking at time t ∈ [w1, w2) by event-driven transition 
firings.

Determine marking at time wj,  2 ≤ j ≤ by
token generation at START place
token removal from previous invocations
token movement via event transition from wj

Determine marking at time t ∈ [wj, wj+1) for j=2,L,   by event 
transition firings



CTMC Model for t ∈ [0,5)



CTMC Model for t ∈ [5,10)



What Do Models Say?

Each state in S= Uk=1 Sk represents which stage of task each 
PN is currently executing
S1 contains START state; Sl contains END state;
Si I Sj = ∅, ∀ i ≠ j.
If CFG contains loops then all state-transition rate (STR) 
diagrams are cyclic else acyclic
Depending on markings at wj, the STR diagram in [wj, wj+1) 
could be disconnected
Preserves precedence constraints
Some states are time-critical, e.g., (4,*,*,*).
# of simultaneously executable activities can be greater than 
# of processors available at the PN, e.g., (6,10,14,24).
⇒ Need to consider task assignment & scheduling
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