
Lecture Note #3
EECS 571

Principles of Real-Time Embedded
Systems

Kang G. Shin
CSE/EECS

University of Michigan

Characterization of RTES

Two big questions:
How to measure ``goodness'' of RTS ?
How to estimate exec time of a program given
source code & target architecture?

Which System Is Better?

Time

P
rob. density

System A
System B

W.r.t. average execution time?
W.r.t. predictability?
What about aM+bV, or (M,V)?
How do we rank the two?

How to Measure Performance of RTES?

Why not traditional measures, e.g., MIPS?
System A is a RISC with 1 instruction per 1.2
clock cycles
Sysemt B is a CISC with 1 instruction per 1.8
clock

Want RTS performance measures:
efficient encoding of relevant information
objective means for ranking candidate systems
for a given application
represent verifiable facts

Traditional Perf. Measures

Reliability: R(t)
Availability: A(t)
Throughput
Capacity reliability: Prob. not being in any of failure states
over [0,T].
Computational reliability, R(s,t,T): Prob. system can start
task T at time t and successfully complete it, where s is
system state at time t
Performability: Given n accomplishment levels, A1,
A2,…,An, performability is (P(A1), P(A2),…, P(An)), where
P(Ai) is probability the computer functions to allow the
controlled process to reach Ai.

Hierarchical View of Performability

View 0

View 1

View 2

View 3

Accomplishment levels: User’s view of controlled process

Accomplishment of controlled-process tasks as a
function of operating environment

Capacity of RTES to execute specified algs for control tasks

HW structure, operating system, application SW

Cost Functions and Hard Deadlines

Hard deadline: max controller (computer) ``think'' time
that will allow the controlled process to be kept within
allowed state space SA.
Cost function: of the response time ξ
C (ξ) = P (ξ) - P (0)
where P(ξ) = performability associated with response
time ξ.
Example 2.8 on pp. 23--25, keeping a body of mass m
in SA = [-b, b].

Estimation of Task Execution Times

Reading: Revised chapter on WCET estimation
Task execution time depends on

Source code
Compiler: non-unique mapping of source to object code
Machine architecture: regs, cache, memory, pipeline,...
OS: task scheduling, memory management,...

Need an ideal tool:

Task Execution

Time Estimator

OS Description

Machine
Architecture

Compiler

Source code
Task Execution

Time

Analysis of Straight-line Source Code
1. L1: a := b*c;
2. L2: b := d+e;
3. L3: d := a-f;

L1 can be translated to:

L1.1 Get the address of c
L1.2 Load c
L1.3 Get the address of b
L1.4 Load b
L1.5 Multiply
L1.6 Store into a

When does the execution time of L1 become
∑i=1

6 Texec(L1.i) ?

no pipeline, no interrupts
multiply time depends on data

What about loops and condtional
branches?

L4: while (p) do
L5: Q1;
L6: Q2;
L7: Q3;
L8: end_while;

L9: if B1 then S1;
else if B2 then S2;

else if B3 then S3;
else S4;

end_if;

If B1 is true then T(B1)+T(S1)+ T(JMP).

If (not B1) · B2 then T(B1)+T(B2)+T(S2)+T(JMP).
…..

What if interrupts?

Why is it hard to estimate (worst-case)
task execution time?

Difficult to determine # of times an instruction will be
executed
Time to execute an instruction is not constant. Why?

Pipelining: data, control, and structural hazards
Out-of-order execution
Cache
Branch prediction
Multiple instructions per clock cycle are issued
Multiple cores on a single die

Instruction execution time depends not only on the
instruction itself and the data it operates on, but also
on the state of the machine (execution of previous
instructions)

Pipelining and Caches

Fetch →Decode →Operand Fetch→Execute
4 concurrent instructions in ``execution''
Timing complexity arises due to:

data inter-dependencies
(conditional) branches
interrupts

Caches to neutralize speed disparity between CPU and
memory

Instruction cache (flushed due to branches and context switches)
Data cache (dependent on application)

SMART cache to avoid cache misses: divide into exclusive
and shared areas.
Why not virtual memory for real-time systems?

Features for Improving Processor
Performance

Caches: to offset the gap between processor and
main memory speeds
Pipelining: to speed up the execution by
overlapping the execution of different instructions
Control speculation: to avoid pipeline stalls
caused by conditional branches

How do these affect the estimation of WCET?
1. R. Heckmann et al.: Proceedings of the IEEE, July

2003.
2. Krishna and Shin ``Estimating WCET”, Sep. 2008

Execution Times of Concurrent Tasks

So far, we discussed a single task/thread, but
many RTESes require multiple dependent tasks to
run concurrently on a multiprocessor/multicore
system
Need to model concurrent tasks for their
execution times and scheduling, e.g., article by
Peng and Shin 1987
The system model must simultaneously consider
both the processing architecture (platform) and
the tasks (application)

The System Model

Platform architecture: distributed by connecting
processing nodes (PNs) with an interconnection
network

Each PN’s architecture, e.g., uni-/multi-processor, registers,
pipeline, cache.
Operating system, e.g., VxWorks, QNX, WinCE, Greenhills
Network protocols, CAN, FlexRay, Ethernet, WLAN, p2p.

Task system:
Application→communicating tasks →activities/modules.
Object of assignment: tasks
Object of scheduling: modules or activities
Activities are modeled by GSPNs (Generalized Stochastic
Petri Nets) then converted to CTMCs (Continuous-Time
Markov Chains)
Precedence constraints on tasks

Applications modeling

Task-oriented: too coarse to capture
details we want

Module-oriented: difficult to study
message scheduling policies
communication protocols
task execution stage of each PN

⇒ Need a new module-oriented model with
finer granularity

Peng’s Approach

Contiguous stretches of code are combined into activities
while preserving precedence constraints and avg exec
times.
GSPN to model activities and precedence constraints
⇒a sequence of CTMCs for modeling evolution of a task
system.

State of each CTMC = execution stage each PN is in
State transition = execution of an activity

TFG (Task Flow Graph) describes a task to be executed by
a PN and consists of: Chain, AND-FORK & AND-JOIN, OR-
FORK & OR-JOIN, Loop
Task tree describes organization TFG with 4 subgraphs and
basic execution objects (BEOs) with Root=TFG, leaf = BEO,
layer #

Example Task Flow Graph

Task Tree for the Example TFG

Combination Process for an OR Graph

Definitions

Module: combination of 2 or more code stretches
or modules (recursive)
Activity: largest module that can be formed w/o
violating any precedence constraints
Marked Petri Net, C = (P,T,I,O, μ) where μ: P→# of
tokens for place p ∈ P.
GSPN: marked Petri Net w/ a nonnegative random
firing delay for each transition t ∈ T.
Example GSPN models for SEND-RECEIVE-
REPLY, REQUEST-RESPONSE, WAITFOR

GPSN Model for SEND-RECEIVE-REPLY

GSPN Model for REQUEST-REPLY

GSPN Model for WAITFOR

System-Wide GSPN Example

CTMC Model
Tasks are invoked at t0=w1, w2, L, wl+1 = t0 +L
Sequence of CMTCs {Sk, Λk, Θk): k=1,2,L, } where

Sk =set of states reachable in [wk, wk+1);
Λk: Sk × Sk → T = event-driven transition function;
Θκ: Sk → Sk+1 time-driven transition function.

At the beginning of L, mark system-wide GSPN by generating a
token in each START place

Determine marking at time t ∈ [w1, w2) by event-driven transition
firings.

Determine marking at time wj, 2 ≤ j ≤ by
token generation at START place
token removal from previous invocations
token movement via event transition from wj

Determine marking at time t ∈ [wj, wj+1) for j=2,L, by event
transition firings

CTMC Model for t ∈ [0,5)

CTMC Model for t ∈ [5,10)

What Do Models Say?

Each state in S= Uk=1 Sk represents which stage of task each
PN is currently executing
S1 contains START state; Sl contains END state;
Si I Sj = ∅, ∀ i ≠ j.
If CFG contains loops then all state-transition rate (STR)
diagrams are cyclic else acyclic
Depending on markings at wj, the STR diagram in [wj, wj+1)
could be disconnected
Preserves precedence constraints
Some states are time-critical, e.g., (4,*,*,*).
of simultaneously executable activities can be greater than
of processors available at the PN, e.g., (6,10,14,24).
⇒ Need to consider task assignment & scheduling

	Lecture Note #3�EECS 571� Principles of Real-Time Embedded Systems��Kang G. Shin�CSE/EECS�University of Michigan �
	Characterization of RTES
	Which System Is Better?
	How to Measure Performance of RTES?
	Traditional Perf. Measures
	Hierarchical View of Performability
	Cost Functions and Hard Deadlines
	Estimation of Task Execution Times
	Analysis of Straight-line Source Code
	What about loops and condtional branches?
	Why is it hard to estimate (worst-case) task execution time?
	Pipelining and Caches
	Features for Improving Processor Performance
	Execution Times of Concurrent Tasks
	The System Model
	Applications modeling
	Peng’s Approach
	Example Task Flow Graph
	Task Tree for the Example TFG
	Combination Process for an OR Graph
	Definitions
	GPSN Model for SEND-RECEIVE-REPLY
	GSPN Model for REQUEST-REPLY
	GSPN Model for WAITFOR
	System-Wide GSPN Example
	CTMC Model
	CTMC Model for t 2 [0,5)
	CTMC Model for t 2 [5,10)
	What Do Models Say?

