
1

Lecture Note #4: Task Scheduling (1)
EECS 571

Principles of Real-Time Embedded 
Systems

Kang G. Shin
EECS Department

University of Michigan



Reading Assignment

Liu and Layland’s paper
Chapter 3 of the text
HW#2 has already been posted.

2



3

Main Question

Will my real-time application really meet its timing
constraints/requirements?

Task Assignment and Scheduling:  Given a set of 
tasks, precedence constraints, resource requirements, 
their execution times, release times, and deadlines, 
and a processing system, design a feasible/optimal 
allocation/scheduling of tasks on the processing 
system.
Terminologies: feasibility, optimality, lateness, 
absolute/relative/effective deadlines, absolute/effective 
release times.



4

Components of Task Assigment & Scheduling

Precedence relation ≺ (T) =  the set of tasks that must 
be completed before task T can begin its execution

Resource requirements: processor, memory, bus, 
disk,...

Exclusive
Shared (read-only, read-write)

Schedule S: set of processors × time → set of tasks
off-line or online
static or dynamic priority alg
preemptive or nonpreemtive
uniprocessor or multiprocessor



5

Terminology

Hard deadline: late result is of little or no value, or may 
lead to catastrophe

need to guarantee it
Soft deadline: late result may still be useful

probability of missing deadlines 
With prob. 0.95 a telephone switch connects in 10 seconds

How serious is serious?
Tardiness:  

min{ 0, deadline - completion time}
Utility: 

function of tardiness
completion time

value



6

Terminology: Temporal Parameters

Release time: 
fixed (r), jitter [ r-Δ, r+Δ ], sporadic or aperiodic

Execution time:
Unpredictability due to memory refresh, contention due to DMA, 
pipelining, cache misses, interrupts, OS overhead
Execution-path variations

WCET: a “deterministic” parameter for the worst-case 
execution time

a conservative measure
an assumption to make scheduling and validation feasible 
how can you measure the WCET of a job?



7

Effective release time and deadline

Release time of a job can be later than that of its 
successor
Deadline of a job can be earlier than that of its 
predecessor
Effective release timei = max {release timei, effective 
release times of all its precedessors}
Effective release time = release time if no predecessor

Effective deadlinei = min {deadlinei, deadlines of all its 
successors}
Effective deadline = deadline if no successor



8

Classical Uniprocessor Scheduling 
Algorithms

Rate Monotonic (RM): statically assign higher 
priorities to tasks with lower periods
Deadline Monotonic (DM): the smaller relative deadline
the higher priority.
Earliest Deadline First (EDF): the earlier the deadline, 
the higher the priority; optimal if preemption is 
allowed and jobs do not contend for resources.
Minimum-Laxity-First (MLF): the smaller the laxity the 
higher priority; optimal just like EDF.



9

Assumptions and Task Models for Classical 
Sched Algs

Assumptions:
Fully preemtable with negligible costs,
Independent tasks, i.e., no precedence constraints between 
tasks
CPU is the only resource to deal with.

Task Model:
Characterized by a subset of period/interarrival time, phase, 
execution time, absolute/effective release time, 
absolute/relative/effective deadline.
Example: Periodic task Ti = (φi, Pi, ei, di) = (phase, period, 
execution time, relative deadline)
Task vs. job



10

More on Task model

Periodic task Ti: (examples?)
constant (or bounded) period, pi: inter-release time between two 
consecutive jobs
phase φi, utilization ui = ei / pi, deadline (relative) Di

Aperiodic and sporadic:  (examples?)
Sporadic: uncertain interarrival times but with a minimum 
separation and with a hard deadline
aperiodic: non-periodic with no minimum separation and usually 
with a soft or no deadline

φi φi+pi φi+3piφi+2pi

ei

Di



11

waiting

executing

ready

blocked suspended
dispatched

wake-up

Task Functional Parameters
Preemptivity: suspend the executing job and switch to a 
different job 

should a job (or a portion of job) be preemptable
context switch: save the current process status (PC, registers, etc.) 
and initiate a ready job

Preemptivity of resources: concurrent use of resources or 
critical section

lock, semaphore, disable interrupts
How can a context switch be triggered?

Assume you want to preempt an executing job, why?
a higher priority job arrives
Use up the assigned time quantum



12

Task Scheduling

Schedule: to determine which job is assigned to a 
processor at any given time

valid schedule: satisfies constraints (release time, WCET, 
precedence constraints, etc.)
feasible schedule: meet job deadlines

Need an algorithm to generate a schedule
optimal scheduling algorithm: can always find a feasible 
schedule if any other alg can

Scheduler or dispatcher: the mechanism to implement
a schedule
Interaction between schedulers



13

Commonly-Used Real-Time Scheduling 
Approaches

Clock-Driven: determines which job to execute when. 
All parameters of hard RT jobs are fixed and known; a 
schedule is computed off-line and stored for use at 
runtime.
Weighted Round-Robin: for high-speed networks, 
where length of a round = sum of all weights.
Priority-Driven: assigns priorities to jobs and executes 
jobs in priority order,

Static priority assignment: Rate or Deadline Monotonic
Dynamic priority assignment: Earliest Deadline First (EDF), 
Minimum Laxity First (MLF).



14

Clock-driven 
a schedule determines (off-line) which job to be executed at each 
instant
static or cyclic
predictable and deterministic
scheduler: invoked by a timer
multiple tables for different operation modes

Clock-Driven Task Scheduling

p1= 6, e1= 3, d1= 6
p2= 8, e2= 3, d2= 8 Major cycle = lcm (6,8) = 24



15

Clock-Driven RT Scheduling, cont’d

Time line is partitioned into frames, each with length
f ≥ max1≤ i ≤ n ei   and f must also be a divisor of the 
planning (major) cycle, F= d L/f e.
Scheduling decisions are made at the beginning of 
each frame, not within a frame.
The first job of each task is released at the beginning 
of some frame.
Cyclic executive: table-driven scheduler.
Scheduling block L(k): names of job slices scheduled 
to execute within frame k.



16

Cyclic Executive
Input: stored schedule: L(k) for k=0,1,L, F-1; /*F=# of frames per major cycle*/

Aperiodic job queue
Task CYCLIC_EXECUTIVE:

current time t=0;  current frame k=0;
do forever

accept clock interrupt at time tf;
currentBlock = L(k);
t := t+1;    k:= t mod F;
if the last job is not completed, take appropriate action;
if any of the slices in currentBlock is not released, take action;
wake up the periodic server to execute the slices in current Block;
sleep until the periodic server completes;/*completes periodic job slices*/
while the aperiodic job queue is nonempty,

wake up the job at the head of the aperiodic queue;
sleep until the aperiodic job completes:
remove the aperiodic job from the queue:

endwhile;
sleep until the next clock interrupt;

enddo;
end CYCLIC_EXECUTIVE



17

Weighted Round-robin 
interleave job executions
allocate a time slice to each job in the FIFO queue
time slice may vary while sharing the processor 
good for pipelined jobs, e.g., network packets

Round-Robin Task Scheduling

p1= 6, e1= 3, d1= 6
p2= 8, e2= 3, d2= 8 Major/planning cycle = LCM (6,8) = 24



18

Priority-driven 
The highest-priority job gets to run until completion or blocked
A processor is never idle if ready jobs are waiting (work-conserving)
preemptive or non-preemptive
priority assignment can be static or dynamic
Scheduler just looks at the priority queue for waiting jobs (list schedule)

Priority-Driven Task Scheduling

p1= 6, e1= 3, d1= 6
p2= 8, e2= 3, d2= 8 Major cycle = lcm (6,8) = 24



19

Preemptive dynamic priority scheduling
a job with earliest (absolute) deadline has the highest priority
does not require the knowledge of execution time

Optimal if
single processor, no resource contention, preemptive
why is this optimal? assume a feasible schedule

Earliest-Deadline-First (EDF) Schedule

dk di

JkJi

rk

dk di

JkJk Ji

(non-EDF)

(EDF)



20

Preemptive priorityscheduling based on slack time (di - ei
* )

schedule instants: when jobs are released or completed.
optimal for preemptive single processor schedule

Least Slack Time (LST) Schedule

J1

J2

J3

Slack
time

LST



21

Non-preemptive or multiple processors
scheduling anomaly --- the schedule fails even after we reduce
job execution times

Non-optimality of EDF

T1

T2

T3

D1 D2 D3

Missed deadline

idle

( all jobs meet their deadline under EDF after increasing e1 )  



22

Predictable System

With variant job execution times, do we know when a task is 
started or completed?
If the start & completion times and the deadline are known, 
then we can determine whether a schedule is feasible or not
Two extreme conditions:

maximal schedule: all jobs take their maximal execution times
minimal schedule: all jobs take their minimal execution times

A job is predictable iff its start and complete times are 
predictable:

s- ( Ji ) ≤ s ( Ji ) ≤ s+ ( Ji )
f - ( Ji ) ≤ f ( Ji ) ≤ f+ ( Ji )

The execution of every job in a set of independent, preemptive 
jobs with fixed release times is predictable when scheduled in 
a priority-driven manner on a single processor



23

On-line vs. Off-line Scheduling
Off-line scheduling: the schedule is computed off-line and is based 
on the knowledge of the release times and execution times of all 
jobs.

A system with fixed sets of functions and job characteristics does not vary or vary 
only slightly.

On-line scheduling: a scheduler makes each scheduling decision 
without knowledge about the jobs that will be released in future.

there is no optimal on-line schedule if jobs are non-preemptive
when a job is released, the system can serve it, or wait for future jobs

r1 r2 D2 D1

r1 r3 D1 and D3

( should wait for J2 )

( should begin  J1 )J1 J3

J2 J1



24

Aperiodic Tasks
A periodic server follows the cyclic schedule 
A aperiodic server looks at the aperiodic task queue 

runs at the background
Slack stealing 

slack time: how much each periodic task can be delayed
Assume all tasks must be completed before the end of their 
frames and aperiodic tasks are not preemptable

at frame k, ek is allocated to periodic tasks
slack time: s= f - ek
at the beginning of frame k, find an aperiodic task j with an execution time 
ej that is less than s
try to run the other aperiodic task with a slack time: s=s - ej

Do slack stealing at the beginning of each frame and then 
examine the queue when idle



25

Sporadic Tasks

Accept if the sporadic task can be done before its deadline
If more than one sporadic task  ⇒ EDF
Assume tasks are preemptable (run across frame boundary) 
When a sporadic task arrives ---- schedule it immediately or at the 
beginning of the next frame

is there enough slack time before its deadline and for every existing 
sporadic task

Bookkeeping
slack time from frame i to l: σ(i,l), l=1,2,3,…, F
for each sporadic task, remaining execution time and slack time

Let the deadline of an arriving task is in frame l+1 
is there enough slack time for all tasks with a deadline before frame l+1?
for each task with a deadline later than frame l+1, can it be delayed by the 
new arrival?



26

3.5 3 2 3 3

4 8 12 16 20

24 28 32 36 40

44 48 52 56 60

Sporadic Tasks -- Example

A table of σ(i,l), i,l=1,2,3,…, F
Assume

S1(17,4.5) arrives at time 3 --- checks at time 4
S2(29,4) arrives at time 5
S3(22,1.5) arrives at time 11
S4(44,5.0) arrives at time 14



27

Summary of Cyclic Schedule
Pros

simple, table-driven, easy to validate (knows what is doing at any moment)
fits well for harmonic periods and small system variations
static schedule ⇒ deterministic, static resource allocation, no preemption
small jitter
no scheduling anomalies

Cons
difficult to change (need to re-schedule all tasks)
fixed released times for the set of tasks
difficult to deal with different temporal dependencies
schedule algorithm may get complex (NP-hard)
doesn’t support aperiodic and sporadic tasks efficiently


	Lecture Note #4: Task Scheduling (1)�EECS 571�  Principles of Real-Time Embedded Systems��Kang G. Shin�EECS Department�University of Michigan �
	Reading Assignment
	Main Question
	Components of Task Assigment & Scheduling
	Terminology
	Terminology: Temporal Parameters
	Effective release time and deadline
	Classical Uniprocessor Scheduling Algorithms
	Assumptions and Task Models for Classical Sched Algs
	More on Task model
	Task Functional Parameters
	Task Scheduling
	Commonly-Used Real-Time Scheduling Approaches
	Clock-Driven Task Scheduling
	Clock-Driven RT Scheduling, cont’d
	Cyclic Executive
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Predictable System
	Slide Number 23
	Aperiodic Tasks
	Sporadic Tasks
	Sporadic Tasks -- Example
	Summary of Cyclic Schedule

