Lecture Note #5: Task Scheduling (2) EECS 571 Principles of Real-Time Embedded Systems

Kang G. Shin EECS Department University of Michigan

Priority-Driven Scheduling of Periodic Tasks

Why priority-driven scheduling?

- use priority to represent urgency/importance
- easy implementation of scheduler (compare task priorities and dispatch tasks accordingly)
- tasks can be added or removed easily
- no direct control of execution instant
- How can we analyze the schedulability if we don't know when a task is to be executed?

Let's begin a deterministic case in a single processor

- Independent periodic tasks
- Relative deadline = period
- Preemptable without any limit
- no overhead for context switch

Priority-Driven Schedules

□ Assign priority when jobs arrive

- static -- all jobs of a periodic task have the same fixed priority
- dynamic -- different priorities to individual jobs of a periodic task
- relative priorities don't change while jobs are waiting for execution

Static priority schedules

- Rate-monotonic (RM) -- the higher the task frequency, the higher its priority
- Deadline-monotonic (DM) the shorter relative deadline, the higher priority

Dynamic priority schedules

- EDF -- earliest deadline first
- LSTF (MLF)-- least slack time (laxity) first

Schedulable utilization:

A scheduling algorithm can feasibly schedule any set of priority tasks if the total utilization is equal to or less than its schedulable utilization

EDF Schedule

- Optimal for uniprocessor systems and preemptable tasks
- □ How do we know if a set of periodic tasks are schedulable under EDF?
- □ If we know the schedulable utilization S_U of EDF, then any set of tasks is schedulable as long as $U \leq S_U$
- □ Theorem: A set of *n* periodic tasks can be scheduled by EDF iff

$$\boldsymbol{U} = \sum_{i=1}^{n} \frac{\boldsymbol{e}_i}{\boldsymbol{p}_i} \leq 1$$

Proof

- the only-if part is obvious
- ♦ the if part --- show if there is a job misses its deadline, then U > 1

Extension of EDF Schedulable Utilization

- □ If $D_i \ge p_i$, EDF is schedulable iff $U \le 1$
- □ What can we do if $D_i < p_i$
 - density of task $k : \delta_k = e_k / min(p_k, D_k)$
 - *EDF* is schedulable if the total density is equal to or less than 1
 - proof: if there is a job missing its deadline, then the total density > 1
 - there is no "only-if" part ---- if the total density > 1, EDF may or may not be schedulable
- □ If $D_i \ge p_i$, *LSTF* is schedulable iff $U \le 1$
- Predictable for uniprocessor preemptive scheduling of independent tasks
- Robust
 - independent of phases
 - ◆ periods are lower bound ⇒ applicable to sporadic tasks with minimum separations

Example of EDF Schedule

□ A digital robot with EDF schedule

- ♦ control loop: $e_c \le 8ms$ at 100Hz
- ♦ BIST (Built-In-Self-Testing): $e_b \le 50$ ms
- given

$$u_c + u_b = \frac{8}{10} + \frac{50}{p_b} \le 1$$

BIST can be done every 250ms

Add a telemetry task to send and receive messages with $e_t \le 15$ ms

- if BIST is done every 1000ms
- given

$$u_c + u_b + ut = \frac{8}{10} + \frac{50}{1000} + \frac{15}{D_t} \le 1$$

- the telemetry task can have a relative deadline of 100ms
 - \Rightarrow sending or receiving must be separated by at least 100ms

Rate-Monotonic Scheduling Algorithm Liu and Layland 1973

- □ A base case: no additional overhead, simple periodic tasks with $p_i = D_i$
- Assign priorities according to their periods
 - ✤ T_i has a higher priority than T_k if i < k ($p_i < p_k$)
 - Is RM optimal? \Rightarrow if there is a feasible fixed-priority schedule, then so is RM
 - ✤ How do we know RM is feasible ⇒ schedulability test

Results:

- ♦ RM is optimal if $p_i \ge D_i$
- ♦ sufficient condition ⇒ utilization test

$$U = \sum_{i=1}^{n} \frac{e_i}{p_i} \le n(2^{1/n} - 1)$$

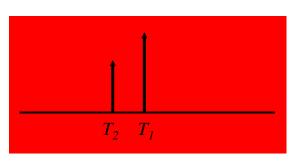
★ a complete test ⇒ what is the worst-case response time given all possible arrivals and preemptions

Critical Instant

- Critical instant of *T_i*: a job of *T_i* arriving at the critical instant x^{*} has a maximum response time, i.e., R_i (x^{*}) ≥ R_i(x), ∀ x where R_i(x) is response time of task T_i that arrived at time x
- **If we can find the critical instant of** T_i , then
 - check whether all jobs of T_i meet their deadlines
 - let's increase e_i until the maximum response time = D_i

 \Rightarrow schedulable utilization

- In-phase instant is critical: all higher priority tasks are released at the same instant of J_{i,c} (assume all jobs are completed before the next job is released.)
 - which T₂ has the maximum response time?



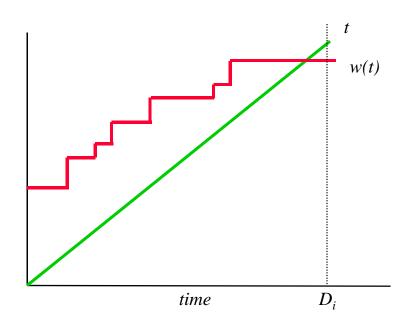
Schedulability Test: Time-Demand Analysis

- **Consider in-phase instant only**
- □ If J_i is done at *t*, then the total work must be done in [0,t] is (from J_i and all higher priority tasks): time demand function

$$\boldsymbol{w}_{i}(t) = \boldsymbol{e}_{i} + \sum_{k=1}^{i-1} \left[\frac{t}{\boldsymbol{p}_{k}} \right] \boldsymbol{e}_{k}$$

- **Can we find a** $t \le D_i$ such that $w_i(t) \le t$
 - ♦ cannot check all $t \in [0, D_i]$
 - check all arrival instants and D_i
- □ The completion time of *J_i* satisfies

$$t = \mathbf{e}_i + \sum_{k=1}^{i-1} \left\lceil \frac{t}{\mathbf{p}_k} \right\rceil \mathbf{e}_k$$



Schedulability Test

EDF has a schedulable utilization of 1, how about RMS?

- □ If $D_i = p_i$, the schedulable utilization exists
 - ♦ if $U \le n$ ($2^{1/n} 1$), done
 - else do time-demand analysis

\Box if $D_i < p_i$, do time-demand analysis

\Box if $D_i > p_i$, there may be more than one job of task *i* in the system

- examine all jobs of task i in a level-i busy interval (in-phase)
- the following equations represent this case:

$$w_{i,j}(t) = j e_i + \sum_{k=1}^{i-1} \left[\frac{t}{p_k} \right] e_k \text{ for } (j-1)p_i < t \le w_{i,j}(t)$$
$$t = w_{i,j}(t - (j-1)p_i) - (j-1)p_i$$

Schedulable Utilization of RMS

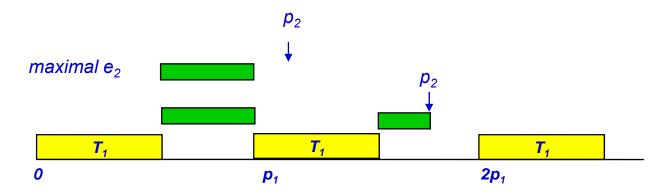
Must be less than 1

Let's consider two tasks and relative deadline=period

♦ T_2 can only be executed when T_1 is not in the system

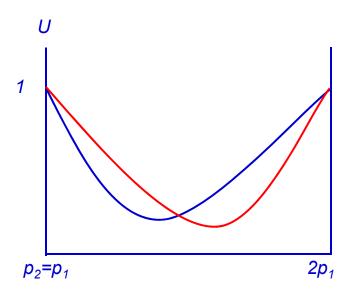
□ Let $p_2 < 2p_1$. Determine the maximum schedulable e_2

- ♦ If $p_2 < p_1 + e_1$, $max(e_2) = p_1 e_1$ $⇒ U = e_1 / p_1 + (p_1 e_1) / p_2$



Schedulable Utilization of RMS

Given e_1 , p_1 , and p_2 , plot UThe minimum U occurs when $p_2=p_1+e_1$ where $U=e_1/p_1+(p_1-e_1)/(p_1+e_1)$



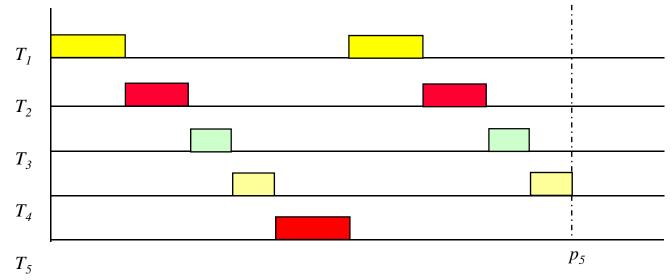
□ What is the minimum U?

✤ take the derivative wrt to p_1 and set $dU/dp_1=0$

• we will get $e_1 = (2^{1/2} - 1)p_1$ and U = 0.828...

Schedulable Utilization of RMA

- **U** $U \le n (2^{1/n} 1)$
- Is there a case that is feasible and gives the minimum schedulable utilization
- $\Box \quad \text{When } p_n \leq 2 p_1$
 - processor must be busy in [0,p_n]
 - become unscheduable if we increase any e_i
 - processor will be idle if we increase p_i



Schedulable Utilization of RMA

□ What do we have from the timeline diagram?

$$U = (\frac{p_2}{p_1} - 1) + (\frac{p_3}{p_2} - 1) + \dots + (\frac{p_n}{p_{n-1}} - 1) + (\frac{2p_1}{p_n} - 1)$$
$$= q_{2,1} + q_{3,2} + \dots + q_{n,n-1} + \frac{2}{q_{2,1}q_{3,2} - n} - n$$

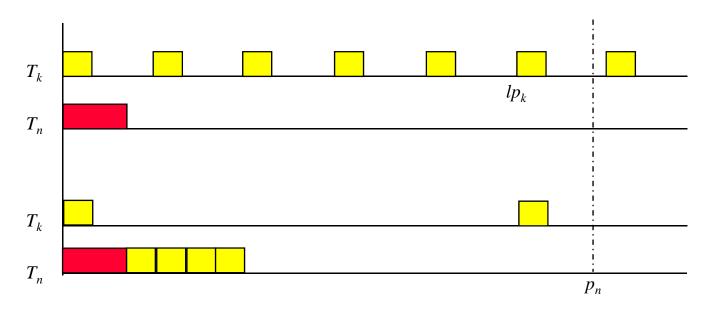
Can we increase e_1 and decrease e_k by the same amount

- still schedulable for the 1st arrival of all tasks
- utilization is higher
- \Box Can we decrease e_1 and increase e_k
- □ When will U be minimum ? ----- when $q_{2,1}=q_{3,2}=\ldots=2/n$

Schedulable Utilization of RMA

□ When $p_n > 2p_k$ and schedulable

- ♦ construct a new task set that is schedulable and $p_n \le 2 p_k$
- the original set has a higher utilization



Schedulability: Response time test

- Theorem: for a set of independent, periodic tasks, if each task meets its first deadline, with worst-case task phasing, the deadline will always be met.
- □ **Response Time** (RT) test: let a_n = response time of task *i*. a_n may be computed by the following iterative formula:

$$a_{n+1} = e_i + \sum_{j=1}^{i-1} \left[\frac{a_n}{p_j} \right] e_j$$
 where $a_0 = \sum_{j=1}^{i} e_j$

- ♦ Test terminates when $a_{n+1} = a_n$
- ◆ Task *i* is schedulable if its response time is before its deadline: $a_n \le p_i$

Necessary and Sufficent RM-Schedulability

<u>Theorem 3.4.</u> Given a set of n periodic tasks with $P_1 \le P_2 \le \cdots \le P_n$, task T_i can be feasibly scheduled using RM iff $L_i = \min_{0 < t \le P_i} W_i(t)/t \le 1$, where $W_i(t) = \sum_{j=1}^i e_j [t/P_j]$.

Practical Question: How to check for $W_i(t) \le t$ easily?

- Only need to compute $W_i(t)$ at $\tau_i = kP_j$, $j=1,2,\cdots$, $i; k=1,\cdots, \lfloor P_i/P_j \rfloor$
- Two RM-schedulability conditions:
 - > If $min_{t \in \tau_i}W_i(t) \le t$, then T_i is RM-schedulable.
 - > If $max_{i \in \{1, \cdots, n\}} \min_{t \in \tau_i} W_i(t)/t \le 1$, then the entire task set is RM-schedulable.

Example: UB Test

	е	p	U
Task $ au_{I}$	20	100	0.200
Task $ au_2$	40	150	0.267
Task $ au_3$	100	350	0.286

Total utilization is

.200 + .267 + .286 = .753 < U(3) = .779

The periodic tasks in the example are schedulable according to the UB test.

Example: Applying RT Test (1)

- If we increase the compute time of *τ*₁ from 20 to 40; is the task set still schedulable?
- □ Utilization for the first task : 40/100=0.4 < U(1)
- □ Utilization of first two tasks: 0.667 < U(2) = 0.828
 - First two tasks are schedulable by UB test

□ Utilization of all three tasks: 0.953 > U(3) = 0.779

- UB test is inconclusive
- Need to apply RT test

Example: Applying RT Test (2)

Use RT test to determine if r_3 meets its first deadline: i = 3

$$a_{0} = \sum_{j=1}^{3} e_{j} = e_{1} + e_{2} + e_{3} = 40 + 40 + 100 = 180$$

$$a_{1} = e_{j} + \sum_{j=1}^{i-1} \left[\frac{a_{0}}{p_{j}} \right] e_{j} = e_{3} + \sum_{j=1}^{2} \left[\frac{a_{0}}{p_{j}} \right] e_{j}$$

$$= 100 + \left[\frac{180}{100} \right] (40) + \left[\frac{180}{150} \right] (40) = 100 + 80 + 80 = 260$$

Example: Applying RT Test (3)

$$a_{2} = e_{i} + \sum_{j=1}^{i-1} \left[\frac{a_{1}}{p_{j}} \right] e_{j} = 100 + \left[\frac{260}{100} \right] (40) + \left[\frac{260}{150} \right] (40) = 300$$
$$a_{3} = e_{i} + \sum_{j=1}^{i-1} \left[\frac{a_{2}}{p_{j}} \right] e_{j} = 100 + \left[\frac{300}{100} \right] (40) + \left[\frac{300}{150} \right] (40) = 300$$

 $a_3 = a_2 = 300$ Done!

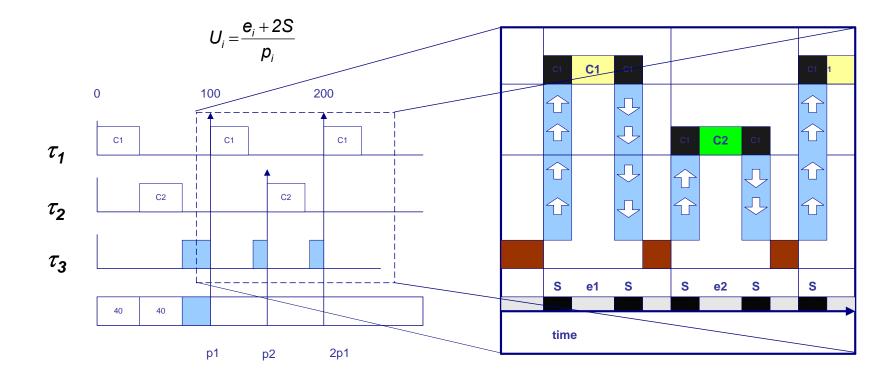
Task is schedulable using RT test.

♦ $a_3 = 300 < p_3 = 350$

(Another) Example 3.6

- **Task set:** $\{T_1, T_2, T_3, T_4\} = \{ (20, 100), (30, 150), (80, 210), (100, 400) \}.$
- □ Sets of time points of interest:
 - $\tau_1 = \{100\}$
 - τ₂ = {100, 150}
 - $\tau_3 = \{100, 150, 200, 210\}$
 - $\tau_4 = \{100, \, 150, \, 200, \, 210, \, 300, \, 400\}$
- **Schedulability conditions:**
 - T_1 is RM-schedulable iff $e_1 \le 100$
 - ★ T₂ is RM-schedulable iff $e_1 + e_2 \le 100$ OR $2e_1 + e_2 \le 150$
 - \bullet T₃ is RM-schedulable iff
 - $e_1 + e_2 + e_3 \le 100 \text{ OR}$ $2e_1 + e_2 + e_3 \le 150 \text{ OR}$ $2e_1 + 2e_2 + e_3 \le 200 \text{ OR}$ $3e_1 + 2e_2 + e_3 \le 210$
 - ✤ T₄ is RM-schedulable iff …

Modeling Task-Switching



Two scheduling actions per task (start of period and end of period)

Sporadic Tasks

Sporadic tasks have a min interarrival interval

For purpose of schedulability analysis:

- Consider them periodic, or
- Use a periodic polling server (PPS) to ``serve'' sporadic tasks, or
- Use a deferred server (DS):

Schedulability condition

 $\rm U \leq 1\textrm{-}U_{s}$ if $\rm U_{s} \leq 0.5$

 $\rm U \leq \rm U_{s}~$ if $\rm U_{s}$ > 0.5

- What shall we do if there are no sporadics to execute?
 - PPS: Keep CPU idle
 - > DS: Execute other tasks.

Transient Overload

- Question: What if the task with a smaller period is not important to the underlying application?
- Answer: Consider period transformation, period aggregation or period splitting
- **Example:** Consider the following *unschedulable* task set:

T_{i}	e_{i}	$a_i \ ({ m avg} \ { m exec} \ { m time})$	P_i	comments
T_1	20	10	100	
T_2	30	25	150	
T_3	80	40	210	non-critical
T_4	100	20	400	

Transient Load, cont'd

■ Solution 1: reduce T_3 's priority by lengthening its period, possible only if T_3 's relative deadline can be greater than its original period. In such a case, replace T_3 by two tasks $T_{3'}$ and $T_{3''}$, each with period 420, WC exec times $e_{3'} = e_{3''}$ = 80, avg exec times $a_{3'} = a_{3''} = 40$. $T_{3'}$ and $T_{3''}$ must be phased to be released 210 time units apart. If the set { T_1 , T_2 , $T_{3'}$, $T_{3''}$, T_4 } is RM-schedulable, done.

Solution 2: increase T₄'s priority by splitting each invocation into two: T₄': e₄' = e₄/2, a₄' = a₄/2, P₄' = P₄/2

 \Box {T₁, T₂, T₄} or {T₁, T₂, T₄'} are schedulable

Period Transformation

When the task set T is RM-unscheduable, PT decomposes T = C ∪ NC, where
 C = {all critical tasks} ∪ {some non-criticals}
 NC = {remaining non-criticals}

$$\Box \mathbf{P}_{\mathsf{c},\mathsf{max}} \leq \mathbf{P}_{\mathsf{n},\mathsf{min}}$$

C is RM-schedulable under worst-case execution times.

Summary of discussion so far

- System model parameters: task and processor sets, task precedence constraints, task release and execution times, deadlines, periods, …
- **Problem: Find a feasible schedule**
- Rate monotonic scheduling of periodic tasks without precedence constraints or resource requirements
- □ Sufficient RM-schedulability condition: $U = \sum_{i=1}^{n} e_i / P_i \le n \ (2^{1/n} - 1) \rightarrow 0.69 \text{ as } n \rightarrow \infty.$
- □ Necessary and sufficient RM-schedulability condition: T_i is schedulable iff the equation $t = \sum_{j=1}^{i} e_j [t/P_j]$ has a solution for $t < P_i$.
- Handling sporadic tasks: periodic polling server, deferred server
- **Transient overload and period transformation.**

Schedulability with Interrupts

Interrupt processing can be inconsistent with RM priority assignment.

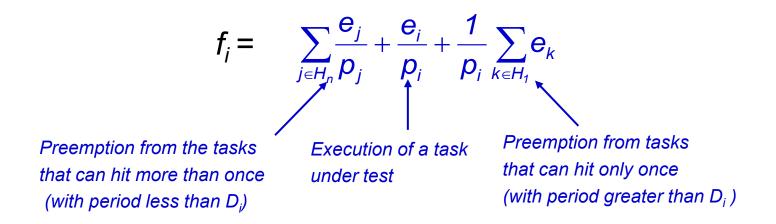
- interrupt handler executes with higher priority irrespective of its period
- interrupt processing may delay execution of tasks with shorter periods

Effects of interrupt processing must be accounted for in schedulability model.

Task(i)	Period(p)	WCET(e)	Priority	Deadline(D)
$ au_3$	200	60	HW	200
$ au_1$	100	20	High	100
$ au_2$	150	40	Medium	150
$ au_4$	350	40	Low	350

UB Test with Interrupt Priority

Test is applied to each task
 Determine effective utilization (*f_i*) of each task *i* using



□ Compare effective utilization against bound, U(n). $n = num(H_n) + 1$ $num(H_n) =$ the number of tasks in the set H_n

□ For τ_3 , no tasks have higher priority: $H = H_n = H_1 = \{\}.$

$$f_3 = 0 + \frac{e_3}{p_3} + 0 \le U(1)$$

□ Note that utilization bound is U(1): num(H_n) = 0.

$$f_3 = \frac{e_3}{p_3} = \frac{60}{200} = 0.3 < 1.0$$

□ For τ_1 , τ_3 has priority over τ_1 : $H = {\tau_3}; H_n = {}; H_1 = {\tau_3}$. $H_1 = {\tau_3}.$ $f_1 = 0 + \frac{e_1}{p_1} + \frac{1}{p_1} \sum_{k=3}^{n} e_k \le U(1)$

Utilization bound is U(1) since $num(H_n) = 0$.

$$f_1 = \frac{e_1}{p_1} + \frac{e_3}{p_1} = \frac{20}{100} + \frac{60}{100} = 0.800 < 1.0$$

□ For
$$\tau_2$$
: $H = \{\tau_1, \tau_3\}; H_n = \{\tau_1\}; H_1 = \{\tau_3\};$

$$f_{2} = \sum_{j=1}^{\infty} \frac{e_{j}}{p_{j}} + \frac{e_{2}}{p_{2}} + \frac{1}{p_{2}} \sum_{k=3}^{\infty} e_{k} \leq U(2)$$

□ Note that utilization bound is U(2): num(H_n) = 1.

$$f_2 = \frac{e_1}{p_1} + \frac{e_2}{p_2} + \frac{e_3}{p_3} = \frac{20}{100} + \frac{40}{150} + \frac{60}{200} = 0.867 > 0.828$$

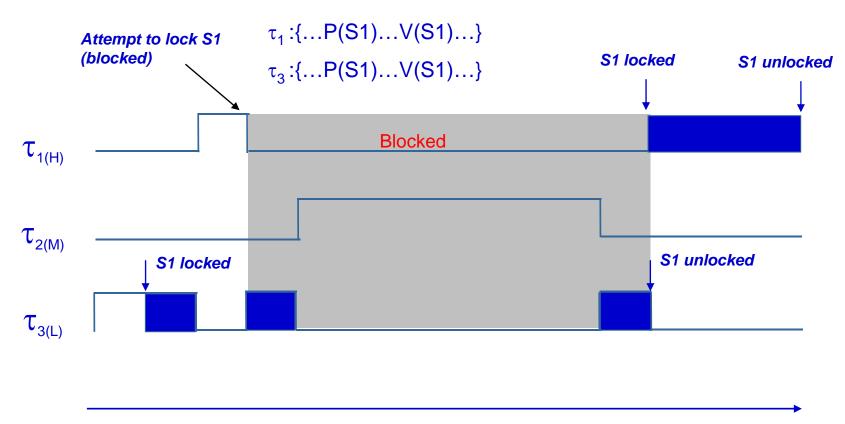
$$\square H = \{\tau_1, \tau_2, \tau_3\}; H_n = \{\tau_1, \tau_2, \tau_3\}; H_1 = \{\};$$

$$f_4 = \sum_{j=1,2,3} \frac{e_j}{p_j} + \frac{e_4}{p_4} + 0 \le U(4)$$

□ Note that utilization bound is U(4): num(H_n) = 3.

$$f_{4} = \frac{e_{1}}{p_{1}} + \frac{e_{2}}{p_{2}} + \frac{e_{3}}{p_{3}} + \frac{e_{4}}{p_{4}}$$
$$= \frac{20}{100} + \frac{40}{150} + \frac{60}{200} + \frac{60}{350} = 0.882 > 0.756$$

Priority Inversion in Synchronization



Priority Inversion

- Delay to a task's execution caused by interference from, or blocking by, lower priority tasks is known as priority inversion
- Priority inversion is modeled by blocking time
- Identifying and evaluating the effect of sources of priority inversion is important in schedulability analysis
- Sources of priority Inversion
 - Synchronization and mutual exclusion
 - Non-preemtable regions of code
 - FIFO (first-in-first-out) queues, e.g., Windows DPC

Accounting for Priority Inversion

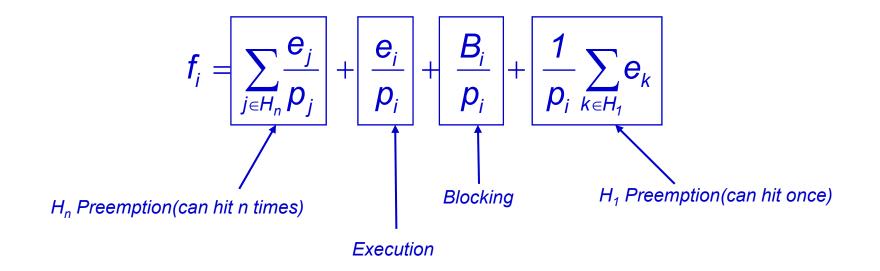
Recall that task schedulability is affected by

- preemption: two types of preemption
 - can occur several times per task period
 - > can occur once per period
- execution: once per period
- blocking: at most once per period for each source

The schedulability formulas are modified to add a "blocking" or "priority inversion" term to account for inversion effects

UB Test with Blocking

Include blocking time in calculation of effective utilization for each task:



Response Time Test with Blocking

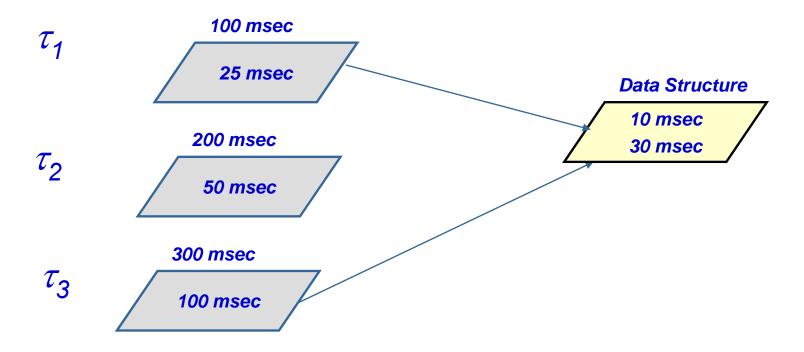
Blocking is also included in the RT test

$$a_{n+1} = B_i + e_i + \sum_{j=1}^{i-1} \left[\frac{a_n}{p_j} \right] e_j$$
where $a_0 = B_i + \sum_{j=1}^{i} e_j$

Perform test as before, including blocking effect

Example: Considering Blocking

Consider the following example



What is the worst case blocking effect (priority inversion) experienced by each task ?

Example: Adding Blocking

- □ Task τ_2 does not use the data structure. Task τ_2 experiences no priority inversion
- □ Task τ_1 shares the data structure with τ_3 . Task τ_1 may have to wait for τ_3 to complete its critical section. But worse, if τ_2 preempts while τ_1 is waiting for the data structure, τ_1 may have to wait for τ_2 's entire computation.
- This is the resulting table

task	Period	Execution Time	Priority	Blocking delay	Deadline
$ au_1$	100	25	High	30+50	100
$ au_2$	200	50	Medium	0	200
$ au_3$	300	100	Low	0	300

UB Test for Example

UB test with blocking:

$$f_i = \sum_{j \in H_n} \frac{e_j}{p_j} + \frac{e_i}{p_i} + \frac{B_i}{p_i} + \frac{1}{p_i} \sum_{k \in H_1} e_k$$

 $f_1 = \frac{e_1}{p_1} + \frac{B_1}{p_1} = \frac{25}{100} + \frac{80}{100} = 1.05 > 1.00$ Not schedulable

$$f_2 = \frac{\mathbf{e}_1}{\mathbf{p}_1} + \frac{\mathbf{e}_2}{\mathbf{p}_2} = \frac{25}{100} + \frac{50}{200} = 0.5 < U(2)$$

$$f_3 = \frac{e_1}{p_1} + \frac{e_2}{p_2} + \frac{e_3}{p_3} = \frac{25}{100} + \frac{50}{200} + \frac{100}{300} = 0.84 > U(3)$$

with additional RT test, τ_3 is shown to be schedulable