
1

Lecture Note #5: Task Scheduling (2)
EECS 571

Principles of Real-Time Embedded
Systems

Kang G. Shin
EECS Department

University of Michigan

2

Priority-Driven Scheduling of Periodic Tasks

Why priority-driven scheduling?
use priority to represent urgency/importance
easy implementation of scheduler (compare task priorities and
dispatch tasks accordingly)
tasks can be added or removed easily
no direct control of execution instant

How can we analyze the schedulability if we don’t
know when a task is to be executed?
Let’s begin a deterministic case in a single processor

Independent periodic tasks
Relative deadline = period
Preemptable without any limit
no overhead for context switch

3

Priority-Driven Schedules
Assign priority when jobs arrive

static -- all jobs of a periodic task have the same fixed priority
dynamic -- different priorities to individual jobs of a periodic task
relative priorities don’t change while jobs are waiting for execution

Static priority schedules
Rate-monotonic (RM) -- the higher the task frequency, the higher its
priority
Deadline-monotonic (DM) – the shorter relative deadline, the higher priority

Dynamic priority schedules
EDF -- earliest deadline first
LSTF (MLF)-- least slack time (laxity) first

Schedulable utilization:
a scheduling algorithm can feasibly schedule any set of priority tasks if the
total utilization is equal to or less than its schedulable utilization

4

EDF Schedule
Optimal for uniprocessor systems and preemptable tasks
How do we know if a set of periodic tasks are schedulable under EDF?
If we know the schedulable utilization SU of EDF, then any set of tasks
is schedulable as long as U ≤ SU

Theorem: A set of n periodic tasks can be scheduled by EDF iff

Proof
the only-if part is obvious
the if part --- show if there is a job misses its deadline, then U > 1

1
1

≤= ∑
=

n

i i

i

p
eU

5

Extension of EDF Schedulable Utilization

If Di ≥ pi, EDF is schedulable iff U ≤ 1
What can we do if Di < pi

density of task k : δk = ek / min(pk,Dk)
EDF is schedulable if the total density is equal to or less than 1
proof: if there is a job missing its deadline, then the total density > 1
there is no “only-if” part ---- if the total density > 1, EDF may or may not be
schedulable

If Di ≥ pi, LSTF is schedulable iff U ≤ 1
Predictable for uniprocessor preemptive scheduling of
independent tasks
Robust

independent of phases
periods are lower bound ⇒ applicable to sporadic tasks with minimum
separations

6

A digital robot with EDF schedule
control loop: ec ≤ 8ms at 100Hz
BIST (Built-In-Self-Testing): eb ≤ 50ms
given

BIST can be done every 250ms

Add a telemetry task to send and receive messages with et ≤ 15ms
if BIST is done every 1000ms
given

the telemetry task can have a relative deadline of 100ms
⇒ sending or receiving must be separated by at least 100ms

150
10
8

≤+=+
b

bc p
uu

115
1000
50

10
8

≤++=++
t

bc D
utuu

Example of EDF Schedule

7

Rate-Monotonic Scheduling Algorithm
Liu and Layland 1973

A base case: no additional overhead, simple periodic tasks with
pi =Di
Assign priorities according to their periods

Ti has a higher priority than Tk if i < k (pi < pk)
Is RM optimal? ⇒ if there is a feasible fixed-priority schedule, then so is
RM
How do we know RM is feasible ⇒ schedulability test

Results:
RM is optimal if pi ≥ Di
sufficient condition ⇒ utilization test

a complete test ⇒ what is the worst-case response time given all possible
arrivals and preemptions

)12(/1

1
−≤=∑

=

n
n

i i

i n
p
eU

8

T1 T2 T1, T2 T2 T1

Critical Instant
Critical instant of Ti: a job of Ti arriving at the critical instant x* has a
maximum response time, i.e., Ri (x*) ≥ Ri(x), ∀ x where Ri(x) is response
time of task Ti that arrived at time x
If we can find the critical instant of Ti, then

check whether all jobs of Ti meet their deadlines
let’s increase ei until the maximum response time = Di

⇒ schedulable utilization
In-phase instant is critical: all higher priority tasks are released at the
same instant of Ji,c (assume all jobs are completed before the next job is
released.)

which T2 has the maximum response time?

9

Schedulability Test: Time-Demand Analysis

Consider in-phase instant only
If Ji is done at t, then the total work must be done in [0,t] is (from
Ji and all higher priority tasks): time demand function

Can we find a t ≤ Di such that
wi(t) ≤ t

cannot check all t ∈ [0, Di]
check all arrival instants and Di

The completion time of Ji satisfies

k

i

k k
ii e

p
tetw)(

1

1
∑
−

=
⎥
⎥

⎤
⎢
⎢

⎡
+=

k

i

k k
i e

p
tet

1

1
∑
−

=
⎥
⎥

⎤
⎢
⎢

⎡
+=

t

w(t)

time Di

10

Schedulability Test
EDF has a schedulable utilization of 1, how about RMS?
If Di=pi, the schedulable utilization exists

if U ≤ n (21/n - 1), done
else do time-demand analysis

if Di < pi, do time-demand analysis

if Di > pi, there may be more than one job of task i in the system
examine all jobs of task i in a level-i busy interval (in-phase)
the following equations represent this case:

)()1(for)(,

1

1
, twtpje

p
tejtw jiik

i

k k
iji ≤<−⎥

⎥

⎤
⎢
⎢

⎡
+= ∑

−

=

iiji pjpjtwt)1())1((, −−−−=

11

Schedulable Utilization of RMS

Must be less than 1
Let’s consider two tasks and relative deadline=period

T2 can only be executed when T1 is not in the system

Let p2 < 2p1. Determine the maximum schedulable e2
If p2 < p1+e1, max(e2)=p1-e1 ⇒ U=e1/p1+(p1-e1)/p2

Else, max(e2)=p2-2e1 ⇒ U=e1/p1+(p2-2e1)/p2

T1 T1 T1

0 p1 2p1

p2

p2
maximal e2

12

Schedulable Utilization of RMS

Given e1, p1, and p2, plot U
The minimum U occurs when

p2=p1+e1

where
U= e1/p1+(p1-e1)/(p1+e1)

What is the minimum U ?
take the derivative wrt to p1 and set dU/dp1=0
we will get e1=(21/2-1)p1 and U=0.828…

p2=p1 2p1

U

1

13

T1

T2

T3

T4

T5
p5

Schedulable Utilization of RMA
U ≤ n (21/n - 1)
Is there a case that is feasible and gives the minimum schedulable
utilization
When pn ≤ 2 p1

processor must be busy in [0,pn]
become unscheduable if we increase any ei

processor will be idle if we increase pi

14

What do we have from the timeline diagram?
ek = pk+1 - pk for k=1,2,..,n-1
en = p1 - 2(e1 + e2 + + en-1) =2p1 - pn

Can we increase e1 and decrease ek by the same amount
still schedulable for the 1st arrival of all tasks
utilization is higher

Can we decrease e1 and increase ek

When will U be minimum ? ----- when q2,1=q3,2= . . . = 2/n

n
qqq

qqq

p
p

p
p

p
p

p
pU

nn
nn

nn

n

−++++=

−+−++−+−=

−
−

−

1,2,31,2
1,2,31,2

1

12

3

1

2

.....
2.....

)12()1(....)1()1(

Schedulable Utilization of RMA

15

Tk

Tn

Tk

Tn pn

lpk

Schedulable Utilization of RMA
When pn > 2pk and schedulable

construct a new task set that is schedulable and pn ≤ 2 pk

the original set has a higher utilization

16

Schedulability: Response time test

Theorem: for a set of independent, periodic tasks, if each
task meets its first deadline, with worst-case task phasing,
the deadline will always be met.
Response Time (RT) test: let an = response time of task i.
an may be computed by the following iterative formula:

Test terminates when an+1 = an

Task i is schedulable if its response time is before its deadline:
an ≤ pi

∑∑
=

−

=
+ =⎥

⎥

⎤
⎢
⎢

⎡
+=

i

1j
j0j

1i

1j j

n
i1n ea where e

p
aea

17

Necessary and Sufficent RM-Schedulability

Theorem 3.4. Given a set of n periodic tasks with P1≤ P2
≤L ≤ Pn, task Ti can be feasibly scheduled using RM
iff Li = min0<t ≤ Pi

Wi(t)/t ≤ 1, where Wi(t)= ∑j=1
i ej dt/Pje.

Practical Question: How to check for Wi(t) ≤ t easily?
Only need to compute Wi(t) at τi = kPj, j=1,2,L, i; k= 1,L, b Pi/Pj c

Two RM-schedulability conditions:
If mint ∈ τi

Wi(t) ≤ t, then Ti is RM-schedulable.
If maxi∈ {1,L,n} mint ∈ τi

Wi(t)/t ≤ 1, then the entire task set is RM-
schedulable.

18

Example: UB Test

e p U

Task τ1 20 100 0.200

Task τ2 40 150 0.267

Task τ3 100 350 0.286

Total utilization is
.200 + .267 + .286 = .753 < U(3) =.779

The periodic tasks in the example are schedulable
according to the UB test.

19

Example: Applying RT Test (1)

If we increase the compute time of 1ז from 20 to 40; is
the task set still schedulable?
Utilization for the first task : 40/100=0.4 < U(1)
Utilization of first two tasks: 0.667 < U(2) = 0.828

First two tasks are schedulable by UB test

Utilization of all three tasks: 0.953 > U(3) = 0.779
UB test is inconclusive
Need to apply RT test

20

Example: Applying RT Test (2)

Use RT test to determine if 3ז meets its first deadline:
i = 3

2608080100)40(
150
180)40(

100
180100

e
p
aee

p
aea

1801004040eeeea

j

2

1j j

0
3j

1i

1j j

0
i1

321

3

1j
j0

=++=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=

⎥
⎥

⎤
⎢
⎢

⎡
+=⎥

⎥

⎤
⎢
⎢

⎡
+=

=++=++==

∑∑

∑

=

−

=

=

21

Example: Applying RT Test (3)

a3 = a2 = 300 Done!

Task is schedulable using RT test.
a3 = 300 < p3 = 350

300)40(
150
300)40(

100
300100e

p
aea

300)40(
150
260)40(

100
260100e

p
aea

j

1i

1j j

2
i3

j

1i

1j j

1
i2

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=⎥

⎥

⎤
⎢
⎢

⎡
+=

=⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+=⎥

⎥

⎤
⎢
⎢

⎡
+=

∑

∑
−

=

−

=

22

(Another) Example 3.6
Task set: {T1, T2, T3, T4} = { (20, 100), (30, 150), (80, 210), (100,400)}.
Sets of time points of interest:
τ1 = {100}
τ2 = {100, 150}
τ3 = {100, 150, 200, 210}
τ4 = {100, 150, 200, 210, 300, 400}

Schedulability conditions:
T1 is RM-schedulable iff e1 ≤ 100
T2 is RM-schedulable iff

e1 + e2 ≤ 100 OR
2e1 + e2 ≤ 150

T3 is RM-schedulable iff
e1 + e2 + e3 ≤ 100 OR
2e1 + e2 + e3 ≤ 150 OR
2e1 + 2 e2 + e3 ≤ 200 OR
3e1 + 2 e2 + e3 ≤ 210

T4 is RM-schedulable iff L

23

Modeling Task-Switching

C1

S

C1

C2

C1

C2

τ1

τ2

τ3

C1

40 40

0 100 200

C1C1 C1

e1 S

C2C1 C1

C1

S e2 S S

time
p1 p2 2p1

i

i
i p

S2eU +
=

Two scheduling actions per task
(start of period and end of period)

24

Sporadic Tasks

Sporadic tasks have a min interarrival interval
For purpose of schedulability analysis:

Consider them periodic, or
Use a periodic polling server (PPS) to ``serve'' sporadic tasks, or
Use a deferred server (DS):
Schedulability condition
U ≤ 1-Us if Us ≤ 0.5
U ≤ Us if Us > 0.5
What shall we do if there are no sporadics to execute?

PPS: Keep CPU idle
DS: Execute other tasks.

25

Transient Overload

Question: What if the task with a smaller period is not important to
the underlying application?
Answer: Consider period transformation, period aggregation or
period splitting
Example: Consider the following unschedulable task set:

26

Transient Load, cont’d

Solution 1: reduce T3’s priority by lengthening its period,
possible only if T3's relative deadline can be greater than
its original period. In such a case, replace T3 by two tasks
T3

0 and T3’’, each with period 420, WC exec times e3
0 = e3’’

= 80, avg exec times a3
0 =a3’’ =40. T3

0 and T3’’ must be
phased to be released 210 time units apart. If the set {T1,
T2, T3

0, T3’’, T4} is RM-schedulable, done.

Solution 2: increase T4's priority by splitting each
invocation into two: T4

0: e4
0 = e4/2, a4

0 = a4/2, P4
0 = P4/2

{T1, T2, T4} or {T1, T2, T4
0} are schedulable

27

Period Transformation

When the task set T is RM-unscheduable, PT
decomposes T = C U NC, where
C = {all critical tasks} U {some non-criticals}
NC = {remaining non-criticals}

Pc,max ≤ Pn,min

C is RM-schedulable under worst-case execution
times.

28

Summary of discussion so far

System model parameters: task and processor sets, task precedence
constraints, task release and execution times, deadlines, periods, L

Problem: Find a feasible schedule

Rate monotonic scheduling of periodic tasks without precedence
constraints or resource requirements

Sufficient RM-schedulability condition:\
U= ∑i=1

n ei/Pi ≤ n (21/n - 1) → 0.69 as n→∞.

Necessary and sufficient RM-schedulability condition: Ti is schedulable
iff the equation t = ∑j=1

i ej d t/Pje has a solution for t < Pi.

Handling sporadic tasks: periodic polling server, deferred server
Transient overload and period transformation.

29

Schedulability with Interrupts

Interrupt processing can be inconsistent with RM
priority assignment.

interrupt handler executes with higher priority irrespective of its period
interrupt processing may delay execution of tasks with shorter periods

Effects of interrupt processing must be accounted for
in schedulability model.

Task(i) Period(p) WCET(e) Priority Deadline(D)

τ3 200 60 HW 200

τ1 100 20 High 100

τ2 150 40 Medium 150

τ4 350 40 Low 350

30

UB Test with Interrupt Priority

Test is applied to each task
Determine effective utilization (fi) of each task i using

fi =

Compare effective utilization against bound, U(n).
n = num(Hn) + 1

num(Hn) = the number of tasks in the set Hn

∑∑
∈∈

++
1n Hk

k
ii

i

Hj j

j e
p
1

p
e

p
e

Preemption from the tasks
that can hit more than once
(with period less than Di)

Execution of a task
under test

Preemption from tasks
that can hit only once
(with period greater than Di)

31

UB Test with Interrupt Priority: τ3

For τ3, no tasks have higher priority:
H = Hn =H1 = { }.

f3 =

Note that utilization bound is U(1): num(Hn) = 0.

)1(U0
p
e0

3

3 ≤++

f3 = 0.13.0
200
60

p
e

3

3 <==

32

UB Test with Interrupt Priority: τ1

For τ1, τ3 has priority over τ1 : H = {τ3}; Hn = {};
H1 = {τ3}.

f1 =)1(Ue
p
1

p
e0

3k
k

11

1 ≤++ ∑
=

Utilization bound is U(1) since num(Hn) = 0.

f1 = 0.1800.0
100
60

100
20

p
e

p
e

1

3

1

1 <=+=+

33

UB Test with Interrupt Priority: τ2

For τ2 : H={τ1, τ3}; Hn={τ1 }; H1={τ3 };

Note that utilization bound is U(2): num(Hn) = 1.

)2(Ue
p
1

p
e

p
e

f
3k

k
22

2

1j j

j
2 ≤++= ∑∑

==

828.0867.0
200
60

150
40

100
20f

3

3

2

2

1

1
2 >=++=++=

p
e

p
e

p
e

34

UB Test with Interrupt Priority: τ4

H={τ1, τ2, τ3}; Hn={τ1 , τ2, τ3 }; H1={};

Note that utilization bound is U(4): num(Hn) = 3.

)4(U0
p
e

p
e

f
4

4

3,2,1j j

j
4 ≤++= ∑

=

756.0882.0
350
60

200
60

150
40

100
20

p
e

p
e

p
e

p
ef

4

4

3

3

2

2

1

1
4

>=+++=

+++=

35

Priority Inversion in Synchronization

τ1(H)
Blocked

τ2(M)

τ3(L)

Time

τ1 :{…P(S1)…V(S1)…}

τ3 :{…P(S1)…V(S1)…} S1 unlocked
Attempt to lock S1
(blocked) S1 locked

S1 unlockedS1 locked

36

Priority Inversion

Delay to a task’s execution caused by interference
from, or blocking by, lower priority tasks is known as
priority inversion
Priority inversion is modeled by blocking time
Identifying and evaluating the effect of sources of
priority inversion is important in schedulability
analysis
Sources of priority Inversion

Synchronization and mutual exclusion
Non-preemtable regions of code
FIFO (first-in-first-out) queues, e.g., Windows DPC

37

Accounting for Priority Inversion

Recall that task schedulability is affected by
preemption: two types of preemption

can occur several times per task period
can occur once per period

execution: once per period
blocking: at most once per period for each source

The schedulability formulas are modified to add a
“blocking” or “priority inversion” term to account for
inversion effects

38

UB Test with Blocking

Include blocking time in calculation of effective
utilization for each task:

Hn Preemption(can hit n times)

Execution

Blocking H1 Preemption(can hit once)

∑∑
∈∈

+++=
1n Hk

k
ii

i

i

i

Hj j

j
i e

p
1

p
B

p
e

p
e

f

39

Blocking is also included in the RT test

Perform test as before, including blocking effect

Response Time Test with Blocking

∑

∑

=

−

=
+

+=

⎥
⎥

⎤
⎢
⎢

⎡
++=

i

1j
ji0

j

1i

1j j

n
ii1n

eBa where

 e
p
aeBa

40

Consider the following example
Periodic tasks

What is the worst case blocking effect (priority inversion)
experienced by each task ?

Example: Considering Blocking

25 msec

100 msec

50 msec

200 msec

100 msec

300 msec

10 msec
30 msec

Data Structure

τ1

τ2

τ3

41

Example: Adding Blocking

Task τ2 does not use the data structure. Task τ2 experiences no
priority inversion
Task τ1 shares the data structure with τ3 . Task τ1 may have to wait
for τ3 to complete its critical section. But worse, if τ2 preempts
while τ1 is waiting for the data structure, τ1 may have to wait for
τ2’s entire computation.
This is the resulting table

task Period Execution
Time

Priority Blocking
delay

Deadline

τ1
100 25 High 30+50 100

τ2
200 50 Medium 0 200

τ3
300 100 Low 0 300

42

UB Test for Example

UB test with blocking:

∑∑
∈∈

+++=
1n Hk

k
ii

i

i

i

Hj j

j
i e

p
1

p
B

p
e

p
e

f

00.105.1
100
80

100
25

p
B

p
ef

1

1

1

1
1 >=+=+=

)2(U5.0
200
50

100
25

p
e

p
ef

2

2

1

1
2 <=+=+=

)3(U84.0
300
100

200
50

100
25

p
e

p
e

p
ef

3

3

2

2

1

1
3 >=++=++=

Not schedulable

with additional RT test, τ3 is shown to be schedulable

	Lecture Note #5: Task Scheduling (2)�EECS 571� Principles of Real-Time Embedded Systems��Kang G. Shin�EECS Department�University of Michigan �
	Priority-Driven Scheduling of Periodic Tasks
	Priority-Driven Schedules
	EDF Schedule
	Extension of EDF Schedulable Utilization
	Example of EDF Schedule
	Rate-Monotonic Scheduling Algorithm�Liu and Layland 1973
	Critical Instant
	Schedulability Test: Time-Demand Analysis
	Schedulability Test
	Schedulable Utilization of RMS
	Schedulable Utilization of RMS
	Schedulable Utilization of RMA
	Schedulable Utilization of RMA
	Schedulable Utilization of RMA
	Schedulability: Response time test
	Necessary and Sufficent RM-Schedulability
	Example: UB Test
	Example: Applying RT Test (1)
	Example: Applying RT Test (2)
	Example: Applying RT Test (3)
	(Another) Example 3.6
	Modeling Task-Switching
	Sporadic Tasks
	Transient Overload
	Transient Load, cont’d
	Period Transformation
	Summary of discussion so far
	Schedulability with Interrupts
	UB Test with Interrupt Priority
	UB Test with Interrupt Priority: 3
	UB Test with Interrupt Priority: 1
	UB Test with Interrupt Priority: 2
	UB Test with Interrupt Priority: 4
	Priority Inversion in Synchronization
	Priority Inversion
	Accounting for Priority Inversion
	UB Test with Blocking
	Response Time Test with Blocking
	Example: Considering Blocking
	Example: Adding Blocking
	UB Test for Example

