
Note 6-1

Lecture Note #6: More on Task
Scheduling
EECS 571

Principles of Real-Time Embedded
Systems

Kang G. Shin
EECS Department

University of Michigan

Note 6-2

Mars Pathfinder Timing Hiccups?
When: landed on the Mar on July 4, 1997
Mission: gathering and sending back voluminous data to Earth.
Problem: resetting the entire computer system, each reset resulting in data
loss (``software glitches?'')

System Used and Cause Found:
Wind River System's VxWorks that supports preemptive priority scheduling.
``Information bus'‘ (≡ shared memory) accessed via mutexes. The bus
management task T1 ran frequently with high priority
Meteorological data collection task T3 is an infrequent, low-priority task, and
uses the info bus to publish its data. (It acquires mutex, writes data to the
bus, then releases the mutex.)

∃ a medium-priority, long commercial task T2.

Scenario: T1 blocks on the mutex held by T3 and in the meantime T2
preempts T3; not executing T1 for certain time triggers a watchdog timer
resetting the system.

How was the problem solved: A short C program was uploaded to the
spacecraft which changed parameter initialization.

Note 6-3

Synchronization Protocols

Non-preemption
Basic priority inheritance
Highest locker’s priority
Priority ceiling
All of these prevent unbounded priority inversion.

Note 6-4

Non-preemption Protocol

τ2:{…P(S1)…V(S1)…}
τ4:{…P(S1)…V(S1)…}

ready
blocked

ready

ready

S1 locked S1 unlocked

Time

τ1(H)

τ4(L)

τ2

τ3

Note 6-5

Advantages and Disadvantages

Advantages:
Simplicity
Use with fixed-priority and dynamic-priority systems
No prior knowledge about resource requirement by each task
Good when all critical sections are short

Disadvantages:
Every task can be blocked by every lower priority task, even
when there is no resource sharing between the tasks.
Blocking time: max(csi)

Note 6-6

Basic Inheritance Protocol (BIP)

τ2:{…P(S1)…V(S1)…}
τ4:{…P(S1)…V(S1)…}

ready

ready

S1 locked S1 unlocked

τ1(H)

τ4(L)

τ2

τ3

blocked

attempts to
lock S1

S1 unlockedS1 locked

ready

inherits the priority of τ2
after τ2 is blocked

Note 6-7

Some Notations

Ji is the i-th job of periodic task T.
πi = job Ji ’s assigned priority
πi(t) = current (at time t) priority of Ji

If the decision to change the priority of Ji is made
at t = t1 then

πi(t1-) = priority at and immediately before t1,
πi(t1+) = priority immediately after the priority change

Ω = nonexistent priority, lower than the lowest
priority

Note 6-8

Terminology and Rules

At time t1, job Ji requests resource Rk.
Rk → Jl: Resource Rk is held by job Jl
Ji → Rk: Job Ji is blocked waiting for resource Rk to be
released (Ji → Rk → Jl)
Scheduling Rules:

Ready jobs are scheduled on processors preemptively
according to their current priorities, πi(t).
Upon release of a job, its priority is equal to its assigned priority

if Ji is released at t = t’, then πi(t’) = πi

Resource allocation:
If a resource is free, then it is allocated when it is requested
if not free, then the request is denied and the requesting job is
blocked

Note 6-9

Priority Inheritance Rules

Scheduling Rule: same as the assumptions
Allocation Rule: same as the assumptions
Priority-Inheritance Rule:

if Ji → Rk → Jl and πl(t1-) = priority of Jl at t = t1

then πl(t1+) = πi(t1)

until Jl releases Rk at t2 when πl(t2+) = πl(t1-)

L. Sha, R. Rajkumar, J. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization”, IEEE Transactions
on Computers, Vol. 39, No. 9, pp. 1175-1185, 1990

Note 6-10

Properties of Priority Inheritance

For each resource (semaphore), a list of blocked tasks must be
stored in a priority queue.

A task (job) τi uses its assigned priority, and inherits the highest
dynamic priority of all the tasks it blocks when it is in its critical
section and blocks some higher priority tasks.

Priority inheritance is transitive; that is, if taskτi blocks τj and τj
blocks τk , then τi can inherit the priority of τk.

Whenτi releases a resource, which priority should it use?

Chained/nested blocking if requesting multiple resources (nested
mutex requests)

Direct blocking and indirect (inheritance) blocking (when the lower
priority task inherits the higher priority task’s priority).

Note 6-11

Example of Chained/nested Blocking (BIP)

τ1:{…P(S1)…P(S2)…V(S2)…V(S1)…}
τ2:{…P(S1)…V(S1)…}
τ3:{…P(S2)…V(S2)…}

S2 locked S2 unlocked

τ3(L)

τ1(H)

τ2(M)

B

Attempts to lock
S1(blocked)

Attempts to lock
S2(blocked)

B

S1 locked S1 unlocked

B

Note 6-12

Deadlock: Using BIP

τ1 :{…P(S1)…P(S2)…V(S2)…V(S1)..}
τ2 :{…P(S2)…P(S1)…V(S1)…V(S2)..}

S2 locked Attempts to lock S1
(blocked) => deadlock !

Attempts to lock
S2 (blocked)Locks S1

B

τ2 (M)

τ1 (H)

Note 6-13

Blocking Time Under BIP

Example
T1 = {.. P(A) .3. P(B) .2. V(B) .1. V(A) ..}
T2 = {.. P(C) .2. V(C) ..}
T3 = {.. P(A) .1. P(B) .2. V(B) .2. V(A) .. }
T4 = {.. P(A) .1. P(C) .1. P(B) .3. V(B) .1. V(C) .1. V(A).. }

direct blocking by indirect blocking
by blocking time

T2 T3 T4 T2 T3 T4 T2 T3 T4
T1 N Y Y 5 7
T2 N Y Y Y 5 7
T3 Y Y 7

Note 6-14

Priority Ceiling Protocol (PCP)

τ2: {…P(S1)…V(S1)…}
τ3: {…P(S2)…V(S2)…}
τ4: {…P(S1)…V(S1)…}

ready

ready

τ1(H)

τ2

τ3

B

attempts to
lock S1 S1 locked S1 unlocked

S1 locked S1 unlocked

τ4(L)

attempts
to lock S2 S2 locked

blocked by
ceiling

Note 6-15

Basic Priority Ceiling Rules (1)
Π(R) = priority ceiling of resource R – the highest
priority of the tasks that request R
ΠS(t) = system priority ceiling – the highest priority
ceiling of all resources that are in use at time t

Scheduling Rule: same as the assumptions
Allocation Rule:

if Ji → Rk → Jl at t ≤ t1 then block Ji (no change)
if Rk becomes free at t1,

if πi(t1) > ΠS(t1), then Rk → Ji
else (i.e., πi(t1) ≤ ΠS(t1))

if for some Rx → Ji and Π(Rx) = ΠS(t1), then Rk → Ji
[Ji holds resource Rx whose priority ceiling is ΠS(t1)]

else deny and block (Ji → Rk)

Note 6-16

Basic Priority Ceiling Rules (2)

Priority-Inheritance Rule:
if Ji → Rk at t = t1 and is blocked by Jl (and πl(t1-) = priority of Jl)

either Rk → Jl, (Jl holds the resource Rk)
or Jl → Rx and Π(Rx) = ΠS(t1) ≥ πi(t1)

then πl(t1+) = πi(t1) (inherited priority)
until Jl releases all Rx with Π(Rx) ≥ πi(t1), πl(t2+) = πl(t1-) at t = t2.

Note 6-17

Blocking in PCP

A task TH can be blocked by a lower-priority task
TL in three ways:

directly, i.e.,

when TL inherits a priority higher than the priority πH of TH.

When TH requests a resource and the priority ceiling of all
resources held by TL is equal to or higher than πH:

X TLTH

request for allocated to

X TLT ≠ TH

(π > πH)

Y TLTH

(πH ≤ ΠX)

X

Note 6-18

Blocked At Most Once (PCP)

τ1:{…P(S1)…P(S2)…V(S2)…V(S1)…}
τ2:{…P(S1)…V(S1)…}
τ3:{…P(S2)…V(S2)…}

S2 locked S2 unlocked

τ3(L)

τ1(H)

τ2(M)

attempts to lock
S1(blocked)

B

S1 locked S1 unlocked

attempts to lock
S1(blocked)

S2 locked S2 unlocked

S1 locked S1 unlocked

Note 6-19

Deadlock Avoidance: Using PCP

Locks
S2

Locks
S1

Unlocks
S1

Unlocks
S2

Attempts to lock S1
(blocked)

Locks
S1

Locks
S2

C

τ1 :{…P(S1)…P(S2)…V(S2)…V(S1)..}
τ2 :{…P(S2)…P(S1)…V(S1)…V(S2)..}

τ2 (M)

τ1 (H)

Unlocks
S2 Unlocks

S1

Note 6-20

Stack Sharing

Sharing a stack among multiple tasks eliminates stack
space fragmentation, making memory savings:

However:
Once job is preempted, it can only resume when it returns to be on
top of stack.
Otherwise, it may cause a deadlock.
Stack becomes a resource that allows for “one-way preemption”.

T1

Ti

Tn

no stack sharing

T1

Ti

Tn

stack sharing

Note 6-21

Stack-Based Priority Ceiling Protocol

To avoid deadlocks: Once execution begins, make
sure that job is not blocked due to resource access

allow preemption only if the priority is higher than the ceiling of
all resources in use

Update Current Ceiling in the usual manner
If no resource allocated, ΠS (t) = Ω

Scheduling Rule:
Ji released and blocked until πi(t) > ΠS(t)
When not blocked, jobs are scheduled in the usual manner.

Allocation Rule:
Allocate when requested

Note 6-22

Stack-Based PCP, cont’d

The Stack-Based Priority-Ceiling Protocol is deadlock-free:
When a job begins to execute, all the resources it will ever need are
free.
Otherwise, ΠS(t) would be higher or equal to the priority of the job.
Whenever a job is preempted, all the resources needed by the
preempting job are free.
The preempting job can complete, and then the preempted job can
resume.

Worst-case blocking time of Stack-Based Protocol is the
same as for Basic Priority Ceiling Protocol.
Stack-Based Protocol smaller context-switch overhead

2 context switches since once execution starts, job cannot be
blocked (may be preempted)
4 context switches for PCP since a job may be blocked at most once

Note 6-23

Ceiling-Priority Protocol

Re-formulation of stack-based priority ceiling
protocol for multiple stacks (w/o stack-sharing)
Update Current Ceiling in the usual manner
Scheduling Rule:

No resources held by Ji, πi(t) = πi

Resource held by Ji,πi(t) = max(Π(Rx)) for all resources Rx
held by Ji

FIFO scheduling among jobs with equal priority

Allocation Rule:
Allocate when requested

Note 6-24

Comparison

Worst-case performance of stack-based and
basic ceiling protocols are the same
Stack-based version

supported by the Real-Time systems Annex of Ada95
Jobs must not self-suspend

When jobs do not self-suspend, stack-based and
ceiling-priority protocols yield the same
schedules.
Stack-based and ceiling-priority have the same
worst-case blocking time.

Note 6-25

Highest Locker’s Priority Protocol

τ2:{…P(S1)…V(S1)…}
τ4:{…P(S1)…V(S1)…}

ready

ready

S1 locked S1 unlocked

τ1(H)

τ4(L)

τ2

τ3

BB

run with the priority of τ2

Note 6-26

Summary of Synchronization Protocols

1 Only if tasks do not suspend within critical sections
2 PCP is not affected if tasks suspend within critical sections.

Protocol
Bounded
Priority

Inversion

Blocked at
Most Once

Deadlock
Avoidance

Nonpreemptible
critical sections

Yes Yes1 Yes1

Highest locker's
priority

Yes Yes1 Yes1

Basic inheritance Yes No No

Priority Ceiling Yes Yes2 Yes

	Lecture Note #6: More on Task Scheduling�EECS 571� Principles of Real-Time Embedded Systems��Kang G. Shin�EECS Department�University of Michigan �
	Mars Pathfinder Timing Hiccups?
	Synchronization Protocols
	Non-preemption Protocol
	Advantages and Disadvantages
	Basic Inheritance Protocol (BIP)
	Some Notations
	Terminology and Rules
	Priority Inheritance Rules
	Properties of Priority Inheritance
	Example of Chained/nested Blocking (BIP)
	Deadlock: Using BIP
	Blocking Time Under BIP
	Priority Ceiling Protocol (PCP)
	Basic Priority Ceiling Rules (1)
	Basic Priority Ceiling Rules (2)
	Blocking in PCP
	Blocked At Most Once (PCP)
	Deadlock Avoidance: Using PCP
	Stack Sharing
	Stack-Based Priority Ceiling Protocol
	Stack-Based PCP, cont’d
	Ceiling-Priority Protocol
	Comparison
	Highest Locker’s Priority Protocol
	Summary of Synchronization Protocols

