
EECS 571 “Principles of Real-Time Embedded
Systems”

Lecture Note #8: Task Assignment and Scheduling
on Multiprocessor Systems

Kang G. Shin
EECS Department

University of Michigan

What Have We Done So Far?

• Scheduling a set of tasks with various constraints
on a single processor.

• What should we do if schedulability condition for
the given task set can’t be met?

• Question: which tasks should be assigned to
which processors and why?

• Ideally, combined task assignment and
scheduling is desirable, but this is very hard .

• Common approach: assign tasks and then
schedule them on each processor.

Kang Shin (kgshin@eecs.umich.edu)

Task Assignment

• What should we consider for task assignment ?

• NP-Complete ⇒ Use heuristics
Examples:

• Utilization-balancing algorithm: assign tasks
one-by-one selecting the least utilized processor

∑p
i=1(u

B
i)2

∑p
i=1(u

∗
i)

2
≤

9

8

where u∗
i = Pi’s utilization under an optimal alg. that

minimizes
∑

utilization2

uB
i = Pi’s utilization under best-fit alg.

Kang Shin (kgshin@eecs.umich.edu)

Next-fit alg for RM scheduling

• Homogeneous multiprocessor systems

• There are m classes of tasks such that

o Ti belongs to class j < m if

2
1

j+1 − 1 <
ei
pi

≤ 2
1
j − 1.

o Ti belongs to class m otherwise.

• Each class of tasks are assigned to a
corresponding set of processors.

Kang Shin (kgshin@eecs.umich.edu)

Example
There are m = 4 task classes

Class Untilization bound
C1 (0.41, 1.00]
C2 (0.26, 0.41]
C3 (0.19, 0.26]
C4 (0.00, 0.19]

Task set

T1 T2 T3 T4 T5 T6 T7

ei 5 7 3 1 10 16 1
Pi 10 21 22 24 30 40 50

u(i) 0.50 0.33 0.14 0.04 0.33 0.40 0.02
Class C1 C2 C4 C4 C2 C2 C4

Processor 1 2 4 4 2 5 4
T8 T9 T10 T11

ei 3 9 17 21
Pi 55 70 90 95

u(i) 0.05 0.13 0.19 0.22
Class C4 C4 C4 C3

Processor 4 4 4 3

Kang Shin (kgshin@eecs.umich.edu)

Bin-packing assignment for EDF

• Same assumptions on tasks and processors as
Next-fit alg.

• Task set is EDF-schedulable if U ≤ 1.

• Assign tasks such that U ≤ 1 for all processors.

Kang Shin (kgshin@eecs.umich.edu)

Myopic offline scheduling alg

• Can consider resources other than CPU

• Given: set of tasks, their arrival times, execution
times, deadlines.

• Allocation tree:

o Root: null allocation

o Node: an assignment and scheduling of a subset of
tasks.

o child node: parent’s allocation + a task

o leaf: “complete” allocation.

o How many levels for an n-task system?

o A level-i node means?

o Very expensive to generate a complete allocation tree
⇒ heuristics.

Kang Shin (kgshin@eecs.umich.edu)

Combined Assignment and Scheduling

• Static (offline) assignment of periodic and/or
critical tasks: myopic scheduling, B&B alg.

• Dynamic (online) load sharing of aperiodics
and/or non-criticals

o Bidding

o Focused addressing

o Drafting

o Buddy

Kang Shin (kgshin@eecs.umich.edu)

Offline Allocation of Periodics
IEEE Trans. on Software Engineering, vol. 23, no. 12,

pp. 745–758, Dec. 1997

• Task allocation: combined task assignment and
scheduling of periodics

o Derive an “optimal” assignment that yields feasible
schedules for all processors. How ?

• Main features:

o Inter-task communications ⇒ precedence constraints
hence task structure.

o Tasks are periodic and time-critical ⇒ allocation
objective function.

• Want allocation x of communicating periodic
tasks in a heterogeneous distributed system that
minimizes system hazard , Θ(x), or maximum
normalized task response time.

Kang Shin (kgshin@eecs.umich.edu)

System Model

• Tasks T = {Ti : i = 1,2, . . . , m};
Heterogeneous PNs
N = {Nk : k = 1,2, . . . , n}.

• Allocation constraints:

o Co-location of Ti and Tj on same PN.

o Location of Ti and Tj on different PNs.

o Location of Ti on a special PN.

• Task invocations and release times, precedence
constraints, planning cycle.

• Execution times of computation and
communication modules.

Kang Shin (kgshin@eecs.umich.edu)

Example Task Graph

d

d

14,24

21,15

8,20d

17,9dM1 M2

M3

M4 M5

M12

M11

M10

M13 M14

M15

M16

M17

M18

M19

M20

M21

M23

M22

M24

L=40

M6 M7 M8

M9
d

d

2,10

12,5

1 2 3T (P = 40) T (P = 40) T (P = 20)1 2 3

Kang Shin (kgshin@eecs.umich.edu)

Problem Formulation

• Normalized task response time of the v-th
invocation of Ti:

civ =
civ − riv

div − riv

• System hazard under allocation x:

Θx = maxTi∈T civ

• Problem: find an optimal x∗ that minimizes the
system hazard.

• Both civ and Θx depend on:

o how tasks are assigned under x and

o how assigned tasks are scheduled on each
PN.

Kang Shin (kgshin@eecs.umich.edu)

Task Allocation Algorithm

• Consists of two branch-and-bound algorithms,
one for assignment (B&BA) and the other for
scheduling (B&BS).

• Same as traversing a tree

• Vertex = allocation

• Complete allocation = leaf node; B&BS alg

• Partial allocation = intermediate vertex; B&BS is
too expensive, so compute and use a lower
bound of optimal system hazard

Kang Shin (kgshin@eecs.umich.edu)

Branch and Bound Algorithm

1 let active set A = {Root}
2 let vertex cost Θ(Root) = 0
3 let best solution cost, Θmin = ∞

4 while true do
5 let Vbest = minimum cost vertex in A

6 if Vbest is a leaf vertex then
7 prune all vertices V ∈ A except Vbest

8 return Vbest as optimal solution
9 else
10 generate (task assignments of) all children of Vbest

11 remove Vbest from active set A

12 for each child x of Vbest do
13 if assignment constraints in set AC are not satisfied then prune x

14 else
15 compute vertex cost Θ(x)
16 add x to active set A

17 if x is a leaf vertex then
18 if Θ(x) < Θmin then
19 Θmin = Θ(x)
20 prune all vertices V ∈ A for which V 6= x and Θ(V) ≥ Θmin

21 else prune x

22 end if
23 end if
24 end for
25 end if
26end while

Kang Shin (kgshin@eecs.umich.edu)

Search Tree

(T1, N1)

(T1, N1) (T1, N1) (T1, N1) (T1, N1)

(T1, N2)

(T1, N2)(T1, N2)
(T2, N1) (T2, N2)

(T2, N1) (T2, N1) (T2, N2) (T2, N2) (T2, N1) (T2, N1) (T2, N2) (T2, N2)
(T3, N1) (T3, N2) (T3, N1) (T3, N2) (T3, N1) (T3, N2) (T3, N1) (T3, N2)

(T1, N1)
(T2, N1)

(T1, N1)
(T2, N2)

Allocating T1

Allocating T2

Allocating T3

Root of the Search Tree

(T1, N2) (T1, N2) (T1, N2) (T1, N2)

1

2 3

4 5 6 7

8 9 151413121110

Kang Shin (kgshin@eecs.umich.edu)

B&BA Algorithm

• A terminal vertex or complete assignment: B&BS
alg based on dominance properties.

• For each non-terminal vertex or partial
assignment x:

o B&BS is too expensive
o As long as a lower-bound, Θx

lb of the optimal
cost for x is used, B&BA will find an optimal
assignment.

o Θx
lb is obtained by relaxing task invocation

times, precedence constraints, etc.

Kang Shin (kgshin@eecs.umich.edu)

Computing Lower-Bound Vertex Cost

1. Compute the minimum computational load
imposed on each processor by tasks already
assigned to PNs at search vertex x.

2. Estimate the minimum additional load to be
imposed on each PN due to those tasks not yet
assigned at x.

3. Schedule the combined load at each PN and
compute the system hazard. We ensure that the
system hazard of the resulting schedule is a
lower bound on the system hazard of any leaf
vertex descending from x, i.e., it represents
Θ(x) = Θlb(x).

Kang Shin (kgshin@eecs.umich.edu)

B&BS Algorithms

Scheduling tasks w.r.t. Θ for a given complete
assignment is NP-Hard ⇒ Dominance properties are
derived to guide search for an optimal schedule.

• Preemptions which do not reduce Θ must be
disallowed.

• A PN is not allowed to idle when there are ready
(uncompleted) modules on the PN.

• Always advantageous to reduce the completion
time of a task without increasing others’.

Kang Shin (kgshin@eecs.umich.edu)

Example

The same as before: 3 tasks and 2 PNs
Module execution times on N1

Mj ej1 Mj ej1 Mj ej1

M1 4 M9 1:3 M17 1:3
M2 1:4 M10 1:4 M18 1
M3 2 M11 1 M19 2
M4 2 M12 2:4 M20 0:1
M5 2:6 M13 2 M21 1:3
M6 2 M14 0:2 M22 1
M7 1 M15 2:3 M23 2
M8 1:2 M16 3 M24 1:2

Kang Shin (kgshin@eecs.umich.edu)

Search Tree Generated and Optimal Schedule

(T1, N1) (T1, N2)

(T1, N2)(T1, N2)
(T2, N1) (T2, N2)

(T2, N2) (T2, N2)
(T3, N1) (T3, N2)

(T1, N1)
(T2, N1)

(T1, N1)
(T2, N2)

1

2

4 5

3

6 7

8 9

40

39

40

27.5

40

14

40

20

40

23.528

40

0

40

7

23.5

40

(T1, N2) (T1, N2)

5 19 23.5 27.5

11 2131 32T T T T

0 5 10 15 20 25 30 35 40

N

N

2

1

Time

Processor

Kang Shin (kgshin@eecs.umich.edu)

Task Graph at Vertex 5

14,24d

21,15d

8,20d

17,9d

= 82,10d

= min {5,1} = 1
2

ρ

= 0
1

ρ

= min {4,0.5} = 0.5
2

ρ

= 0
1

ρ

L=40

d12,5

e =0.5

e =1.5

 3

 4 5

 6 7 8

 9

12 13 14

 15

T (P = 40) T (P = 40) T (P = 20)1 2 31 2 3

 1 2
e = 1 e =0.5 e =0.5

e =0.5

 11

e =2 e =1 e =0

e =1

 16

= 10

 10e = 2

e = 4 e = 4

e = 2

e = 2 e = 6

Kang Shin (kgshin@eecs.umich.edu)

Computational Experiences

Tasks Expanded Vertices Total Space % Expanded
6 18 4096 0.43
8 65 65536 0.1

10 95 1048576 0.01
12 133 16777216 0.0008
14 274 268435456 0.0000004

Nodes Expanded Vertices Coef of Variation Total Space % Expanded
2 16 0.35 256 6.17
4 37 0.8 65536 0.06
6 38 0.8 1679616 0.002

Kang Shin (kgshin@eecs.umich.edu)

