EECS 571 "Principles of Real-Time Embedded Systems"

Lecture Note #8: Task Assignment and Scheduling on Multiprocessor Systems

> Kang G. Shin EECS Department University of Michigan

What Have We Done So Far?

- Scheduling a set of tasks with various constraints on a *single* processor.
- What should we do if schedulability condition for the given task set can't be met?
- Question: which tasks should be assigned to which processors and why?
- Ideally, *combined* task assignment and scheduling is desirable, but this is *very hard*.
- Common approach: assign tasks and then schedule them on each processor.

Task Assignment

- What should we consider for task assignment?
- NP-Complete ⇒ Use heuristics Examples:
- *Utilization-balancing algorithm*: assign tasks one-by-one selecting the least utilized processor

$$\frac{\sum_{i=1}^{p} (u_i^B)^2}{\sum_{i=1}^{p} (u_i^*)^2} \le \frac{9}{8}$$

where $u_i^* = P_i$'s utilization under an optimal alg. that minimizes \sum utilization²

 $u_i^B = P_i$'s utilization under best-fit alg.

Next-fit alg for RM scheduling

- Homogeneous multiprocessor systems
- There are m classes of tasks such that

o
$$T_i$$
 belongs to class $j < m$ if $2^{\frac{1}{j+1}} - 1 < \frac{e_i}{p_i} \le 2^{\frac{1}{j}} - 1.$

o T_i belongs to class m otherwise.

• Each class of tasks are assigned to a corresponding set of processors.

Example

There are m = 4 task classes

Class	Untilization bound				
C_1	(0.41, 1.00]				
<i>C</i> ₂	(0.26, 0.41]				
C3	(0.19, 0.26]				
C4	(0.00, 0.19]				

Task set

	T_1	T_{2}	2 -	Гз	T_4	7	5	$T_{\mathbf{e}}$	5	T_7	
e_i	5	7	,	3	1	1	0	16	5	1	
P_i	10	2	1 2	22	24	3	0	40)	50	
u(i)	0.50	0.3	33 0	.14	0.0	4 0.	33	0.4	0	0.02	2
Class	C_1	C	2 (74	C_4	. (\mathcal{C}_2	C_2	2	C_4	
Processo	r 1	2		4	4		2	5		4	
			T_8	7	.9	T_{10}	T	, 11			
	e_i		3	ļ	9	17	2	1			
	P_i		55	7	0	90	9	5			
	u(i)		0.05	0.	13	0.19	0.	22			
	Class		C_4	C	24	C_4	C	3			
	Process	or	4		4	4		3			

Bin-packing assignment for EDF

- Same assumptions on tasks and processors as Next-fit alg.
- Task set is EDF-schedulable if $U \leq 1$.
- Assign tasks such that $U \leq 1$ for all processors.

Myopic offline scheduling alg

- Can consider resources other than CPU
- *Given:* set of tasks, their arrival times, execution times, deadlines.
- Allocation tree:
 - o Root: null allocation
 - o Node: an assignment and scheduling of a subset of tasks.
 - o child node: parent's allocation + a task
 - o leaf: "complete" allocation.
 - o How many levels for an *n*-task system?
 - o A level-*i* node means?
 - o Very expensive to generate a complete allocation tree \Rightarrow heuristics.

Combined Assignment and Scheduling

- *Static* (offline) assignment of periodic and/or critical tasks: myopic scheduling, B&B alg.
- *Dynamic* (online) load sharing of aperiodics and/or non-criticals
 - o Bidding
 - o Focused addressing
 - o Drafting
 - o Buddy

Offline Allocation of Periodics

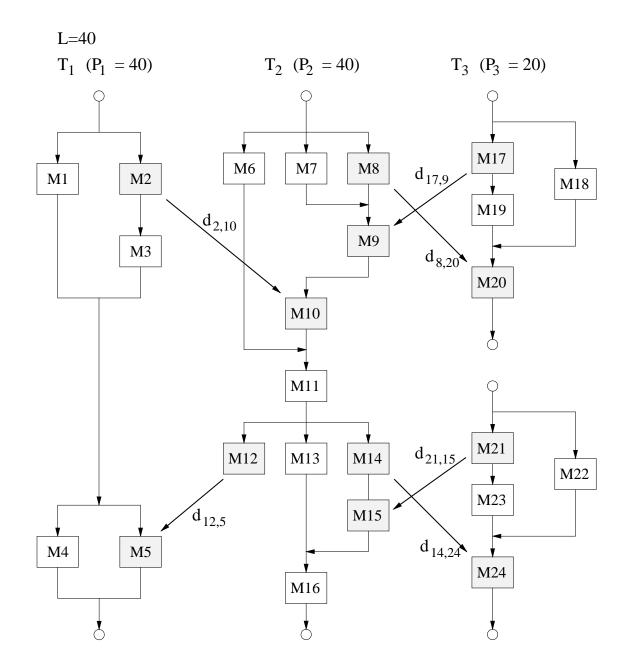
IEEE Trans. on Software Engineering, vol. 23, no. 12,

pp. 745-758, Dec. 1997

- *Task allocation*: combined task assignment and scheduling of periodics
 - o Derive an "optimal" assignment that yields feasible schedules for all processors. How ?
- Main features:
 - o Inter-task communications \Rightarrow precedence constraints hence task structure.
 - o Tasks are periodic and time-critical \Rightarrow allocation objective function.
- Want allocation x of communicating periodic tasks in a *heterogeneous* distributed system that minimizes system hazard, ⊖(x), or maximum normalized task response time.

System Model

- Tasks $T = \{T_i : i = 1, 2, ..., m\};$ Heterogeneous PNs $N = \{N_k : k = 1, 2, ..., n\}.$
- Allocation constraints:
 - o Co-location of T_i and T_j on same PN.
 - o Location of T_i and T_j on *different* PNs.
 - o Location of T_i on a special PN.
- Task invocations and release times, precedence constraints, planning cycle.
- Execution times of computation and communication modules.



Problem Formulation

• Normalized task response time of the v-th invocation of T_i :

$$\overline{c}_{iv} = \frac{c_{iv} - r_{iv}}{d_{iv} - r_{iv}}$$

• System hazard under allocation x:

$$\Theta^x = \max_{T_i \in T} \overline{c}_{iv}$$

- *Problem*: find an optimal x^* that minimizes the system hazard.
- Both \overline{c}_{iv} and Θ^x depend on:
 - o how tasks are assigned under $x \underline{and}$
 - o how assigned tasks are scheduled on each PN.

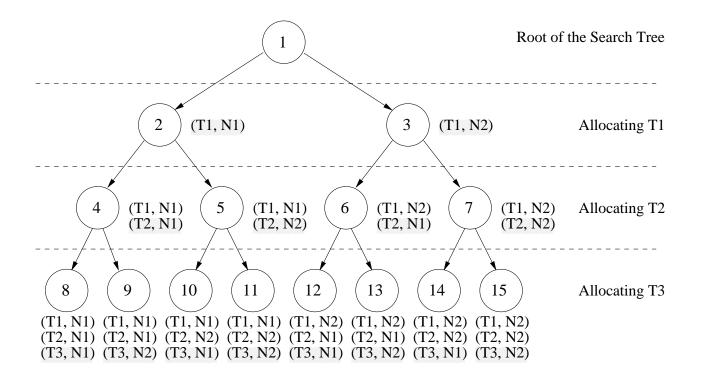
Task Allocation Algorithm

- Consists of two branch-and-bound algorithms, one for assignment (B&BA) and the other for scheduling (B&BS).
- Same as traversing a tree
- Vertex = allocation
- Complete allocation = leaf node; B&BS alg
- Partial allocation = intermediate vertex; B&BS is too expensive, so compute and use a *lower bound* of optimal system hazard

Branch and Bound Algorithm

```
1 let active set A = \{Root\}
2 let vertex cost \Theta(Root) = 0
3 let best solution cost, \Theta_{min} = \infty
4
  while true do
5
      let V_{best} = minimum cost vertex in A
      if V_{best} is a leaf vertex then
6
7
         prune all vertices V \in A except V_{best}
         return V_{best} as optimal solution
8
9
      else
10
         generate (task assignments of) all children of V_{best}
11
         remove V_{best} from active set A
12
        for each child x of V_{best} do
13
            if assignment constraints in set AC are not satisfied then prune x
14
            else
15
               compute vertex cost \Theta(x)
16
               add x to active set A
17
               if x is a leaf vertex then
18
                  if \Theta(x) < \Theta_{min} then
19
                     \Theta_{min} = \Theta(x)
20
                     prune all vertices V \in A for which V \neq x and \Theta(V) \geq \Theta_{min}
21
                  else prune x
22
               end if
23
            end if
24
         end for
25
      end if
26end while
```

Search Tree



B&BA Algorithm

- A terminal vertex or complete assignment: B&BS alg based on dominance properties.
- For each non-terminal vertex or partial assignment *x*:
 - o B&BS is too expensive
 - o As long as a lower-bound, Θ_{lb}^x of the optimal cost for x is used, B&BA will find an optimal assignment.
 - o Θ_{lb}^{x} is obtained by relaxing task invocation times, precedence constraints, etc.

Computing Lower-Bound Vertex Cost

- 1. Compute the minimum computational load imposed on each processor by tasks already assigned to PNs at search vertex *x*.
- 2. Estimate the minimum additional load to be imposed on each PN due to those tasks not yet assigned at *x*.
- 3. Schedule the combined load at each PN and compute the system hazard. We ensure that the system hazard of the resulting schedule is a lower bound on the system hazard of any leaf vertex descending from x, i.e., it represents $\Theta(x) = \Theta_{lb}(x)$.

B&BS Algorithms

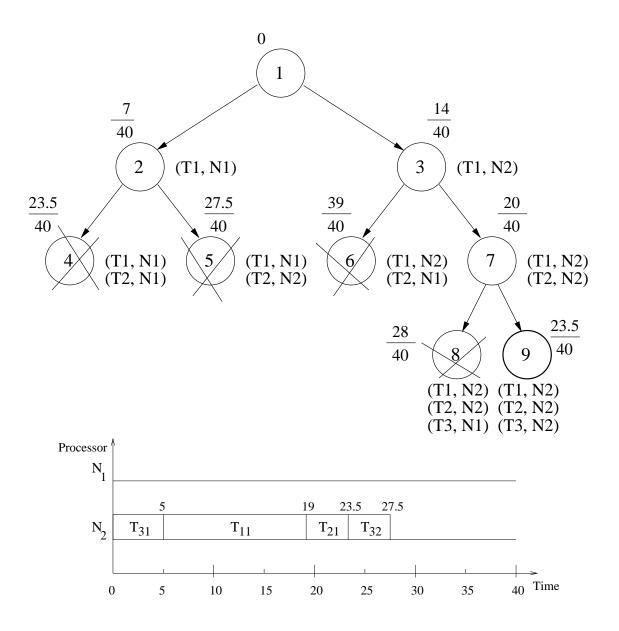
Scheduling tasks w.r.t. Θ for a given complete assignment is NP-Hard \Rightarrow *Dominance properties* are derived to guide search for an optimal schedule.

- Preemptions which do not reduce ⊖ must be disallowed.
- A PN is not allowed to idle when there are ready (uncompleted) modules on the PN.
- Always advantageous to reduce the completion time of a task without increasing others'.

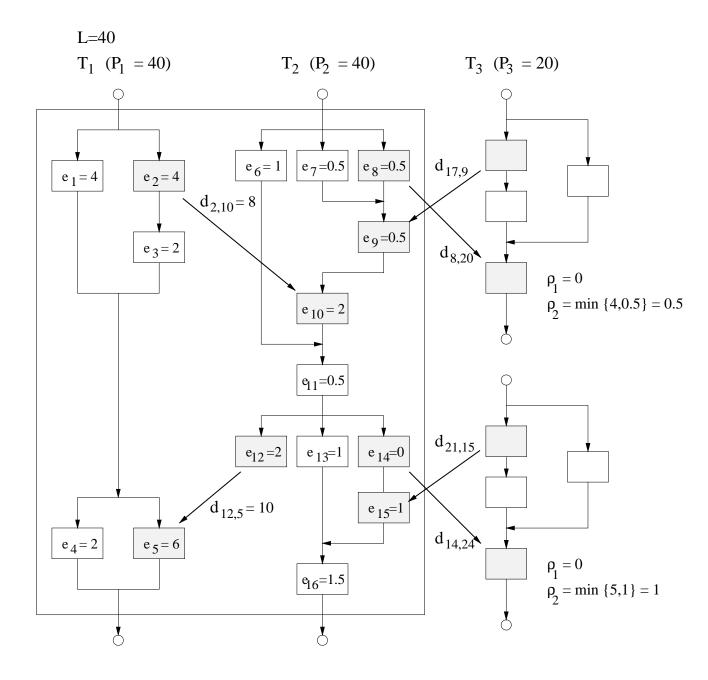
Example

The same as before: 3 tasks and 2 PNs Module execution times on N_1

M_j	e_{j1}	M_j	e_{j1}	M_j	e_{j1}
M_1	4	M_9	1:3	M ₁₇	1:3
M ₂	1:4	M ₁₀	1:4	M ₁₈	1
M ₃	2	M ₁₁	1	M ₁₉	2
M4	2	M ₁₂	2:4	M ₂₀	0:1
M ₅	2:6	M ₁₃	2	M ₂₁	1:3
M ₆	2	M ₁₄	0:2	M ₂₂	1
M ₇	1	M ₁₅	2:3	M ₂₃	2
M ₈	1:2	M ₁₆	3	M ₂₄	1:2



Task Graph at Vertex 5



Kang Shin (kgshin@eecs.umich.edu)

Computational Experiences

Tasks	Expanded Vertices	Total Space	% Expanded
6	18	4096	0.43
8	65	65536	0.1
10	95	1048576	0.01
12	133	16777216	0.0008
14	274	268435456	0.0000004

Nodes	Expanded Vertices	Coef of Variation	Total Space	% Expanded
2	16	0.35	256	6.17
4	37	0.8	65536	0.06
6	38	0.8	1679616	0.002