
Algorithms for Scheduling 
Imprecise Computations 

Jane W.S. Liu, Kwei-Jay Lin, Wei-Kuan Shih, and Albert Chuang-shi Yu, 
University of Illinois at Urbana-Champaign 

Jen-Yao Chung, IBM T. J. Watson Research Center 
Wei Zhao, Texas A&M University 

n a hard real-time cyctem, every time- T critical task must meet its timing con- 
The system scheduler and cxccute3 to coni- 
pletion all mandatory td \k \  before their 

1 straint, typically specified as its 
deadline. (A task is a granule of computa- 
tion treated by the scheduler as a unit of 
work to be allocated processor time, or 
scheduled.) If any time-critical task fails to 
complete and produce its result by its 
deadline, a timing fault occurs and the 
task's result is of little or no use. Such 
factors as variations in the processing times 
of dynamic algorithms make meeting all 
deadlines at all times difficult. 

The imprecise computation t e~hn ique l -~  
can minimize this difficulty. It prevents 
timing faults and achieves graceful degra- 
dation by giving the user an approximate 
result of acceptable quality whenever the 
system cannot produce the exact result in 
time. Image processing and tracking are 
examples of real-time applications where 
the user may accept timely approximate 
results: Frames of fuzzy images and rough 
estimates of location produced in time may 
be better than perfect images and accurate 
location data produced too late. 

In this article, we review workload mod- 
els that quantify the trade-off between re- 
sult quality andcomputation time. We also 
describe scheduling algorithms that ex- 
ploit this trade-off. 

Imprecise computation 
techniques provide 

scheduling flexibility 
by trading off result 

quality to meet 
computation deadlines. 

We review imprecise 
computation scheduling 

problems: workload 
models and algorithms. 

Imprecise computation 
technique 

A basic strategy to minimize the bad 
effects of timing faults is to leave the less 
important tasks unfinished if necessary. 

deadlines, but may leave less important 
tasks unfinished. 

The imprecise computation technique 
uses this basic strategy but carries it one 
step further. In addition to dividing tasks 
into mandatory and optional, programmers 
structure every time-critical task so it can 
belogically decomposedinto two subtasks: 
a mandatory subtask and an optional sub- 
task. The mandatory subtask is required 
for an acceptable result and must be com- 
puted to completion before the task dead- 
line. The optional subtask refines the result. 
It can be left unfinished and terminated at 
its deadline, if necessary, lessening the 
quality of the task result. 

The result produced by a task when it 
completes is the desired precise result, 
which has an error of zero. If the task is 
terminated before completion, the inter- 
mediate result produced at that point is 
usable as long as the mandatory subtask is 
complete. Such a result is said to be im- 
precise. A programming language in which 
imprecise computations can be easily im- 
plemented is Flex,' an object-oriented 
language that supports all C++ constructs 
along with timing-constraint and impreci- 
sion primitives. 

58 0018-9162/91/0500-0058$01.00 Q 1991 IEEE COMPUTER 



Monotone time-critical computations 
provide maximum flexibility in scheduling. 
A task is monotone if the quality of its 
intermediate result does not decrease as it 
executes longer. Underlying computational 
algorithms enabling monotone tasks are 
available in many problem domains, in- 
cluding numerical computation, statistical 
estimation and prediction, heuristic search, 
sorting, and database query processing.4 

T o  return an imprecise result of a 
monotone task, the intermediate results 
produced by the task are recorded at ap- 
propriate instances of its execution. Flex 
provides language primitives with which 
the programmer can specify the intermediate 
result variables and error indicators, as 
well as the time instants to record them. 
The latest recorded values of the interme- 
diate result variables and error indicators 
become available to the user if the task 
prematurely terminates. The user can ex- 
amine these error indicators and decide 
whether an imprecise result is acceptable. 
This method for returning imprecise results 
is called the milestone method. 

For some applications, making all com- 
putations monotone is not feasible. In this 
case, result quality can be traded off for 
processing time through sieve functions - 
computation steps that can be skipped to 
save time. In radar signal processing, for 
example, the step that computes a new 
estimate of the noise level in the received 
signal can be skipped; an old estimate can 
be used. 

In applications where neither the mile- 
stone method nor the sieve method is fea- 
sible, the multiple version method’ almost 
always works. The system has two versions 
of each task: the primary version and the 
alternate version. The primary version 
produces a precise result but has a longer 
processing time. The alternate version has 
a shorter processing time but produces an 
imprecise result. During a transient over- 
load, the system executes a task’s alternate 
version instead of its primary version. 

Programmers can easily implement both 
the milestone and sieve methods in any 
existing language. Tools and environments 
have been developed to support the multiple- 
version method in real-time computing and 
data communication. 

The cost of the milestone technique is 
the overhead in recording intermediate 
results. The cost of the sieve technique is 
the higher scheduling overhead. Since there 
is no benefit in completing part of a sieve, 
while incurring the cost in processing that 
part, the execution of such an optional 
subtask must satisfy the O/I constraint: 

The system must either execute it to com- 
pletion before its deadline or not schedule 
it at all. Algorithms for scheduling tasks 
with the 0/1 constraints are more complex 
than the ones for monotone tasks.2 

The cost of the multiple-version method 
is the overhead to store multiple versions, 
as well as the relatively high scheduling 
overhead. Scheduling tasks that have two 
versions is the same as scheduling tasks 
with the 0/1 constraint. For scheduling 
purposes, we can view the primary version 
of a task as consisting of a mandatory 
subtask and an optional subtask, and the 
alternate version as the mandatory subtask. 
The processing time of the mandatory 
subtask is the same as the processing time 
of the task’s alternate version. The pro- 
cessing time of the optional subtask in the 
primary version is equal to the difference 
between the processing times of the primary 
and alternate versions. Thus, scheduling 
the primary version corresponds to sched- 
uling the mandatory subtask and the entire 
optional subtask, while scheduling the al- 
ternate version corresponds to scheduling 
only the mandatory subtask. 

To  ensure that imprecise computation 
works properly, we need to make sure that 
all the mandatory subtasks have bounded 
resource and processing time requirements 
and are allocated sufficient processor time 
to complete by their deadlines. The system 
can use leftover processor time to complete 
as many optional subtasks as possible. For 
guaranteed performance and predictable 
behavior, we  can use a conservative 
scheduling discipline such as the rate- 
monotone algorithmh to schedule the 
mandatory subtasks. To schedule optional 
subtasks for optimal processor use, we can 
use more dynamic disciplines, such as the 
earliest-deadline-first algorithm,h which 
may have unpredictable behavior. Because 
a monotone task can be terminated any 
time after it has produced an acceptable 
result, the system can decide - on line or 
nearly on line- how much of each optional 
subtask to schedule. 

Basic workload model 

The problems in scheduling imprecise 
computations are at least as complex as the 
corresponding classical real-time-sched- 
uling problems. Almost all problems beyond 
scheduling unit-length, dependent tasks on 
two processors are NP-hard, and most 
known heuristic algorithms for multipro- 
cessor scheduling of dependent tasks have 
poor worst-case performance.’ For this 

reason, a better approach to scheduling 
dependent tasks is first to assign the tasks 
statically to processors and then schedule 
the tasks on each processor using an opti- 
mal or near-optimal uniprocessor sched- 
uling algorithm. When the tasks are inde- 
pendent, optimal preemptive multiprocessor 
schedules can be obtained by transforming 
an optimal uniprocessor schedule using 
McNaughton’s rule.* 

All the imprecise computation models 
are extensions and variations of the fol- 
lowing basic model. We  have a set of 
preemptable tasks T = [ T , ,  T2, ..., T,). Each 
task T, is characterized by parameters, which 
are rational numbers: 

Ready time v,’at which T, becomes ready 

Deadline d,’ by which T, must be com- 
pleted 

Processing time T,, the time required to 
execute T, to completion in the tradi- 
tional sense on a single processor 

Weight w,, a positive number that 
measures the relative importance of 
the task 

for execution 

Logically, we decompose each task T, 
into two subtasks: the mandatory subtask 
M ,  and the optional subtask 0,. Hereafter, 
we refer to M ,  and 0, simply as tasks rather 
than subtasks: M ,  and 0, mean the manda- 
tory task and the optional task of T,. We use 
T, to refer to the task as a whole. The 
processing times of M ,  and 0, are m, and o,, 
respectively. Here m, and U ,  are rational 
numbers, and m, + o, = T~. The ready times 
and deadlines of the tasks M ,  and 0, are the 
same as those of T,. 

A schedule on a uniprocessor system is 
an assignment of the processor to the tasks 
in T in disjoint intervals of time. A task is 
scheduled in a time interval if the proces- 
sor is assigned to the task in the interval. A 
valid schedule assigns the processor to at 
most one task at any time, and every task is 
scheduled after its ready time. Moreover, 
the total length of the intervals in which the 
processor is assigned to T,, referred to as 
the total amount of processor time assigned 
to the task, is at least equal tom, and at most 
equal to z,. A task is completed in the tra- 
ditional sense at an instant t when the total 
amount of processor time assigned to i t  
becomes equal to its processing time at t. 

A mandatory task M ,  is completed when 
it is completed in the traditional sense. The 
optional task 0, depends on the mandatory 
task M ,  and becomes ready for execution 
when M ,  is completed. The system can 

May 1991 59 



terminate 0, at any time; no processor time 
is assigned to it after it is terminated. 

A task T, is completed in a schedule 
whenever its mandatory task is completed. 
It is terminated when its optional task is 
terminated. Given a schedule S, we call the 
earliest time instant at which the processor 
is assigned to a task the start time of the task 
and the time instant at which the task is 
terminated its finishing time. 

The traditional workload model of hard 
real-time applications is a special case of 
this model in which all the tasks are man- 
datory, that is, o, = 0 for all i .  Similarly, the 
traditional soft real-time workload model 
is also a special case in which all tasks are 
optional, that is, m, = 0 for all i. 

Precedence constraints specify the de- 
pendences between the tasks in T. The 
constraints are given by a partial-order 
relation “<” defined over T. T, < T, if the 
execution of T, cannot begin until the task 
T, is completed and terminated. T, is a 
succe.ssor of T,, and T,  is a predecessor of 
T,, if T, < T,. For a schedule of T to be valid, 
it must satisfy the precedence constraints 
between all tasks. A set of tasks is inde- 
pendent if the partial-order relation is empty, 
and the tasks can be executed in any order. 
A valid schedule is feasible if every task is 
completed by its deadline. A set of tasks is 
schedulable if it has at least one feasible 
schedule. 

The given deadline of a task can be later 
than that of its successors. Rather than 
working with the given deadlines, we use 
modified deadlines consistent with the 
precedence constraints and computed as 
follows. The modified deadline d, of a task 
T, that has no successors is equal to its 
given deadline d,‘. Let A, be the set of all 
successors of T,. The modified deadline d, 
of T, is 

Similarly, the given ready time of a task 
may be earlier than that of its predecessors. 
We modify the ready times of tasks as 
follows. The modifiedready time r, of a task 
T, with no predecessors is equal to its given 
ready time r,’. Let B, be the set of all pre- 
decessors of T,. The modified ready time r, 
of T, is 

A feasible schedule on a uniprocessor 
system exists for a set of tasks T with the 
given ready times and deadlines if and only 
if a feasible schedule of T with the modi- 

fied ready times and deadlines exists.’ 
Working with the modified ready times 
and deadlines allows the precedence con- 
straints to be ignored temporarily. If an 
algorithm finds an invalid schedule in which 
T, is assigned a time interval later than 
some intervals assigned to T, but T, < Tj, it 
can construct a valid schedule by exchang- 
ing the time intervals assigned to T, and T, 
to satisfy their precedence constraint without 
violating their timing constraints. In our 
subsequent discussion, the terms ready times 
and deadlines mean modified ready times 
and deadlines. We  call the time interval [r , ,  
d,] the feasibility intervul of the task T,. 

When the amount of processor time (5, 

assigned to 0, in a schedule is equal too,, the 
task T, is precisely scheduled. The error E, 

in the result produced by T, (or simply the 
error of T,)  is zero. In a precise schedule, 
every task is precisely scheduled. Other- 
wise, if 0, is less than o,, we say that a 
portion of 0, with processing time o, - (3, is 
discarded, and the error of T, is equal to 

where the error function E,(o,) gives the error 
of the task T, as a function of 0,. We assume 
throughout this article that E,(o,) is a 
monotone nonincreasing function of 0,. 

Imprecise scheduling 
problems 

Depending on the application, we use 
different performance metrics as criteria 
for comparing different imprecise sched- 
ules. Consequently, there are many differ- 
ent imprecise scheduling problems. We  
describe some in this section. 

Minimization of total error. In prac- 
tice, the exact behavior of error functions 
E,(x)  is often not known. A reasonable 
choice is the simplest one: 

for all i. For a given schedule, the total 
error of the task set T is 

Again, w, > 0 are the weights of the tasks. 
Sometimes, we also refer to E as the total 
error of the schedule. The basic imprecise 
scheduling problem is, given a set T of n 
tasks, to find a schedule that is optimal in 
that it is feasible and has the minimum total 

error given by Equations 2a and 2b. An 
optimal scheduling algorithm always finds 
an optimal schedule whenever feasible 
schedules of T exist. In later sections, we 
consider this problem for dependent tasks 
on uniprocessor systems or independent 
tasks on multiprocessor systems. 

Minimization of the maximum or av- 
erage error. Two straightforward varia- 
tions of the minimization of total error 
performance metric are concerned with the 
average error and the maximum error. Giv- 
en a schedule of the task set T and the er- 
rors E ,  of the tasks, the maximum error of 
the task set is 

m a x l y  E, 1 

For some applications, we may want to 
find feasible schedules with the smallest 
maximum error, rather than the total error. 
There are polynomial-time, optimal algo- 
rithms for solving this scheduling prob- 
lem. (We are preparing a manuscript de- 
scribing them.) 

Minimization of the number of dis- 
carded optional tasks. In a schedule that 
satisfies the 0/1 constraint, 0, is equal to 0, 
or 0 for every task. The general problem of 
scheduling to meet the 0/1 constraint and 
timing constraints, as well as to minimize 
the total error, is NP-complete when the 
optional tasks have arbitrary processing 
times. Often - for example, when sched- 
uling tasks with multiple versions - we 
are concerned only with the number of 
discarded optional tasks. A reasonable 
strategy for scheduling to minimize the 
number of discarded optional tasks is the 
shortest-processing-time-first strategy, 
which tries to schedule the optional tasks 
with shorter processing times first. Given a 
set T of n tasks, N ,  and N ,  are the numbers 
of optional tasks discarded in a schedule 
produced using this strategy and discarded 
in an optimal schedule, respectively. Our 
conjecture is that N, 5 2N0. 

When optional subtasks have identical 
processing times, tasks with 0/1 constraints 
and identical weights can be optimally 
scheduled in O(n log n )  time or O(n’) time, 
depending on whether the tasks have iden- 
tical or different ready times. Optimal al- 
gorithms for this case can be found else- 
where.’ 

Minimization of the number of tardy 
tasks. As long as the total error of the tasks 
is lower than a certain acceptable limit, its 
value is often not important. We  may then 

60 COMPUTER 



want to minimize the number of tasks that 
are tardy - that is, tasks that complete and 
terminate after their deadlines - for a 
given maximum, tolerable total error. Le- 
ung and Wong' presented a pseudopoly- 
nomial time algorithm and a fast heuristic 
algorithm for preemptive uniprocessor 
scheduling of tasks whose feasibility inter- 
vals include each other. In the worst case, 
the number of tardy tasks in a schedule 
found by the heuristic algorithm is approx- 
imately three times the number in an opti- 
mal schedule. 

Minimization of average response time. 
Given a schedule S and the finishing time 
,f(T,, S) of every task, the mean ,flow time 
of the tasks according to the schedule is 
equal to 

F = C f ( T , S ) I n  
, = I  

The mean flow time of the tasks measures 
the average response time, the average 
amount of time a task waits until it com- 
pletes. The goal of scheduling is to mini- 
mize the mean flow time, subject to the 
constraint that the total error is less than an 
acceptable value. Unfortunately, all but 
the simplest special cases of this schedul- 
ing problem are NP-hard."' In a later sec- 
tion, we discuss the queuing-theoretical 
formulation, a more fruitful approach to 
this problem. 

Scheduling to minimize 
total error 

Two optimal algorithms for scheduling 
imprecise computations to meet deadlines 
and minimize total error use a modified 
version of the classical earliest-deadline- 
first algorithm.' This is a preemptive, 
priority-driven algorithm that assigns pri- 
orities to tasks according to their dead- 
lines. Tasks with earlier deadlines have 
higher priorities. In our version, every task 
is terminated at its deadline even if it is not 
completed at the time. We  call this algo- 
rithm the ED algorithm. Its complexity is 
O(n log n).  In any ED algorithm schedule, 
every task is scheduled in its feasibility 
interval. 

We  use the ED algorithm to test whether 
a task set T can be feasibly scheduled. In 
the feasibility test, we schedule the manda- 
tory set M using the ED algorithm. If the 
resultant schedule of M is precise, then the 
task set T can be feasibly scheduled. Oth- 
erwise, no feasible schedule of T exists. 

r, d, zl ml ol 
0 7 5 3 2  
3 1 2  7 4 3 
2 1 4  6 2 4 
5 1 6  6 4 2 
5 1 8  3 2 1 

10 19 4 1 3 

0 1 2 3 4 5 6 7 8 9 1011 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9  
Time I I I I I I I I I I I I I I I I I I I I 

Figure 1. An example showing the need for step 3 in algorithm F. 

Identical-weight case. An ED schedule 
of a set of entirely optional tasks is, by 
definition, a feasible schedule of the set. 
Moreover, because such a schedule is pri- 
ority-driven, the processor is never left idle 
when there are schedulable tasks. A por- 
tion of an optional task is discarded only 
when necessary. Therefore, the ED algo- 
rithm is optimal when used to schedule 
optional tasks that have identical weights.' 

The optimality of the ED algorithm pro- 
vides the basis of algorithm F, which 
schedules a set T = ( T , ,  Tz ,  ..., Ttz} of n tasks 
with identical weights on a uniprocessor 
system. We decompose the set T into two 
sets, the set M of mandatory tasks and the 
set 0 of optional tasks. Algorithm F works 
as follows: 

( I )  Treat all mandatory tasks in M as 
optional tasks. Use the ED algorithm to 
find a schedule S,  of the set T. If S,  is a 
precise schedule, stop. The  resultant 
schedule has zero error and is, therefore, 
optimal. Otherwise, carry out step 2. 

(2) Use the ED algorithm to find a 
schedule S,, of the set M. If S,,, is not a 
precise schedule, Tis not schedulable. Stop. 
Otherwise, carry out step 3. 

(3) Using S,, as a template, transform S, 
into an optimal schedule S,, that is feasible 
and minimizes the total error. 

The example in Figure 1 shows the need 
for step 3. The task set in Figure laconsists 
of six tasks of identical weights. Figure l b  
shows the schedules S ,  and S, generated in 
steps 1 and 2, respectively. S,  of the man- 
datory set M is precise. Therefore, feasible 
schedules of T exist. 

The schedule S, is, in general, not a fea- 
sible schedule of T. Because step 1 treats 
all the tasks as entirely optional, some 
tasks may be assigned insufficient proces- 
sor time for their mandatory tasks to com- 
plete. In this example, step 1 assigns T4 
only two units of processor time in S,, which 
is less than the processing time of M4. In step 
3, we  transform S, into a feasible schedule 
of T by adjusting the amounts of processor 
time assigned to the tasks, so every task T, 
is assigned at least m, units of processor 
time in the transformed schedule. 

The transformation process in step 3 has 
as inputs the schedules S,,, and S,. Let a ,  and 
a,,, be, respectively, the earliest start time 
and the latest finishing time of all tasks in 
the schedule S,. We  partition the time in- 
terval [a, ,  a,,,] according to s,,, into k dis- 
joint intervals [a,, a,+l], for j = 1,2, ..., k,  so 
in S, the processor is assigned to only one 
task in each of these intervals and is as- 
signed to different tasks in adjacent inter- 
vals. In the example in Figure 1, k is equal 
to 6, and the time instants a, ,  at, ..., a, are 

May 1991 61 



Tasks are indexed so that wI 2 w 2  2 ... 2 w, 
begin 

Use the E D  algorithm to find a schedule S, of M. 
ZfS, is not precise, stop; the task set T cannot be feasibly scheduled. 
else 

The mandatory set M' (= [MI', M2' ,..., M,,' }) = M 
i =  1 
while ( I  I i I n ) 

Use algorithm F to find an optimal schedule So' of M' U { O,]; 
0,' = the portion of 0, with processing time 0; scheduled in S,' 

M,' = M ,  v 0,' 
i = i + l  

endwhile 
The optimal schedule sought is S," 

endif 
end algorithm LWF 

Figure 2. Pseudocode for the LWF algorithm. 

6 2 0 1 0  4 6 4 
2 1 2  9 2 7 3 
0 1 4  8 3 5 2 
5 17 13 1 12 1 

0 2 4 6 8 10 12 14 16 18 20 
T ime1  I I I I I I I I I I I I I I I I I I I I 

Figure 3. An illustration of the LWF algorithm. 

0 ,3 ,7 ,9 ,  13, IS, and 16,respectively. Let 
M u )  denote the mandatory task scheduled 
in the interval [a,, a,,,] in S,, and let Tu)  be 
the corresponding task. 

Step 3 adjusts the amounts of processor 
time assigned to the tasks in S,, using S, as 
a template. In this step, we scan the sched- 
ule S, backward from its end The 
segment of S, after a,,, is left unchanged. 
We compare in turn, f o r j  = k, k - I ,  ..., 1, 
the total amounts L,u) and L,G) of pro- 

cessor time assigned to the tasks To') and 
M u )  after U/ according to S, and S,, re- 
spectively. If L,u) t L,(j), the segment of S ,  
in [a,, a,,,] is left unchanged. Otherwise, let 
A=LJj)-L,(j). Weassign Aadditionalunits 
of processor time in [a,, a,+,] to To'). These 
units may be originally assigned to other 
tasks in S,. Arbitrarily, we choose some of 
these tasks. We  decrease the amounts of 
processor time assigned to them in this 
interval by a total of A units and update 

accordingly the values of L,(l) (for 1 = 1,2,  
..., j )  for all the tasks affected by this re- 
assignment. This reassignment can always 
be done because A is less than or equal to 

- a, and T u )  is ready in the interval. 
In the example in Figure 1 ,  L,(6) and L,( 5 )  

are left unchanged because they are equal 
to LJ6) and L J 5 ) ,  respectively. L,(4) is 2 
while LJ4) is 4; therefore, we assign two 
additional units of processor time to T(4), 
which is T4. These two units of time are 
taken from T?. T? has three units of proces- 
sor time in the interval [9, 131 before the 
reassignment and only one unit after the 
reassignment. The new values of L,u) are 
5 , 5 ,  2, and 4 f o r j  = 1,2,  3, and 4, respec- 
tively. Similarly, we compare L,(3) and 
L,(3), and so on. The result of step 3 is the 
optimal schedule Sc2. 

The complexity of algorithm F is the 
same as that of the ED algorithm, that is, 
O(n log n) .  Algorithm F always produces a 
feasible schedule of T as long as T can be 
feasibly scheduled -this follows directly 
f rom the algorithm's definition. The  
schedule S, obtained in step 1 achieves the 
minimum total error for any set of tasks 
with identical weights. Since step 3 intro- 
duces no additional idle time, the total 
error remains minimal. Hence, algorithm F 
is optimal for scheduling tasks with identi- 
cal weights to minimize total error.' With 
McNaughton's rule,x it can be modified to 
optimally schedule independent tasks with 
identical weights on a multiprocessor sys- 
tem containing v identical processors. Then 
its complexity is O(vn + n log n ) .  

Different-weight case. When tasks in T 
have different weights, we can number 
them according to their weights: w ,  2 w2 2 
... 2 w,. Algorithm F is not optimal for 
scheduling tasks with different weights. 
We  use the largest-weight-first algorithm, 
which is optimal. Figure 2 shows the LWF 
algorithm in pseudocode. 

Starting from the task with the largest 
weight, in the order of nonincreasing 
weights, the LWF algorithm first finds for 
each task T, in turn the maximum amounts 
of processor time 0," that can be assigned to 
its optional task 0,. An optimal schedule is 
a feasible schedule in which the amount of 
processor time assigned to each optional 
task T, is 6,". 

The LWF algorithm makes use of the 
fact that the amount of processor time 0," 
assigned to the only optional task in the set 
M U ( OZ] in an optimal schedule of this set 
is as large as possible. (In Figure 2, the 
notation for the optimal schedule of the set 
is S<,'.) It uses algorithm F to schedule the 

62 COMPUTER 



tasks in the set M U { O,} .  Again, T,  is the 
task with the largest weight. In the resul- 
tant schedule So1, the optional task 0, is 
assigned the maximum possible amount of 
processor time 0,'. There are optimal 
schedules of T in which 0, is assigned oIo 
units of processor time., We commit our- 
selves to finding one of these schedules by 
combining MI and the portion 0 , ' o f  0, that 
is scheduled in S,' into a taskM,'. We treat 
the task MI' as a mandatory task in the 
subsequent steps. 

In the next step, we again use algorithm 
F to schedule the task set {MI', M,, ..., M,)  
U { O,].  Let 0,' be the portion of the op- 
tional task 0, that is scheduled in the re- 
sultant optimal schedule Soz. 0,' has the 
maximum possible amount of processor 
time 02". There are optimal schedules of T 
in which the amounts of processor time 
assigned to 0, and 0, are oIo and o,*, re- 
spectively. We commit ourselves to find 
ing one of these schedules by combining 
M ,  and 0,' into the mandatory task M,'. 

We repeat these steps for i = 3, 4, ..., n 
until all o; are found. The schedule S," 
found in the last step is an optimal schedule 
of T with minimum total error. 

The time complexity of the first step 
when algorithm F is used is O(n log n), but 
in subsequent steps, algorithm F requires 
only O(n) time. Hence, the time complex- 
ity of the LWF algorithm is O(n2). 

Figure 3 shows how the LWF algorithm 
works. Figure 3a lists four tasks and their 
weights. Figure 3b shows the schedule S,  
of M U [ 0, ) produced by algorithm F. We 
commit ourselves to finding an optimal 
schedule in which the amount of processor 
time assigned to 0, is 6. This is an earliest- 
deadline-first schedule, and we use it in the 
second step as a template to find an optimal 
schedule of the task set {MI', T,, M,, M 4 ) .  
Figure 3b shows the resultant schedule So. 
The total error of the tasks is 25. Also 
shown is a schedule S,, which minimizes 
the unweighted total error. 

Scheduling periodic 
jobs 

In the well-known periodic-job mod- 
there is a set J of n periodic jobs. Each 

job consists of a periodic sequence of re- 
quests for the same computation. The peri- 
od of a job J, in J is the time interval 
between two consecutive requests in the 
job. In terms of our basic model, each 
request in job J, is a task whose processing 
time is z,. The ready time and deadline of 

the task in each period are the beginning 
and the end of the period, respectively. 
Therefore, we can specify eachjobJ,  by the 
two-tuple (IT,, 7,). In the extended-work- 
load model used to characterize periodic 
imprecise computations,' each task in J, 
consists of a mandatory task with process- 
ing time m, and an optional task with pro- 
cessing time z, - m,. The optional task is 
dependent on the mandatory task. In other 
words, we decompose each job J ,  = (E,, z,) 
into two periodic jobs: the mandatory job 
M, = (E,, m,) and the optional job 0, = (E,, T, 
- mr) .  The corresponding sets of mandato- 
ry jobs and optional jobs are denoted by M 
and 0, respectively. Let 

" 
U = C z, In, 

,=I 

denote the utilization factor  of the job set J .  
Uis the fraction of processor time required 
to complete all the tasks in J if every task 
is completed in the traditional sense. Sim- 
ilarly, let 

u = C m , / n ,  
k=l 

Here, U is the utilization factor of the man- 
datory set M. 

Because the worst-case performance of 
priority-driven strategies for scheduling 
periodic jobs on multiprocessor systems is 
unacceptably poor, it is common to assign 
jobs once and for all to processors, and 
schedule the jobs assigned to each proces- 
sor independently of the jobs assigned to 
the other processors. We can formulate the 
problem of finding an optimal assignment 
of jobs to processors and using a minimum 
number of processors as a bin-packing 
problem. 

A heuristic job-assignment algorithm 
with reasonably good worst-case perfor- 
mance is the rate-monotone next-fit (or 
first-fit) algorithm. According to this algo- 
rithm, jobs in J are sorted in the order of 
nonincreasing rates and are assigned to the 
processors on the next-fit (or first-fit) ba- 
sis. A job fits on a processor if it and the 
jobs already assigned to the processor can 
be feasibly scheduled according to the rate- 
monotone algorithm.6 (The rate-monotone 
algorithm is a preemptive, priority-driven 
algorithm that assigns priorities to jobs 
according to their rates: the higher the rate, 
the higher the priority.) When deciding 
whether an imprecise job fits on a proces- 
sor, the algorithm considers only the man- 
datory set M. Let u, = m,ln,. Suppose that k 
jobs are already assigned to a processor, 
and their mandatory jobs have a total utili- 
zation factor 

k 

u = C u ;  
,=I 

If an additional job Jktl is also assigned to 
this processor, the total utilization factor of 
thek+ 1 mandatoryjobsisu+mk+,l~,+,.J,+, 
is assigned to the processor only if 

U + m,+,/xk+, 5 ( k  + 1)(2''(,+') - 1) (3) 

Hereafter, J denotes the set of n jobs 
assigned to one processor in this manner. 
The utilization factor Uof the job set J may 
be larger than 42 , ' "  - 1). Consequently, J 
may not be precisely schedulable to meet 
all deadlines according to the rate-mono- 
tone algorithm. However, the utilization 
factor U of the mandatory set is less than 
n(2"" - 1 ) .  Hence, the mandatory set M is 
always precisely schedulable.6 Since the 
value of U is less than 1 (for example, 0.82 
for n = 2 and In 2 for large n), a fraction of 
processor time is always available to exe- 
cute tasks in the optional set 0. 

Depending on the kind of undesirable 
effect that errors cause, applications can be 
classified as either error-noncumulative or 
error-cumulative. Different performance 
metrics are appropriate for each. 

For an error-noncumulative application, 
only the average effect of errors in differ- 
ent periods is observable and relevant. 
Optional tasks are truly optional because 
none need to be completed. Image en- 
hancement and speech processing are ex- 
amples of this type of application. 

In contrast, for an error-cumulative ap- 
plication, errors in different periods have a 
cumulative effect. The optional task in one 
period among several consecutive periods 
must be completed within that period and, 
hence, is no longer optional. Tracking and 
control are examples of this type of appli- 
cation. 

The complexity of scheduling error-cu- 
mulative jobs and an approximate algo- 
rithm for scheduling them with identical 
periods have been discussed e1sewhere.j 
Much work remains in finding effective 
algorithms and schedulability criteria for 
scheduling error-cumulative jobs that have 
arbitrary periods and error characteristics. 
The workload on practical systems typical- 
ly is a mixture of error-cumulative jobs, 
error-noncumulative jobs, aperiodic jobs, 
and dependent jobs. Programmers need 
good heuristic algorithms for scheduling 
such complex job mixes. 

Error-noncumulative jobs. Now, we 
focus on error-noncumulative jobs. Since 
each periodic job can be viewed as an 

May 1991 63 



Time 

4 

J2 

J3 

J4 

Figure 4. Scheduling error-noncumulative jobs. 

I I I I I I I I I I I I I I I I  

4 h h d  

n m i  l m  rB n m  L 
n I h m h 

' -  - I i n  I 

infinite chain of tasks, the total error de- 
fined in Equations 2a and 2b is infinite for 
an imprecise schedule. A more appropriate 
performance metric of the overall result 
quality is the average error in the results 
produced in several consecutive periods. 
While the duration over which the average 
error is computed can be arbitrary, a con- 
venient choice of this duration is n, the least 
common multiple of all the periods in J. For 
this duration, the average error E ,  ofJ,  at any 
time is the average value of E,(o, - old) over 
the past n/x, periods, where old is the amount 
of processor time assigned to the task in the 
j th period of J , .  Again, the error function 
E,(o,,) is a nonincreasing function ofo,,. The 
average error over all jobs in J is 

E = c w ,  E, 
,=I 

where w, is a nonnegative constant weight 
and 

t w ,  = I  
,=I 

A class of heuristic algorithms for 
scheduling error-noncumulative periodic 
jobs on uniprocessors to minimize the av- 
erage error has been designed and evaluat- 
ed.' All the algorithms in this class are 
preemptive and priority-driven, and all use 
the same strategy: They execute optional 
tasks only after all the ready mandatory 
tasks have completed. Specifically, given 
a j o b  set J and its associated mandatory set 
M and optional set 0, all the jobs in M have 
higher priorities than all the jobs in 0. 
Moreover, the rate-monotone algorithm 
schedules jobs in M precisely. Because of 
the condition given by Equation 3, the set 
M can always be feasibly scheduled.'Such 
algorithms meet all the deadlines, regard- 
less of how jobs in 0 are scheduled. 

Figure 4 shows an example in which the 

job set J consists of four jobs. They are (2, 
I ) ,  (4, O S ) ,  ( 5 ,  O S ) ,  and (6, lS) ,  and their 
mandatory tasks have processing times 0.5, 
0.2,0.1, and 1 .O, respectively. The utiliza- 
tion factor of the j o b  set J is 0.975. J is not 
precisely schedulable according to the 
rate-monotone algorithm. In a rate- 
monotone schedule, the task in the first 
period of J ,  misses its deadline. However, 
the mandatory set M consists of (2, O S ) ,  
(4 ,0 .2) , (5 ,0 . l ) , and(6 ,  1.0)withautiliza- 
tion factor 0.4867. It is precisely schedula- 
b le  according to the  rate-monotone 
algorithm. 

White boxes in the timing diagram in 
Figure 4 show the time intervals when the 
processor is assigned to tasks in M in arate- 
monotone schedule of M. Black bars indi- 
cate the time intervals during which the 
processor is assigned to jobs in the optional 
set 0, consisting of (2, O S ) ,  (4, 0.3), ( 5 ,  
0.4), and (6, 0.5). 

Types of heuristic algorithms. The 
heuristic algorithms' differ only in how 
they assign priorities to optional jobs. Some 
make priority assignments to optional tasks 
on the basis of error function behavior. 
Examples include the least-utilization al- 
gorithm, the least-attained-time algorithm, 
and the first-come-first-serve algorithm. 

The least-utilizntion nlgorithm statical- 
ly assigns higher priorities to optional jobs 
with smaller weighted utilization factors: 
(7, - m,)/n,w,. It minimizes the average er- 
ror when the error functions E , ( x )  are linear 
and when all jobs have identical periods 
and weights. 

At any time, the lenst-nttained-time nl- 
gorithm assigns the highest priority to the 
optional task that has attained the least 
processor time among all the ready option- 
al tasks. This algorithm tends to perform 
well when the error functions E,(x) are 

convex, that is, when the error in the result 
decreases faster earlier and more slowly 
later, as the computation proceeds. 

The  f irst-come-first-serve algorithm 
performs well when the error functions 
E,(x)  are concave, that is, when the under- 
lying procedure converges more slowly 
earlier and faster later, as the computation 
proceeds. 

When we do not know the exact behav- 
ior of the error function, we can use an 
algorithm that ignores the error functions 
in assigning priorities to optional tasks. 
The shortest-period algorithm, which also 
assigns priorities to optionaljobs on a rate- 
monotone basis, is such an algorithm. 

Another example is the earliest-dead- 
line algorithm. This algorithm assigns pri- 
orities dynamically to optional tasks ac- 
cording to their deadlines: the earlier the 
deadline, the higher the priority. If any of 
the heuristic algorithms we have described 
here can precisely schedule a set of jobs, 
the earliest-deadline algorithm can pre- 
cisely schedule it, too.' 

Quantitative data on achievable average 
errors with the algorithms described above 
for different values of the utilization fac- 
tors of M and J are available elsewhere.' 
These algorithms have the advantage of 
the rate-monotone algorithm: Tasks miss 
deadlines in a predictable manner during a 
transient overload. Like the classical ear- 
liest-deadline-first algorithm, these algo- 
rithms also use the processor to its fullest 
extent. They are ideal for applications where 
transient overloads occur frequently or 
actual task processing times vary widely. 
Usually the average error remains toler- 
ably small when U becomes larger than 1 
and no classical algorithmcan schedule the 
tasks satisfactorily. 

The advantages are realized at the ex- 
pense of not being optimal. For example, 
these algorithms may lead to schedules 
with a nonzero average error for job  sets 
that can be precisely scheduled to meet 
deadlines by the classical rate-monotone 
or earliest-deadline-first algorithms. 

Scheduling 
parallelizable tasks 

A task is parallelizable if it can be exe- 
cuted in parallel on a number of processors 
to complete in less time. The degree of 
concurrency of any task in an interval re- 
fers to the number of processors on which 
the task executes in parallel in the interval. 
In our model of parallelizable tasks, the 

64 COMPUTER 



degree of concurrency of any task may 
change during its execution. 

The parameters that characterize each 
parallelizable task T, in a set T of n tasks 
include its ready time r,, deadline d,, pro- 
cessing time z,, and weight w, - in short, 
the parameters that characterize any se- 
quential task. A parallelizable task also has 
the following two parameters: 

Maximumdegree of concurrency C,, the 
number of processors on which TI can 
execute in parallel 

Multiprocessing overhead factor e,, a 
proportional constant used to compute 
the overhead in the parallel execution 
of T,  

Like sequential tasks, each paralleliz- 
able task T, is logically composed of a 
mandatory task M ,  and an optional task 0,, 
whose processing times on a single pro- 
cessor are m, and o,, respectively. In this 
section we use task to refer toaparallelizable 
task. We consider only cases where the 
tasks are independent. 

A parallel schedule of the task set T on 
a system containing v identical processors 
assigns no more than one task to any pro- 
cessor at any time and assigns each task T, 
to at most C, processors. For a given a task 
set T, let a = {al ,  a?, ..., u ~ + ~ )  be an in- 
creasing sequence of distinct numbers ob- 
tained by sorting the list of ready times and 
deadlines of all the tasks in T and deleting 
duplicate entries in the list. (Here k + 1 I 
2n.) This sequence divides the time be- 
tween the earliest ready time n,  and latest 
deadline akil into k intervals I, = [a,, a,+J for 
j =  1, 2, ..., k. 

We divide the problem of finding feasi- 
ble parallel schedules of T into two sub- 
problems: the time allocation problem and 
the schedule construction problem. To solve 
the time allocation problem, we decide 
how many units of processor time in each 
of the k intervals I, should be allocated to 
each task T!, so the tasks meet their timing 
constraints and the total error is minimized. 
Given this solution, we then solve the sec- 
ond problem to obtain a parallel schedule 
on v processors. 

Time allocation problem. When a sys- 
tem executes a task in parallel on more than 
one processor, it wastes some processor 
time in interprocessor communication and 
synchronization. This multiprocessing 
overhead 0, of a task T, in any time interval 
depends on the task's degree of concurren- 
cy c, and, consequently, on the amount of 

,=l p 1  

Figure 5. Linear programming formu- 
lation. 

processor time allocated to the task in the 
interval. 

Studies on scheduling parallelizable 
(precise) tasks typically assume that for c, 
larger than 1, 0, is either a positive con- 
stant or a monotone nondecreasing func- 
tion of c,. We present a special case where 
the multiprocessing overhead is a linear 
function of the degree of concurrency. This 
assumption allows us to formulate the time 
allocation problem as a linear program- 
ming problem and solve it using any of the 
well-known techniques." 

To calculate the multiprocessing over- 
head, we suppose that a task T, is allocated 
a total of x units of processor time on all 
processors in an interval of length t. If x 5 
t, this task is not parallelized in this inter- 
val, and its multiprocessing overhead in 
this interval is zero. If x > t, the minimum 
degree of concurrency of the task in this 
interval is rx / tl. Rather than make the 
multiprocessing overhead proportional to 
this nonlinear function of x ,  we let the 
multiprocessing overhead of T, in this in- 
terval be proportional to Y(x)  = max(x/r- 1, 
0). Then 8,Y(x)  units of processor time is 
wasted as the multiprocessing overhead. 

The actual amount of processor time 
available to the task in this interval for its 
execution toward completion is x - 8,Y(x) .  
We say that this amount of processor time 
is actually assigned to the task T,. Again, 
Equations 2a and 2b give us the error E ,  of 
a task T, in terms of the amount (3, of pro- 
cessor time actually assigned to its option- 
al task 0, in all k intervals. 

Let f, denote the length of the interval I,, 
and x,(j) denote the amount of processor 
time allocated to the task T, in I,. Here x,(j) 
is zero if the feasibility interval of T, does 

not include the interval I,. Let 

@,U) = 8,Y(x,(j)) = 8, max(x,(j)/t - 1 ,  0) 

be the multiprocessing overhead of T, in- 
curred in this interval when its allocated 
processor time is x, ( j ) .  

Figure 5 gives the linear programming 
formulation of the processor time alloca- 
tionproblem. We wantto findthe set ( x , ( j ) ]  
that minimizes the objective function, the 
total (weighted) error expressed here in 
terms of x,(j). The first set of constraints 
specifies that the total processor time allo- 
cated to every task in all k intervals is no 
more than its procesSing time 2, plus its total 
multiprocessing overhead. These con- 
straints ensure that no task gets more pro- 
cessor time than its processing time. The  
second set of constraints specifies that the 
total processor time allocated to every task 
T, in all k intervals is no less than the sum 
of the processing time m, of the mandatory 
taskM, and the total multiprocessing over- 
head. These constraints ensure that the 
schedule assigns sufficient processor time 
to every mandatory task for it to complete 
in the traditional sense. Together, they en- 
sure that we can construct a valid schedule 
from the resultant set X = (x,G)) of pro- 
cessor time allocations. . 

The third set of constraints requires that 
the total processor time allocated to all 
tasks in every interval I, is no greater than 
the total amount of processor time avail- 
able on all v processors. The fourth set of 
constraints ensures that the degree of con- 
currency of each task is at most equal to its 
maximumdegree of concurrency. The fifth 
set states that every x,(j) is nonnegative. 

The optimal solution of this linear pro- 
gram, if one exists, gives a set X of pro- 
cessor time allocations from which we can 
construct a feasible parallel schedule of T 
with the minimum total error. The com- 
plexity of the processor time allocation 
problem is the same as the complexity of 
the most efficient algorithm for linear pro- 
gramming." One efficient algorithm for 
linear programming requires O((a  + P)p'+ 
(a  + p)'") operations, where a is the 
number of inequalities and p is the number 
of variables. For our problem, a is equal to 
3n + k ,  and P is at most equal to nk. 

In the example in Figure 6, there are 
three tasks; Figure 6a lists their parame- 
ters. Their ready times and deadlines di- 
vide the time between 0 to 14 into four 
intervals beginning at 0, 4, 6, and 12. The 
values oft, f o r j  = I ,  2 ,  3, and 4 are 4, 2. 6, 
and 2, respectively. Figure 6b shows the 
solution of the corresponding linear pro- 

May 1991 65 



f i  di T i  mi Oi w Ci ei 
5 0  6 8 3 5 3 2 2 
5 4  12 13 10 3 2 2 2 
T 3 0  14 17 7 10 1 2 2 

T2 

Figure 6. An example of processor time allocation. 

~ ~ ~ 

9 11 0 0.5 0.5 6 2 

gram. A blank entry at a row T, and a col- 
umn x,G) indicates that the feasibility in- 
terval of T, does not include the interval [a,, 
a,+,]. To save space in the tabulation, Fig- 
ure 6b lists Y(x, ( j ) )  simply as 5. The total 
error of the feasible schedule is 19. 

Schedule construction. The solution of 
the linear program is the set X = ( x , ( j ) )  of 
processor time allocations, which gives us 
the amounts of processor time allocated to 
then tasks inTineach timeinterval(. Given 
X, we need to decide which task is to run on 
which processor(s) in each intervall,, so we 
can construct a parallel schedule.  A 
straightforward approach is first to con- 
struct independently a segment of the par- 
allel schedule in each interval I, on the ba- 
sis of the processor time allocationsx,(j) for 
the interval. After constructing the sched- 
ule segments in all k intervals, we re- 
arrange the order in which tasks are as- 
signed in adjacent segments to reduce the 
total number of preemptions and migra- 
tions. If a task is scheduled in two adjacent 
segments on two different processors, in 
this rearrangement step we move them 
whenever possible so they are scheduled 
contiguously on the same processor(s) in 
these segments. To do this, we can use an 
O(n2 log n )  algorithm based on a solution 
of the bipartite matching problem. 

Returning to how to construct a parallel 
schedule segment from the processor time 
allocations of an interval I,, we consider now 
the first interval I , .  Segments in the other 

intervals can be constructed in the same 
manner. Without loss of generality, let TI, 
T,, ... T, be all the tasks allocated nonzero 
processor time in this interval. The portion 
of each task T, assigned in I ,  is divided into 
V, = Lx,(l)/t,l subtasks with processing 
time t ,  and a fractional subtask with pro- 
cessing time w, = f, - Lx,(l)/t,J t , .  After all 
the subtasks with processing time t ,  are 
assigned on 

processors, we try to pack the 1 fractional 
subtasks on the remaining processors. We 
can use a pseudopolynomial algorithm for 
this knapsack problem. 

Queuing-theoretical 
formulation 

A performance metric common in many 
applications is the average response time 
of tasks, that is, the average amount of time 
between the instant when a task is ready 
and the instant at which the task is complet- 
ed (and leaves the system). The section on 
imprecise scheduling briefly describes the 
deterministic formulation of the problem: 
Find optimal schedules with the minimum 
average response time, subject to the con- 
straint of a maximum acceptable total er- 
ror. This problem is NP-hardlo for most 
practical cases, so the queuing-theoretical 

approach is more fruitful than the deter- 
ministic formulation. Here we briefly de- 
scribe two queuing-theoretical formula- 
tions. 

The simplest model of an imprecise 
multiprocessor system with v identical 
processors is an open v-server Markov 
queue. Tasks arrive and join a common 
queue according to a Poisson process with 
an average rate of h. They are serviced (that 
is, executed) on a first-come-first-serve 
basis. The processing times (that is, ser- 
vice times) of all tasks are exponentially 
distributed. (Later, we say more about this 
assumption.) This simple Markov multi- 
server queue is analytically tractable. For 
most practical cases, however, it models 
imprecise computation systems in suffi- 
cient detail to provide the performance 
data we need to choose design parameters 
of imprecise service disciplines. 

First, we consider imprecise computa- 
tions implemented by providing two ver- 
sions of each task. A task is serviced at the 
full level when its primary version is 
scheduled and executed, or at reduced lev- 
el when its alternate version is scheduled 
and executed. When the system has a light 
load and the response time is small, it 
services every task at the full level. When 
the load becomes heavy, the system reduc- 
es the overall response time by servicing 
some tasks at the reduced level. Such a 
scheduling scheme is called a two-level 
scheduling discipline.I2 The full-level 
processing times of all tasks are statistical- 

66 COMPUTER 



ly independent, exponentially distributed 
with a mean of l/p. The reduced-level 
processing time of a task is a constant 
fraction y of its full-level processing time, 
where y is a real number between 0 and 1. 
Let p = hlvp denote the offered loud of a 
processor in the system, that is, the fraction 
of time each processor is busy if all tasks 
are serviced at their full level. It is easy to 
see that the system is not saturated as long 
as p c lly. 

Here yis a design parameter of an impre- 
cise computation system. We assume that 
the larger y is, the better the result quality 
of the tasks that are serviced at the reduced 
level. A design parameter of the two-level 
service discipline is the thresholdH: As long 
as the number of tasks in the system is less 
than H, the system load is light. For a given 
y, we choose the value of H to achieve a 
desired trade-off between the average 
waiting time and the average result quality. 
The trade-off reduces the average waiting 
time W of tasks - the average time a task 
spends in the queue before its execution 
begins. 

Thus Wplus the average processing time 
of the tasks corresponds to the mean flow 
time F defined in the section on imprecise 
scheduling problems. W e  can minimize it 
easily by servicing every task at the re- 
duced level. Therefore, we must consider 
the cost of this trade-off. Studies on the 
two-level scheduling disciplineI2 measure 
this cost in terms of the average result 
quality, the average fraction G of tasks 
serviced at the full level. G measures the 
system’s quality of service. In the steady 
state, G = ( U  - yp)/( 1 - y)p, where U is the 
average utilization of each processor. 

We choose H on the basis of the perfor- 
mance data on Wand G. Such data on two- 
level scheduling in uniprocessor systems 
are available elsewhere.I2 More recently, 
we evaluated the performance of imprecise 
multiprocessor systems. The results indi- 
cate that an appropriate choice of Hmakes  
an imprecise system with a two-level 
scheduling discipline perform almost as 
well as the corresponding precise system 
in terms of the average service quality, 
when the offered load of the system is 
small. When the offered load is high, the 
two-level scheduling scheme can signifi- 
cantly improve the average task waiting 
time by sacrificing service quality. This 
trade-off is most effective when the of- 
fered load per processor is near 1. While 
the average waiting time in a precise sys- 
tem approaches infinity, the two-level 
scheduling scheme keeps the average 
waiting time in an imprecise system small, 

with a reasonably small decrease in the 
average service qua!ity. 

An imprecise computation system that 
uses monotone tasks is more appropriately 
modeled as an open MIE,+,Iv queue. Each 
task T, is composed of a mandatory task M ,  
followed by K optional tasks O,d. (In the 
deterministic models discussed in earlier 
sections, K is at most equal to 1.)  Let old 
denote the processing time of O,,,. The 
processing time z, of the task T, is given by 

The processing times m, of the mandatory 
tasks, as well as the o,,, are all statistically 
independent and exponentially distributed 
random variables. 

When a monotone imprecise system is 
overloaded, it may discard a number x (x I 
K )  of optional tasks in some taskor tasks in 
the system. The decrease in result quality 
can be quantified in part by the fraction of 
optional tasks that the system discards. 
The expected value of this fraction gives a 
rough measure of the average error E in the 
task results. 

Since the system can discard a variable 
number of optional tasks in each task, the 
average error does not give us a complete 
picture of the incurred cost. Another cost 
function is the imprecision probability, the 
probability of any task being imprecise 
because the system discarded some of its 
optional tasks. W e  are studying the depen- 
dence of these cost factors on parameters 
K ,  x, and H of the monotone imprecise 
system. 

A direction of our future study concerns 
the way a system determines the kind of 
service each task receives. Past studies on 
two-level scheduling disciplines assume 
that the system checks the number of its 
tasks at each instant immediately before a 
processor begins to execute a task.” The 
system services the task at the head of the 
queue at full level if its load is light, and at 
the reduced level otherwise. In other words, 
the system is reasonably responsive to 
overload conditions. 

Similarly, we have proposed that in 
monotone imprecise systems, the system 
could check the total number of tasks in the 
queue at each instant when a new task 
arrives and immediately before it begins to 
service a task. As long as the queue length 
is equal to or greater than H ,  the system 
discards x optional tasks in the tasks being 
served. This scheme, called the responsive 
service scheme, is highly responsive to 
overloads: The system does very well in 
reducing its backlog and clearing up the 

overload whenever such a condition oc- 
curs. However, it cannot guarantee service 
quality. A task that arrives when the sys- 
tem is lightly loaded may have its optional 
tasks discarded if the system becomes 
overloaded during the time the task waits 
in the system. 

With the guarmteed-service scheme, on 
the other hand, the system checks its total 
number of tasks at each arrival instant. It 
tags for reduced service a task arriving 
when H o r  more tasks are in the queue. The 
tasks already in the system before the over- 
load are fully serviced to completion. With 
this scheme, an imprecise system.does not 
respond as quickly as possible to correct an 
overload. However, the quality of results 
produced by tasks arriving to the system 
when it is not overloaded is guaranteed to 
be good. This scheme is good for applica- 
tions in which overloads can be cleared 
quickly. 

W e have reviewed different ap- 
proaches for scheduling im- 
precise computations in hard 

real-time environments. We also described 
several imprecise computation models that 
explicitly quantify the costs and benefits in 
the trade-off between result quality and 
computation time requirements. An impre- 
cise computation scheduler must balance 
the benefit in enhanced system response 
with the cost in reduced result quality. 

Because the criteria for measuring costs 
and benefits vary according to application, 
there are many different imprecise sched- 
uling problems. We have presented our 
recent progress toward solving some of 
these problems, and the directions we plan 
to take in our future work on each of these 
problems. 

Acknowledgments 
We thank Susan Vrbsky for her comments 

and suggestions. This work was partially sup- 
ported by US Navy Office of Naval Research 
contracts NVY NO0014 87-K-0827 and NVY 
NO0014 89-J-I 181. 

References 
I .  K.-J. Lin and S.  Natarajan, “Expressing and 

Maintaining Timing Constraints in Flex,” 
Proc. Ninth IEEE Real-Time Systems S-ymp., 
IEEE CS Press, Los Alamitos, Calif., Order 
No. 894, 1988, pp. 96-105. 

May 1991 67 



2. 

3. 

4. 

5. 

6 .  

7. 

8. 

9. 

10 

1 1  

W.K. Shih, J.W.S. Liu, and J.Y. Chung, 
“Algorithms for Scheduling Imprecise 
Computations with Timing Constraints,” to 
be published in SIAM J .  Computing, July 
1991. 

J.Y. Chung, J.W.S. Liu, and K.-J. Lin, 
“Scheduling Periodic Jobs That Allow Im- 
precise Results,” IEEE Trans. Computers, 
Vol. 19,No.9, Sept. 1990,pp. 1,156-1,173. 

S. Vrbsky and J.W.S. Liu, “An Object-Ori- 
ented Query Processor That Returns Mono- 
tonically Improving Answers,” Proc. Sev- 
enth IEEE Int’l Conf. Data Eng., IEEE CS 
Press, Los Alamitos, Calif., Order No. 2 138, 
1991. 

K. Kenny and K.J. Lin, “Structuring Real- 
Time Systems with Performance Polymor- 
phism,” Proc. 11 th IEEE Real-Time Sys- 
tems Symp., IEEE CS Press, Los Alamitos, 
Calif., Order No. 21 12, 1990, pp. 238-246. 

C.L. Liu and J.W. Layland, “Scheduling 
Algorithms for Multiprogramming in a Hard 
Real-Time Environment,” J .  ACM, Vol. 20, 
No. 1, Jan. 1973, pp. 46-61. 

E.L. Lawler et al., “Sequencing and Sched- 
uling: Algorithms and Complexity,” tech. 
report, Centre for Mathematics and Com- 
puter Science, Amsterdam, 1989. 

R. McNaughton, “Scheduling with Dead- 
lines and Loss Functions,” Management 
Science,Vol. 12,No. 1, Oct. 1959,pp. 1-12. 

J.Y.-T. Leung and C.S. Wong, “Minimizing 
the Number of Late Tasks with Error Con- 
straints,” Proc. 11th IEEE Real-Time Sys- 
tems Symp., IEEE CS Press, Los Alamitos, 
Calif., Order No. 21 12, 1990, pp. 32-40. 

J.Y.-T. Leung et al., “Minimizing Mean 
Flow Time with Error Constraints,” Proc. 
10th IEEE Real-Time Systems Symp., IEEE 
CS Press, Los Alamitos, Calif., Order No. 
2004, 1989, pp. 2-1 1. 

N. Karmarker, “A New Polynomial-Time 
Algorithm for Linear Programming,’’ Com- 
binatoricn, Vol. 4, No. 4,1984, pp. 373-395. 

12. E.K.P. Chong and W. Zhao, “Task Scheduling 
for Imprecise Computer Systems with User 
Controlled Optimization,” Computing and 
Information, Elsevier Science Publishers, 
North Holland, 1989. 

Readers many write to Jane W.S. Liu, Depart- 
ment of Computer Science, University of Illinois 
at Urbana-Champaign, 1304 W. Springfield Ave., 
Urbana, IL 61801. 

Jane W.S. Liu is a professor of computer sci- 
ence and of electrical and computer engineering 
at the University of Illinois at Urbana-Champaign. 
Her research interests include real-time systems, 
distributed systems, and computer networks. 

Liu received a BS in electrical engineering 
from Cleveland State University. She received 
her masters of science and electrical engineer- 
ing degrees and her doctor of science degree 
from MIT. She is a member of the IEEE Com- 
puter Society and the ACM, and chairs the 
Computer Society Technical Committee on 
Distributed Processing. 

Kwei-Jay Lin is an assistant professor in the 
Department of Computer Science at the Uni- 
versity of Illinois at Urbana-Champaign. His 
research interests include real-time systems, 
distributed systems, programming languages, 
and fault-tolerant systems. He was program 
chair for the Seventh IEEE Workshop on Real- 
Time Operating Systems and Software in May 
1990. 

Lin received his BS in electrical engineering 
from the National Taiwan University in 1976, 
and his MS and PhD in computer science from 
the University of Maryland in I980 and 1985. 
He is a member of the IEEE Computer Society. 

Wei-Kuan Shih is a PhD student in computer 
science at the University of Illinois at Urbana- 
Champaign, where his research interests include 
real-time systems, scheduling theory, and VLSI 
design automation. From 1986 to 1988, he was 
with the Institute of Information Science, Aca- 
demia Sinica, Taiwan. 

Shih received his BS and MS in computer 
science from the National Taiwan University. 

Albert Chuang-shi Yu is a doctoral candidate 
in the Department of Computer Science at the 
University of Illinois at Urbana-Champaign. His 
research interests include all aspects of real- 
time systems, parallel processing, and artificial 
intelligence. He is currently supported by the 
NASA graduate student researcher program. 

Yu received a BA in computer science and 
physics from the University of California, Ber- 
keley, and an MS in computer science from the 
University of Illinois. He is a member of the 
IEEE Computer Society and Sigma Xi. 

Jen-Yao Chung is a research staff member at 
the IBM T.J. Watson Research Center. His re- 
search interests include job scheduling and load 
balancing in hard real-time system, object-ori- 
ented programming environments, and operat- 
ing system design. 

Chung received his BS in computer science 
and information engineering from the National 
Taiwan University, and his MS and PhD in 
computer science from the University of Illinois 
at Urbana-Champaign. He is a member of the 
IEEE Computer Society, IEEE, ACM, Tau Beta 
Pi, Sigma Xi, and Phi Kappa Phi. 

Wei Zhao is an associate professor in the De- 
partment of Computer Science at Texas A&M 
University. His research interests include dis- 
tributed real-time systems, concurrency control 
for database systems, and resource management 
in operating systems and knowledge-based 
systems. He was a guest editor for a special issue 
of Operaring System Review on real-time oper- 
ating systems. 

Zhao received his diploma in physics from 
Shaanxi Normal University, Xian, China, and 
his MS and PhD in computer science from the 
University of Massachusetts, Amherst. He is a 
member of the IEEE Computer Society and 
ACM. 

68 COMPUTER 


