
Rate Monotonic vs. EDF: Judgment Day

G.C. Buttazzo

University of Pavia, Italy
buttazzo@unipv.it

Abstract. Since the first results published in 1973 by Liu and Layland
on the Rate Monotonic (RM) and Earliest Deadline First (EDF) algo-
rithms, a lot of progress has been made in the schedulability analysis of
periodic task sets. Unfortunaltey, many misconceptions still exist about
the properties of these two scheduling methods, which usually tend to
favor RM more than EDF. Typical wrong statements often heard in tech-
nical conferences and even in research papers claim that RM is easier to
analyze than EDF, it introduces less runtime overhead, it is more pre-
dictable in transient overload conditions, and causes less jitter in task
execution. Since the above statements are either wrong, or not precise,
it is time to clarify these issues in a systematic fashion, because the use
of EDF allows a better exploitation of the available resources and signifi-
cantly improves system’s performance. This paper compares RM against
EDF under several aspects, using existing theoretical results or simple
counterexamples to show that many common beliefs are either false or
only restricted to specific situations.

1 Introduction

Before a comprehensive theory was available, the most critical control applica-
tions were developed using an off-line table-driven approach (timeline schedul-
ing), according to which the time line is divided into slots of fixed length (minor
cycle) and tasks are statically allocated in each slot based on their rates and
execution requirements. Although very predictable, such a technique is fragile
during overload conditions and it is not flexible enough for supporting dynamic
systems [24].

Such problems can be solved by using a priority-based approach, according
to which each task is assigned a priority (which can be fixed or dynamic) and the
schedule is generated on line based on the current priority value. In 1973, Liu
and Layland [23] analyzed the properties of two basic priority assignment rules:
the Rate Monotonic (RM) algorithm and the Earliest Deadline First (EDF)
algorithm. According to RM, tasks are assigned fixed priorities that are pro-
portional to their rate, so the task with the smallest period receives the highest
priority. According to EDF, priorities are assigned dynamically and are inversely
proportional to the absolute deadlines of the active jobs.

Assuming that each task is characterized by a worst-case execution time Ci

and a period Ti, Liu and Layland showed that the schedulability condition of

R. Alur and I. Lee (Eds.): EMSOFT 2003, LNCS 2855, pp. 67–83, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

68 G.C. Buttazzo

a task set can be derived by computing the processor utilization factor Up =∑n
i=1 Ci/Ti. Clearly, if Up > 1 no feasible schedule exists for the task set with

any algorithm. If Up ≤ 1, the feasibility of the schedule depends on the task set
parameters and on the scheduling algorithm used in the system.

The Rate Monotonic algorithm is the most used priority assignment in real-
time applications, because it is very easy to implement on top of commercial
kernels that do not support explicit timing constraints. On the other hand, im-
plementing a dynamic scheme, like EDF, on top of a priority-based kernel would
require to keep track of all absolute deadlines and perform a dynamic mapping
between absolute deadlines and priorities. Such an additional implementation
complexity and runtime overhead often prevents EDF to be implemented on top
of commercial real-time kernels, even though it would increase the total processor
utilization.

At present, only a few research kernels support EDF as a native scheduling
scheme. Examples of such kernels are Hartik [8], Shark [15], Erika [14], Spring
[33], and Yartos [17]. A new trend in some recent operating system is to provide
support for the development of a user level scheduler. This is the approach
followed in MarteOS [27].

In addition to resource exploitation and implementation complexity, there
are other evaluation criteria that should be taken into account when selecting
a scheduling algorithm for a real-time application. Moreover, there are a lot of
misconceptions about the properties of these two scheduling algorithms, that for
a number of reasons penalize EDF more than it should be. The typical motiva-
tions that are usually given in favor of RM state that RM is easier to implement,
it introduces less runtime overhead, it is easier to analyze, it is more predictable
in transient overload conditions, and causes less jitter in task execution.

In the following sections we show that most of the claims stated above are
either false or do not hold in the general case. Although some discussion of the
relative costs of RM and EDF appear in [35], in this paper the behavior of these
two algorithms is analyzed under several perspectives, including implementation
complexity, runtime overhead, schedulability analysis, robustness during tran-
sient overloads, and response time jitter. Moreover, the two algorithms are also
compared with respect to other issues, including resource sharing, aperiodic task
handling, and QoS management.

2 Implementation Complexity

When talking about the implementation complexity of a scheduling algorithm,
we have to distinguish the case in which the algorithm is developed on top of a
generic priority based operating system, from the case in which the algorithm is
implemented from scratch, as a basic scheduling mechanism in the kernel.

When considering the development of the scheduling algorithm on top of a
kernel based on a set of fixed priority levels, it is indeed true that the EDF
implementation is not easy, nor efficient. In fact, even though the kernel allows
task priorities to be changed at runtime, mapping dynamic deadlines to pri-

Rate Monotonic vs. EDF: Judgment Day 69

orities cannot always be straightforward, especially when, as common in most
commercial kernels, the number of priority levels is small. If the algorithm is
developed from scratch in the kernel using a list for the ready queue, then the
only difference between the two approaches is that, while in RM the ready queue
is ordered by decreasing fixed priority levels, under EDF it has to be ordered
by increasing absolute deadlines. Thus, once the absolute deadline is available
in the task control block, the basic kernel operations (e.g., insertion, extraction,
getfirst, dispatch) have the same complexity, both under RM and EDF.

An advantage of RM with respect to EDF is that, if the number of priority
levels is not high, the RM algorithm can be implemented more efficiently by
splitting the ready queue into several FIFO queues, one for each priority level.
In this case, the insertion of a task in the ready queue can be performed in
O(1). Unfortunately, the same solution cannot be adopted for EDF, because
the number of queues would be too large (e.g., equal to 232 if system time is
represented by four byte variables).

Another disadvantage of EDF is that absolute deadlines change from a job
to the other and need to be computed at each job activation. Such a runtime
overhead is not present under RM, since periods are typically fixed. However, the
problem of evaluating the runtime overhead introduced by the two algorithms is
more articulated, as discussed in the next section.

3 Runtime Overhead

It is commonly believed that EDF introduces a larger runtime overhead than
RM, because in EDF absolute deadlines need to be updated from a job to the
other, so slightly increasing the time needed to execute the job activation prim-
itive. However, when context switches are taken into account, EDF introduces
less runtime overhead than RM, because it reduces the number of preemptions
that typically occur under RM.

The example illustrated in Figure 1 shows that, under RM, to respect the
priority order given by periods, the high priority task τ1 must preempt every
instance of τ2, whereas under EDF preemption occurs only once in the entire
hyperperiod1. For larger task sets, the number of preemptions caused by RM
increases, thus the overhead due to the context switch time is higher under RM
than EDF.

To evaluate the behavior of the two algorithms with respect to preemptions,
a number of simulation experiments have been performed using synthetic task
sets with random parameters.

Figure 2 shows the average number of preemptions introduced by RM and
EDF as a function of the number of tasks. For each point in the graph, the av-
erage was computed over 1000 independent simulations, each running for 1000
units of time. In each simulation, periods were generated as random variables

1 The hyperperiod is defined as the smallest interval of time after which the schedule
repeats itself and it is equal to the least common multiple of the task periods.

70 G.C. Buttazzo

τ 1

τ 1

τ 2

τ 2

5 10 20 25 30 35

5 20 25 30 3510

0 7 14 21 28 35

0 7 14 21 28 35
(b)

(a)
deadline miss

Fig. 1. Preemptions introduced by RM (a) and EDF (b) on a set of three periodic tasks.
Adjacent jobs of τ2 are depicted with different colours to better distinguish them.

with uniform distribution in the range of 10 to 100 units of time, whereas exe-
cution times were computed to create a total processor utilization of 0.9.

As shown in the plot, each curve has two phases: the number of preemptions
occurring in both schedules increases for small task sets and decreases for larger
task sets. This can be explained as follows. For small task sets, the number of
preemptions increases because the chances for a task to be preempted increase
with the number of tasks in the system. As the number of tasks gets higher, how-
ever, task execution times get smaller in the average, to keep the total processor
utilization constant, hence the chances for a task to be preempted reduce. As
evident from the graph, such a reduction is much more significant under EDF.

In another experiment, we tested the behavior of RM and EDF as a function
of the processor load, for a fixed number of tasks. Figure 3 shows the average
number of preemptions as a function of the load for a set of 10 periodic tasks.
Periods and computation times were generated with the same criterion used in
the previous experiment, but to create an average load ranging from 0.5 to 0.95.

It is interesting to observe the different behavior of RM and EDF for high
processor loads. Under RM, the number of preemptions constantly increases
with the load, because tasks with longer execution times have more chances to
be preempted by tasks with higher priorities. Under EDF, however, increasing
task execution times does not always imply a higher number of preemptions,
because a task with a long period could have an absolute deadline shorter than
that of a task with smaller period. In certain situations, an increased execution
time can also cause a lower number of preemptions.

This phenomenon is illustrated in Figure 4, which shows what happens when
the execution time of τ3 is increased from 4 to 8 units of time. When C3 =
4, the second instance of τ2 is preempted by τ1, that has a shorter absolute

Rate Monotonic vs. EDF: Judgment Day 71

0

10

20

30

40

50

60

70

80

4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 n
um

be
r

of
 p

re
em

pt
io

ns

number of tasks

EDF
RM

Fig. 2. Preemptions introduced by RM and EDF as a function of the number of tasks.

10

20

30

40

50

60

70

80

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

A
ve

ra
ge

 n
um

be
r

of
 p

re
em

pt
io

ns

load

EDF
RM

Fig. 3. Preemptions introduced by RM and EDF on a set of 10 periodic tasks as a
function of the load.

deadline. If C3 = 8, however, the longer execution of τ3 (which has the earliest
deadline among the active tasks) pushes τ2 after the arrival of τ1, so avoiding
its preemption. Clearly, for a higher number of tasks, this situation occurs more
frequently, offering more advantage to EDF. Such a phenomenon does not occur

72 G.C. Buttazzo

under RM, because tasks with small period always preempt tasks with longer
period, independently of the absolute deadlines.

τ 1

τ 2

τ 3

τ 1

τ 2

τ 3

0 2 4 6 8 12 14 16 1810 20

6 12 18

10 20

0 2 4 6 8 12 14 16 1810 20

6 12 18

10 20

(a)

(b)

Fig. 4. Under EDF, the number of preemptions may decrease when execution times
increase: in case (a), where C3 is small, τ2 is preempted by τ1, but this does not occur
in case (b), where τ3 has a higher execution time.

4 Schedulability Analysis

The basic schedulability conditions for RM and EDF proposed by Liu and Lay-
land in [23] were derived for a set Γ of n periodic tasks under the assumptions
that all tasks start simultaneously at time t = 0, relative deadlines are equal
to periods, and tasks are independent (that is, they do not have resource con-
straints, nor precedence relations). Under such assumptions, a set of n periodic
tasks is schedulable by the RM algorithm if

n∑

i=1

Ui ≤ n (21/n − 1). (1)

The schedulability bound of RM is a function of the number of tasks, and it
decreases with n. We recall that for large n the bounds tends to ln 2 � 0.69.
Under EDF, a task set is schedulable if and only if

∑n
i=1 Ui ≤ 1.

In [21], Lehoczky, Sha, and Ding performed a statistical study and showed
that for task sets with randomly generated parameters the RM algorithm is
able to feasibly schedule task sets with a processor utilization up to about 88%.

Rate Monotonic vs. EDF: Judgment Day 73

However, this is only a statistical result and cannot be taken as an absolute
bound for performing a precise guarantee test.

A more efficient schedulability test, known as the Hyperbolic Bound (HB),
was proposed by Bini et al. in [6]. This test has the same complexity as the Liu
and Layland one, but improves the acceptance ratio up to a limit of

√
2 for large

n. According to this method, a set of periodic tasks is schedulable by RM if

n∏

i=1

(Ui + 1) ≤ 2. (2)

For RM, the schedulability bound improves when periods have harmonic
relations. A common misconception, however, is to believe that the schedulability
bound becomes 1.00 when the periods are multiple of the smallest period. This
is not true, as can be seen from the example reported in Figure 5.

τ 1

τ 2

τ 3

0 2 4 6 8 12 14 16 1810 20 22 24

Fig. 5. A task set in which all periods are multiple of the shortest period is not sufficient
to guarantee a schedulability bound equal to one.

Here, tasks τ2 and τ3 have periods T2 = 8 and T3 = 12, which are multiple of
T1 = 4. Since all tasks have a computation time equal to two, the total processor
utilization is

U =
1
2

+
1
4

+
1
6

=
11
12

� 0.917

and, as we can see from the figure, the schedule produced by RM is feasible.
However, it easy to see that increasing the computation time of any task by a
small amount τ3 will miss its deadline. This means that, for this particular task
set, the utilization factor cannot be higher than 11/12.

The correct result is that the schedulability bound becomes 1.00 only when
any pair of periods is in harmonic relation. As an example, Figure 6 shows that,
if T3 = 16, then not only T2 and T3 are multiple of T1, but also T3 is multiple of
T2. In this case, the RM generates a feasible schedule even when C3 = 4, that is
when the total processor utilization is equal to 1.00.

In the general case, exact schedulability tests for RM yielding to necessary
and sufficient conditions have been independently derived in [18,21,2]. Using
the Response Time Analysis (RTA) proposed in [2], a periodic task set (with
deadlines less than or equal to periods) is schedulable with the RM algorithm if
and only if the worst-case response time of each task is less than or equal to its

74 G.C. Buttazzo

τ 1

τ 2

τ 3

0 2 4 6 8 12 14 16 1810 20 22 24

Fig. 6. When any pair of periods is in harmonic relation the schedulability bound of
RM is equal to one.

deadline. The worst-case response time Ri of a task can be computed using the
following iterative formula:

R
(0)
i = Ci

R
(k)
i = Ci +

∑

j:Dj<Di

⌈
R

(k−1)
i

Tj

⌉

Cj .
(3)

where the worst-case response time of task τi is given by the smallest value of
R

(k)
i such that R

(k)
i = R

(k−1)
i . It is worth noting, however, that the complexity

of the exact test is pseudo-polynomial, thus it is not suited to be used for online
admission control in applications with large task sets. To solve this problem, an
approximate fesibility test with a tunable complexity has been proposed by Bini
and Buttazzo in [7].

Under EDF, the schedulability analysis of periodic tasks with relative dead-
lines less than periods can be performed using the Processor Demand Criterion
proposed by Baruah, Howell, and Rosier [5]. According to this method, a set of
tasks is schedulable by EDF if and only if

∀L > 0,
n∑

i=1

⌊
L + Ti − Di

Ti

⌋

Ci ≤ L (4)

As the response time analysis, this test has also a pseudo-polynomial com-
plexity. It can be shown that the number of points in which the test has to be
performend can be significantly restricted to those L equal to deadlines less than
a certain value L∗, that is:

∀L ∈ D, D = {dk : dk < min(L∗, H)}
where H = lcm(T1, . . . , Tn) is the hyperperiod and

L∗ =
∑n

i=1 Ui(Ti − Di)
1 − U

.

In conclusion, if relative deadlines are equal to periods, exact schedulabilty
analysis can be performed in O(n) under EDF, whereas is pseudo-polynomial
under RM. When relative deadlines are less than periods, the analysis is pseudo-
polynomial for both scheduling algorithms.

Rate Monotonic vs. EDF: Judgment Day 75

5 Robustness During Overloads

Another common misconception about RM is to believe that, in the presence of
transient overload conditions, deadlines are missed predictably, that is, the first
tasks that fail are those with the longest period. Unfortunately, this property
does not hold under RM (neither under EDF), and can easily be confuted by the
counterexample shown in Figure 7. In this figure, there are four periodic tasks
with computation times C1 = 2, C2 = 3, C3 = 1, C4 = 1, and periods T1 = 5,
T2 = 9, T3 = 20, T4 = 30. In normal load conditions, the task set is schedulable
by RM. However, if there is a transient overload in the first two instances of task
τ1 (in the example, the jobs have an overrun of 1.5 time units), the task that
misses its deadline is not the one with the longest period (i.e., τ4), but τ2.

τ 1

τ 2

5 20 25 30100 15

5 20 25 30100 15

τ 3

τ 4

��
��
��
��

��
��
��
��

0

0 279
deadline miss

18

20

Fig. 7. Under overloads, only the highest priority task is protected under RM, but
nothing can be ensured for the other tasks.

So the conclusion is that, under RM, if the system becomes overloaded, any
task, except the highest priority task, can miss its deadline, independently of
its period. The situation is not better under EDF. The only difference between
RM and EDF is that, under RM, an overrun in task τi cannot cause tasks with
higher priority to miss their deadlines, whereas under EDF any other task could
miss its deadline.

The problem caused by execution overruns can be solved by enforcing tem-
poral isolation among tasks through a resource reservation mechanism in the
kernel. This issue has been investigated both under RM and EDF and it is
discussed in Section 7.

6 Jitter

In a feasible periodic task system, the computation performed by each job must
start after its release time and must complete within its deadline. Due to the
presence of other concurrent tasks that compete for the processor, however, a

76 G.C. Buttazzo

task may evolve in different ways from instance to instance; that is, the instruc-
tions that compose a job can be executed at different times, relative to the release
time, within different jobs. The maximum time variation (relative to the release
time) in the occurence of a particular event in two consecutive instances of a
task defines the jitter for that event. So, for example, the start time jitter of a
task is the maximum time variation between the relative start times of any two
consecutive jobs. If si,k denotes the start time of the kth job of task τi, then the
start time jitter (STJi) of task τi is defined as

STJi = max
k

|si,k+1 − si,k|. (5)

Similarly, the response time jitter is defined as the maximum difference between
the response times of any consecutive jobs. If Ri,k denotes the response time of
the kth job of task τi, then the response time jitter (RTJi) of task τi is defined
as

RTJi = max
k

|Ri,k+1 − Ri,k|. (6)

In real-time applications, the jitter can be tolerated when it does not degrade the
performance of the system. In many control applications, however, a high jitter
can cause instability or a jerky behavior of the controlled system [25], hence it
must be kept as low as possible.

Another misconception about RM is to believe that the fixed priority assign-
ment used in RM reduces the jitter during task execution, more than under EDF.
This is false, as it is shown by the following example. Consider a set of three
periodic tasks with computation times C1 = 2, C2 = 3, C3 = 2, and periods
T1 = 6, T2 = 8, T3 = 12. For this example we consider the response time jitter,
as defined by equation (6). Figure 8 illustrates that, under RM, the three tasks
experience a response time jitter equal to 0, 2, and 8, respectively. Under EDF,
the same tasks have a response time jitter equal to 1, 2, and 3, respectively.
Hence, under RM, the jitter experienced by task τ3 is much higher than that
given under EDF.

Notice that this example does not prove that EDF always introduces less
jitter than RM, but just confutes the common belief that RM outperforms EDF
in reducing jitter.

7 Other Issues

7.1 Resource Sharing

If tasks share mutually exclusive resources, particular care must be used for
accessing shared data. In fact, if critical sections are accessed through classical
semaphores, then tasks may experience long delays due to a phenomenon known
as priority inversion, where a task may be blocked by a lower priority task
for an unbounded amount of time. The problem can be solved by adopting
specific concurrency control protocols for accessing critical sections, such as the
Priority Inheritance Protocol (PIP) or the Priority Ceiling Protocol (PCP), both

Rate Monotonic vs. EDF: Judgment Day 77

τ 1

τ 2

τ 3

τ 1

τ 2

τ 3

RTJ 3 = 8

RTJ 2 = 2

RTJ 1 = 0

RTJ 3 = 3

RTJ 2 = 2

RTJ 1 = 1

(a)

(b)

0 2 4 6 8 12 14 16 1810 20 22 24

6 12 18

8 16

0 2 4 6 8 12 14 16 1810 20 22 24

6 12 18

8 16

Fig. 8. Response time jitter introduced under RM (a) and under EDF (b).

developed by Sha, Rajkumar and Lehoczky in [28]. For the reason that both
PIP and PCP are well known in the real-time literature and were originally
deviced for RM, some people believe that only RM can be predictably used and
analyzed in the presence of shared resources. However, this is not true, because a
number of protocols also exist for accessing shared resources under EDF, such as
the Dynamic Priority Ceiling (DPC) [12], the Stack Resource Policy (SRP) [3],
and other similar methods specifically developed for deadline-based scheduling
algorithms [16,35].

7.2 Aperiodic Task Handling

When real-time systems include soft aperiodic activities to be scheduled together
with hard periodic tasks, RM and EDF show a significant difference in achiev-
ing good aperiodic responsiveness. In this case, the objective is to reduce the
aperiodic response times as much as possible, still guaranteeing that all periodic
tasks complete within their deadlines.

Several aperiodic service methods have been proposed under both algorithms.
The common approach adopted in such cases is to schedule aperiodic requests
through a periodic server, which allocates a certain amount of budget Cs, for
aperiodic execution, in every period Ts. Under RM, the most used service mech-
anisms are the Deferrable Server [20,34], and the Sporadic Server [29], which

78 G.C. Buttazzo

have good responsiveness and easy implementation complexity. Under EDF, the
most efficient service mechanism in terms of performance/cost ratio is the Total
Bandwidth Server (TBS), proposed by Spuri and Buttazzo in [30,32].

The superior performance of EDF-based methods in aperiodic task handling
comes from the higher processor utilization bound. In fact, the lower schedula-
bility bound of RM limits the maximum utilization (Us = Cs/Ts) that can be
assigned to the server for guaranteeing the feasibility of the periodic task set.
As a consequence, the spare processor utilization that cannot be assigned to
the server is wasted as a background execution. This problem does not occur
under EDF, where, if Up is the processor utilization of the periodic tasks, the
full remaining fraction 1−Up can always be allocated to the server for aperiodic
execution.

A different approach used under RM to improve aperiodic responsiveness is
the one adopted in the Slack Stealing algorithm, originally proposed by Lehoczky
and Thuel in [22]. The main idea behind this method is that there is no benefit in
completing periodic tasks much before their deadlines. Hence, when an aperiodic
request arrives, the Slack Stealer steals all the available slack from periodic tasks
(pushing them as much as possible towards their deadlines) and uses the slack
to execute aperiodic requests as soon as possible. Although the Slack Stealer
performs much better than the Deferrable Server and the Sporadic Server, it
is not optimal, in the sense that it cannot minimize the response times of the
aperiodic requests.

Tia, Liu, and Shankar [36] proved that, if periodic tasks are scheduled using a
fixed-priority assignment, no algorithm can minimize the response time of every
aperiodic request and still guarantee the schedulability of the periodic tasks. In
particular, the following theorems were proved in [36]:

Theorem 1 (Tia-Liu-Shankar). For any set of periodic tasks ordered on a
given fixed-priority scheme and aperiodic requests ordered according to a given
aperiodic queueing discipline, there does not exist any valid algorithm that min-
imizes the response time of every soft aperiodic request.

Theorem 2 (Tia-Liu-Shankar). For any set of periodic tasks ordered on a
given fixed-priority scheme and aperiodic requests ordered according to a given
aperiodic queueing discipline, there does not exist any on-line valid algorithm
that minimizes the average response time of the soft aperiodic requests.

Notice that Theorem 1 applies both to clairvoyant and on-line algorithms,
whereas Theorem 2 only applies to on-line algorithms. These results are not true
for EDF, where otpimal algorithms have been found for minimizing aperiodic
response times. In particular, the Improved Total Bandwith server (ITB) [10]
assigns an initial deadline to an aperiodic request according to a TBS with a
bandwidth Us = 1 − Up. Then, the algorithm tries to shorten this deadline
as much as possible to enhance aperiodic responsiveness, still maintaining the
periodic tasks schedulable. When the deadline cannot be furtherly shortened,
it can be used to schedule the task with EDF, thus minimizing its response

Rate Monotonic vs. EDF: Judgment Day 79

time. The algorithm that stops the deadline shortening process after N steps is
denoted as TB(N). Thus, TB(0) denotes the standard TBS and TB* denotes
the optimal algorithm which continues to shorten the deadline until its minimum
value.

Figure 9 shows the performance of the Slack Stealer against TB(0), TB(1),
TB(3), and TB* as a function of the aperiodic load, when the periodic utilization
is Up = 0.85. The periodic task set has been chosen to be schedulable both
under RM and EDF. As can be seen from the plots, the Slack Stealer performs
better than the standard TBS. However, just one iteration on the TBS deadline
assignment, TB(1), dominates the Slack Stealer.

Fig. 9. Performance of the TB(N) against the Slack Stealer.

7.3 Resource Reservation

The problem caused by execution overruns can be solved by enforcing tem-
poral isolation among tasks through a resource reservation mechanism in the
kernel. This issue has been investigated both under RM and EDF and several
approaches have been proposed in the literature. Under RM, the problem has

80 G.C. Buttazzo

been investigated by Mercer, Savage and Tokuda [26], who proposed a capac-
ity reserve mechanism that assigns each task a given budget in every period
and downgrades the task to a background level when the reserved capacity is
exhausted.

Under EDF, a similar mechanism has been proposed by Abeni and Buttazzo,
through the Constant Bandwidth Server [1]. This method also uses a budget to
reserve a desired processor bandwidth for each task, but it is more efficient in that
the task is not executed in background when the budget is exhausted. Instead
a deadline postponement mechanism guarantees that the used bandwidth never
exceeds the reserved value.

Resource reservation mechanisms are essential for preventing task interfer-
ence during execution overruns, and this is particularly important in application
tasks that have highly variable computation times (e.g., multimedia activities).
In addition, isolating the effects of overruns within individual tasks allows re-
laxing worst case assumptions, increasing efficiency and performing much better
quality of service control.

8 Conclusions

In this paper we compared the behavior of the two most famous policies used
today for developing real-time applications: the Rate Monotonic (RM) and the
Earliest Deadline First (EDF) algorithm. Although widely used, in fact, there are
still many misconceptions about the properties of these two scheduling methods,
mainly concerning their implementation complexity, the runtime overhead they
introduce, their behavior during transient overloads, the resulting jitter, and
their efficiency in handling aperiodic activities. For each of these issues we tried
to confute some typical misconception and tried to clarify the properties of the
algorithms by illustrating simple examples or reporting formal results from the
existing real-time literature. In some cases, specific simulation experiments have
also been performed to verify the overhead introduced by context switches and
the effectiveness in improving aperiodic responsiveness.

In conclusion, the real advantage of RM with respect to EDF is its sim-
pler implementation in commercial kernels that do not provide explicit support
for timing constraints, such as periods and deadlines. Other properties typically
claimed for RM, such as predictability during overload conditions, or better jitter
control, only apply for the highest priority task, and do not hold in general. On
the other hand, EDF allows a full processor utilization, which implies a more effi-
cient exploitation of computational resources and a much better responsiveness of
aperiodic activities. These properties become very important for embedded sys-
tems working with limited computational resources, and for multimedia systems,
where quality of service is controlled through resource reservation mechanisms
that are much more efficient under EDF. In fact, most resource reservation algo-
rithms are implemented using service mechanisms similar to aperiodic servers,
which have better performance under EDF.

Rate Monotonic vs. EDF: Judgment Day 81

Finally, both RM and EDF are not very well suited to work in overload con-
ditions and to achieve jitter control. To cope with overloads, specific extensions
have been proposed in the literature, both for aperiodic [9] and periodic [19,11]
load. Also a method for jitter control under EDF has been addressed in [4] and
can be adopted whenever needed.

References

1. L. Abeni and G. Buttazzo, “Integrating Multimedia Applications in Hard Real-
Time Systems”, Proc. of the IEEE Real-Time Systems Symposium, Madrid, Spain,
December 1998.

2. N.C. Audsley, A. Burns, M. Richardson, K. Tindell and A. Wellings, “Applying
New Scheduling Theory to Static Priority Preemptive Scheduling”, Software En-
gineering Journal 8(5), pp. 284–292, September 1993.

3. T.P. Baker, Stack-Based Scheduling of Real-Time Processes, The Journal of Real-
Time Systems 3(1), pp. 76–100, (1991).

4. S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari, “Scheduling Periodic Task
Systems to Minimize Output Jitter,” Proceedings of the 6th IEEE International
Conference on Real-Time Computing Systems and Applications, Hong Kong, De-
cember 1999.

5. S. K. Baruah, R. R. Howell, and L. E. Rosier, “Algorithms and Complexity Con-
cerning the Preemptive Scheduling of Periodic Real-Time Tasks on One Processor,”
Real-Time Systems, 2, 1990.

6. E. Bini, G. C. Buttazzo and G. M. Buttazzo, “A Hyperbolic Bound for the Rate
Monotonic Algorithm”, Proceedings of the 13th Euromicro Conference on Real-
Time Systems, Delft, The Netherlands, pp. 59–66, June 2001.

7. E. Bini and G. C. Buttazzo, “The Space of Rate Monotonic Schedulability”, Pro-
ceedings of the 23rd IEEE Real-Time Systems Symposium, Austin, Texas, Decem-
ber 2002.

8. G. C. Buttazzo, “HARTIK: A Real-Time Kernel for Robotics Applications”, Pro-
ceedings of the 14th IEEE Real-Time Systems Symposium, Raleigh-Durham, De-
cember 1993.

9. G. Buttazzo and J. Stankovic, “Adding Robustness in Dynamic Preemptive
Scheduling”, in Responsive Computer Systems: Steps Toward Fault-Tolerant Real-
Time Systems, Edited by D. S. Fussell and M. Malek, Kluwer Academic Publishers,
Boston, 1995.

10. G. Buttazzo and F. Sensini, “Optimal Deadline Assignment for Scheduling Soft
Aperiodic Tasks in Hard Real-Time Environments,“ IEEE Transactions on Com-
puters, Vol. 48, No. 10, October 1999.

11. G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic Scheduling for Flexible
Workload Management”, IEEE Transactions on Computers, Vol. 51, No. 3, pp.
289–302, March 2002.

12. M.I. Chen, and J.K. Lin, Dynamic Priority Ceilings: A Concurrency Control Pro-
tocol for Real-Time Systems, Journal of Real-Time Systems 2, (1990).

13. M.L. Dertouzos, “Control Robotics: the Procedural Control of Physical Processes,”
Information Processing, 74, North-Holland, Publishing Company, 1974.

14. P. Gai, G. Lipari, M. Di Natale, “A Flexible and Configurable Real-Time Kernel for
Time Predictability and Minimal Ram Requirements,” Technical Report, Scuola
Superiore S. Anna, Pisa, RETIS TR2001–02, March 2001.

82 G.C. Buttazzo

15. P. Gai, L. Abeni, M. Giorgi, G. Buttazzo, “A New Kernel Approach for Modular
Real-TIme Systems Development”, Proceedings of the 13th Euromicro Conference
on Real-Time Systems, Delft (NL), June 2001.

16. K. Jeffay, “Scheduling Sporadic Tasks with Shared Resources in Hard-Real-Time
Systems,” Proceedings of IEEE Real-Time System Symposium, pp. 89–99, Decem-
ber 1992.

17. K. Jeffay, D.L. Stone, and D. Poirier, “YARTOS: Kernel support for efficient, pre-
dictable real-time systems,” Real-Time Systems Newsletter, Vol. 7, No. 4, pp. 8–13,
Fall 1991. Republished in Real-Time Programming, W. Halang and K. Ramam-
ritham, eds. Pergamon Press, Oxford, UK, 1992.

18. M. Joseph and P. Pandya, “Finding Response Times in a Real-Time System,” The
Computer Journal, 29(5), pp. 390–395, 1986.

19. G. Koren and D. Shasha, “Skip-Over: Algorithms and Complexity for Overloaded
Systems that Allow Skips,” Proc. of the IEEE Real-Time Systems Symposium,
1995.

20. J. P. Lehoczky, L. Sha, and J. K. Strosnider, “Enhanced Aperiodic Responsiveness
in Hard Real-Time Environments,” Proceedings of the IEEE Real-Time Systems
Symposium, pp. 261–270, 1987.

21. J. P. Lehoczky, L. Sha, and Y. Ding, “The Rate-Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behaviour”, Proceedings of the IEEE
Real-Time Systems Symposium, pp. 166–171, 1989.

22. J. P. Lehoczky and S. Ramos-Thuel, “An Optimal Algorithm for Scheduling Soft-
Aperiodic Tasks in Fixed-Priority Preemptive Systems,” Proceedings of the IEEE
Real-Time Systems Symposium, 1992.

23. C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogramming in a
Hard real-Time Environment”, Journal of the ACM 20(1), 1973, pp. 40–61.

24. J. Locke, “Designing Real-Time Systems”, Invited talk, IEEE International Con-
ference of Real-Time Computing Systems and Applications (RTCSA ’97), Taiwan,
December 1997.

25. P. Marti, G. Fohler, K. Ramamritham, and J.M. Fuertes, “Control performance
of flexible timing constraints for Quality-of-Control Scheduling,” Proc. of the 23rd
IEEE Real-Time System Symposium, Austin, TX, USA, December 2002.

26. C.W. Mercer, S. Savage, and H. Tokuda, “Processor Capacity Reserves for Multi-
media Operating Systems,” Technical Report, Carnegie Mellon University, Pitts-
burg (PA), CMU-CS-93-157, May 1993.

27. M. Aldea Rivas and M. González Harbour, “POSIX-Compatible Application-
Defined Scheduling in MaRTE OS,” Euromicro Conference on Real-Time Systems
(WiP), Delft, The Netherlands, June 2001.

28. L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols: An Ap-
proach to Real-Time Synchronization,” IEEE Transactions on Computers, 39(9),
pp. 1175–1185, 1990.

29. B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic Task Scheduling for Hard Real-
Time System,” Journal of Real-Time Systems, 1, pp. 27–60, June 1989.

30. M. Spuri, and G.C. Buttazzo, “Efficient Aperiodic Service under Earliest Dead-
line Scheduling”, Proceedings of IEEE Real-Time System Symposium, San Juan,
Portorico, December 1994.

31. M. Spuri, G.C. Buttazzo, and F. Sensini, “Robust Aperiodic Scheduling under
Dynamic Priority Systems”, Proc. of the IEEE Real-Time Systems Symposium,
Pisa, Italy, December 1995.

32. M. Spuri and G.C. Buttazzo, “Scheduling Aperiodic Tasks in Dynamic Priority
Systems,” Real-Time Systems, 10(2), 1996.

Rate Monotonic vs. EDF: Judgment Day 83

33. J. Stankovic and K. Ramamritham, “The Design of the Spring Kernel,” Proceedings
of the IEEE Real-Time Systems Symposium, December 1987.

34. J.K. Strosnider, J.P. Lehoczky, and L. Sha, “The Deferrable Server Algorithm
for Enhanced Aperiodic Responsiveness in Hard Real-Time Environments”, IEEE
Transactions on Computers, 44(1), January 1995.

35. J. Stankovic, K. Ramamritham, M. Spuri, and G. Buttazzo, Deadline Scheduling
for Real-Time Systems, Kluwer Academic Publishers, Boston-Dordrecht-London,
1998.

36. T.-S. Tia, J. W.-S. Liu, and M. Shankar, “Algorithms and Optimality of Scheduling
Aperiodic Requests in Fixed-Priority Preemptive Systems,” Journal of Real-Time
Systems, 10(1), pp. 23–43, 1996.

	Introduction
	Implementation Complexity
	Runtime Overhead
	Schedulability Analysis
	Robustness During Overloads
	Jitter
	Other Issues
	Resource Sharing
	Aperiodic Task Handling
	Resource Reservation

	Conclusions

