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A Scenario Not That Far Away
Scenario: The year is 2022, in the whole world we are using more than 
100 billion devices with microprocessors and suddenly microprocessors 
start to fail. They fail in big numbers…

“Reliability will be a first-class design constraint”
Chuck Moore, AMD Senior Fellow

“In the future we will need to 
design reliable systems with 

unreliable components”
Pradip Bose, IBM Research

“Chips will have tens of billions of transistors, 
but many of them might be unusable and 

others will slowly age and degrade over time”
Shekhar Borkar, Intel Fellow

Technology Node (nm)
R

el
at

iv
e 

Fa
ilu

re
 R

at
e [Shekhar Borkar, IEEE Micro]

10X

“Reliability will be the barrier to future scaling”
Shekhar Borkar, Intel Fellow



What If That Scenario Happened Today?

Corporate Computing
- Millions of dollars for downtime
- Lower productivity
- Higher IT management costs
- Less trust in computing systems

- Lower performance 
- Break quality of service contracts
- Dissatisfy customers with lower availability
- Higher repair and management cost

Data Centers

Consumer Electronics
- Affect user experience
- Frequent system crashes
- Lower customer satisfaction
- Stain company credibility



Tutorial Agenda
 Reliability Issues: SER, Variability and Defects

 Fault Tolerant Design Techniques
• Classical Techniques
• SER Specific Techniques
• Full-Spectrum Techniques
• Research Topic: Self-Healing Systems

 Robust Low-Power Design Techniques



Microprocessor Reliability Threats
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Age-Related Wearout“Reliability will be the barrier to future scaling”
Shekhar Borkar, Intel Fellow



Reliability Challenges of Technology Scaling

Silicon Process Technology Scaling

Co
st

cost per 
transistor

product
cost

reliability 
cost

1) Cost of built-in defect 
tolerance mechanisms

2) Cost of R&D needed to  
develop reliable technologies

Further scaling 
is not profitable

1) Build microprocessors out of unreliable transistors/technologies
2) Provide reliability through very low cost defect tolerance techniques

reliability 
cost



Fault Classes
 Permanent fault (hard fault)

• Irreversible physical change
• Latent manufacturing defects, Electromigration

 Intermittent fault
• Hard to differentiate from transient faults

 Repeatedly occurs at the same location
 Occurs in bursty manners when fault is activated
 Replacing the offending circuit removes faults

 Transient faults (Soft Errors)
• Neutron/Alpha particle strikes
• Power supply and Interconnect  noises
• Electromagnetic interference 
• Electrostatic discharge



Introduction – Soft Errors
 Soft errors, also called transient faults and single-event upsets(SEU)

 Processor execution errors caused by high-energy neutrons resulting from cosmic 
radiation and alpha particles radiation

 Appears to be a reliability threat for future technology processors

 When a particle strikes a circuit element a small amount of charge is 
deposited
 Combinational logic node: a very short duration pulse of

current is formed at the circuit node

 State holding element (FF/SRAM cell): flip the stored value 

 Unlike permanent faults the effects of soft errors are transient
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Soft Errors (SER)
 Alpha particles stemming from 

radioactive decay of packaging 
materials

 Neutrons (cosmic rays) are 
always present in the 
atmosphere

 Soft errors are transient non-
recurring faults (also called 
single event upsets, SEUs) 
where added/deleted charge on a 
node results in a functional error
• Charge is added/removed by 

electron/hole pairs absorbed by 
source/drain diffusion areas

Source: S. Mukherjee, Intel



 Logic Masking: the fault gets blocked by a following gate whose output 
is completely determined by its other inputs

 Timing Masking: the fault affects the input of a latch  only in the period 
of time that the latch is not sensitive to its input
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Soft Error Masking
 Electrical Masking: the fault’s pulse is attenuated by subsequent logic gates due to 

electrical properties, and does not affect any latch’s input

 Microarchitectural Masking: the fault alters a value of at least one flip-flop, but the 
incorrect values get overwritten without being used in any computation affecting the 
design’s output

 Software Masking: the fault propagates to the design’s output but is subsequently 
masked by software without affecting the application’s correct execution

Latch

Attenuated
Pulse



How To Measure Reliability:
Soft Error Rate (FIT)

 Failure In Time (FIT) : Failures in 109 hours
• 114 FIT means 

 1 failure every 1000 years
 It sounds good, but

– If 100,000 units are shipped in market, 1 end-
user per week will experience a failure

 Mean Time to Failure : 1 / FIT



Soft Error Considerations
 Highly elevation dependent (3-5X higher in Denver vs. sea-level, 

or 100X higher in airplane)
 Critical charge of a node (Qcrit) is an important value

• Node requires Qcrit to be collected before an error will result
• The more charge stored on a node, the larger Qcrit is (Qcrit must be 

an appreciable fraction of stored Q)
• Implies scaling problems  caps reduce with scaling, voltage 

reduces, so stored Q reduces as S2 (~ 2X) per generation
 Ameliorated somewhat by smaller collection nodes (S/D junctions)
 But exacerbated again by 2X more devices per generation



Impact of Soft Errors in Processors [Iyer]
 How do soft errors in processors propagate and impact applications?

 Approach
 Fault injections (with i-Measure, hardware level fault injection framework) in 

combinational logic and flip-flops of MIPS and Alpha-like processors
 Study fault propagation to the application level 

 Major findings:
 Nearly 5% of faults in combinational logic propagate to state of the processor
 Errors in Control contribute to 79% of  application hangs
 Errors in Execution blocks a major factor 

in application crashes (45%) and silent data
corruption (40%)

 Faults in combinational logic can cause double 
and multiple bit errors

Multiple Bit-flip Distribution

Single Bit-Flip 
Error; 83.11%

Double Bit-f lip 
Errors; 15.10%

Multiple Bit-f lip 
Errors; 1.79%

Multiple Bit-flip Distribution in Alpha processor



Defects: The (Bumpy) Road Ahead for Silicon

 What is the failure model of silicon 2-3 generations out?
 What the literature says…

 “Expected failure rate of 1012 hours/device”, this would give a high end NVidia 
graphics part an expected lifetime of less than 1 year

 “Failure rates higher than 1020 hours/device”, which eliminates the problem
 What the experts say…

 Intel [Borkar] and IBM [Bernstein]: critical problem for future silicon

 Key failure modes
 Transistor wear-out (aggravated by scaling)
 SER-related upsets (especially in logic)
 Early transistor failures (due to ineffective burn-in)
 Untestable defects (compounded by complexity)



Silicon Defects: Sources and Trajectory

Sources: gate wearout, NBTI, hot electrons, electro-metal migration, etc…
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Model Parameters:
FG: grace period wear-out rate
λL : avg latent manufacturing defects
m : maturing rate
b : breakdown rate
tB : breakdown start point

FG+109 λL/t · (1 - (t+1)-m) FG + (t - tB)b

Failures occur very soon 
and failure rate declines 
rapidly. Failures are caused 
by latent manufacturing 
defects.

Failure rate falls to a small 
constant value where failures 
occur sporadically due to the 
occasional breakdown of weak 
transistors or interconnect.

Failures occur with 
increasing frequency over 
time due to age-related 
wear-out. 



Effects Of Variability
 High-performance processors are 

speed-binned
• Faster == more $$$
• These parts have small Leff

 Exponential dependence of 
leakage on Vth
• And Leff, through Vth

Process Spread
Smaller Leff

Fast, high leakage
Larger Leff

Slow, low leakage

Freq Constraint

Reject – too slow

Power 
Constraint

Reject – too leaky

Delay
Leakage

Process Spread
Smaller Leff

Fast, high leakage
Larger Leff

Slow, low leakage

Freq Constraint

Reject – too slow

Power 
Constraint

Reject – too leaky

Delay
Leakage

Since leakage is now 
appreciable, parametric 
yield is being squeezed on 
both sides



Random Dopant Fluctuations, Intel’s View
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Variation: Across-Wafer Frequency

Figure courtesy S. Nassif, IBM



DRAMs are Inherently Unreliable

row select

bit



DRAMs Incorporate Refresh



NAND Flash Also Utilizes Reliability

 Floating gate traps charge
• Give a higher voltage and electrons are trapped 

through gate into floating gate transistor



Tutorial Schedule

Reliability Issues: SER, Variability and Defects

Fault Tolerant Design Techniques
 Classical Techniques
 SER Specific Techniques
 Full-Spectrum Techniques
 Research Topic: Self-Healing Systems

Robust Low-Power Design Techniques



Techniques For Improving Reliability
 Fault avoidance (Process / Circuit)

• Improving materials
 Low Alpha Emission interconnect and Packaging materials

• Manufacturing process
 Silicon On Insulator (SOI) 
 Triple Well design process to protect SRAM

 Fault tolerance (robust design in presence of Soft 
Error) : Circuit / Architecture
• Error Detection & Correction relies mostly on “Redundancy”

 Space : DMR, TMR
 Time   :  Temporal redundant sampling (Razor-like)
 Information : Error coding (ECC)



How Do We Protect The Systems Today?
 Defect tolerance techniques are limited to high-end systems
 Life-critical applications (e.g., aviation, medical systems)
 Mission-critical applications (e.g., military, NASA’s space exploration)
 Business-critical applications (e.g., banks, financial sector)

Processor
Type A

Processor
Type B
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2-Version Hardware

Voting
Logic

Module

Module

Module

Triple Modular Redundancy

Redundant computation/hardware is too expensive
to deploy into cost-sensitive mainstream systems



DMR Error Detection

 Context: Dual-modular redundancy for computation
 Problem: Error detection across blades

CPU

CPU

?



Fingerprinting [Falsafi/Hoe]

 Hash updates to architectural state
 Fingerprints compared across DMR pair
 Bounded error detection latency
 Reduced comparison bandwidth

R1  R2 + R3
R2  M[10]
M[20]  R1

Instruction
stream

Stream
of updates

...001010101011010100101010...

R1 R2 M[20]

= 0xC3C9

Fingerprint



Recovery Model

Checkpoint n

Time

Error undetected

Soft error
Recover to n

Error Undetected

 Rollback-recovery to last checkpoint upon detection 



Triple Modular Redundancy (von Neumann)
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Voter assumed 
reliable!
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Protecting State with Error Coding

 Coding: representation of information
• Sequence of code words or symbols

 In noisy channels, errors can be reduced to a certain degree

 Overheads
• Spatial overhead : Additional bits required
• Temporal overhead : Time to encode and decode

Consider codewords as vertices on a hypercube.

000 001

111

100
101

011

110

010
codeword

d = 2 = min distance
n = 3 = dimensionality
2n = 8 = number of nodes



SERA SER Analysis Tool [Shanbhag]

Stimulus
Vectors

Gate-level
Verilog Netlist

Inverter Chain
Characterization

Process
Files

Circuit Parser

Logic Simulator

Path Analyzer

SER Engine

SER
One-time process
characterization

SER 
Peaking

32x32 array multiplier

 Gate-level SER analysis point tool (available from 
GSRC web-site)

 Fast: Speed-up  106  over Monte Carlo

 Accurate: < 5% error over Monte Carlo
 Captures SER dependence on: process, circuit and 

input vectors

Vdd = 20% → SER = 1.28X

tsetup = 20% → SER = 50X



SER-Tolerant Circuit Design [Shanbhag]

Dual sampling skewed CMOS style

 Employs skewed CMOS for logic and dual sampling FF (DSFF)
 Both 01 and 10 errors are eliminated if skewing factor ≥ 4.
 Speed penalty 

 depends on ∆ (maximum SET width)
 can be made a design parameter. 
 equals 300ps (for 0.18um process) if zero SER wanted.

 Power penalty: 17% (DSFF) + 20% (Skewed CMOS)

DSFF



Recent Development: Reduced Exposure 
to Soft Errors Due to FinFETs

 FinFETs (which replaced MOSFETs) have 
lower exposure to soft errors
• Higher critical charge
• Smaller exposed geometry



Rest of System

Sphere of Replication

Input
Replication

Output
Comparison

Thread 1 Thread 2

Logical boundary of redundant execution within a system
• Trade-off between information, time, & space redundancy

Compare & validate output before sending it outside the SoR

Simultaneous Redundant Multithreadhing 
[Reinhardt]



Design/EDA for Highly Variable 
Technologies

 Critical need: Move away from deterministic CAD flow 
and worst-case corner approaches

 Examples:
• Probabilistic dual-Vth insertion

 Low-Vth devices exhibit larg process spreads; speed 
improvements and leakage penalties are thus highly variable

• Parametric yield optimization
 Making design decisions (in sizing, circuit topology, etc.) that 

quantitatively target meeting a delay spec AND a power spec 
with given confidence

• Avoid designing to unrealistic worst-case specs
• Use other design tweaks such as gate length biasing (next)



Full-Spectrum Fault Tolerance:
DIVA Checker [Austin]

 All core function is validated by checker
• Simple checker detects and corrects faulty results, restarts core

 Checker relaxes burden of correctness on core processor
• Tolerates design errors, electrical faults, defects, and failures
• Core has burden of accurate prediction, as checker is 15x slower

 Core does heavy lifting, removes hazards that slow checker

speculative
instructions

in-order
with PC, inst,
inputs, addr

IF ID REN REG

EX/
MEM

SCHEDULER CHK CT

Performance Correctness

Core Checker
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Check Mode
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Recovery Mode
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How Can the Simple Checker Keep Up? 

Slipstream

Redundant Core Advance Core

 Slipstream effects reduce power requirements of trailing car
• Checker processor executes in the core processor slipstream
• fast moving air   branch/value predictions and cache prefetches
• Core processor slipstream reduces complexity requirements of 

checker

 Symbiotic effects produce a higher combined speed



How Can the Simple Checker Keep Up? 

Slipstream

Simple Checker Complex Core

 Slipstream effects reduce power requirements of trailing car
• Checker processor executes in the core processor slipstream
• fast moving air   branch/value predictions and cache prefetches
• Core processor slipstream reduces complexity requirements of 

checker

 Symbiotic effects produce a higher combined speed



Checker Performance Impacts
 Checker throughput bounds core IPC

• Only cache misses stall checker pipeline
• Core warms cache, leaving few stalls

 Checker latency stalls retirement
• Stalls decode when speculative state

buffers fill (LSQ, ROB)
• Stalled instructions mostly nuked!

 Storage hazards stall core progress
• Checker may stall core if it lacks resources

 Faults flush core to recover state
• Small impact if faults are infrequent
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Fault Modeling & Analysis Infrastructure

 High-performance, high-fidelity, fault modeling simulation infrastructure 

 Asynchronous fault injection at
the gate level

 Fully models all the possible
ways a fault can be masked

Statistical fault 
model

Model 
Stimuli

(TRIPS traces)

Structural
design

Fault-exposed
model

Golden model
(no fault injected)

Fault
analyzer

Time, location,
duration

Fault is
logic masked
timing masked
architecture masked
error (fault manifests)

MonteCarlo simulation
loop – 1000x

Defect model

Function test
(full-cover. test)

Structural
design

Defect-exposed
model

Golden model
(no defect injected)

Defect
analyzer

Time, location

Defect is exposed
protected
unprotected but masked

MonteCarlo simulation
loop – 1000x

 Two different setups, one to evaluate 
the effects of transients, and one for 
permanent errors

 Monte Carlo modeling framework with 
realistic workloads

Modeling & analyzing 
permanent errors

Modeling & analyzing
transient errors



Tutorial Schedule
 Reliability Issues: SER, Variability and Defects

 Fault Tolerant Design Techniques
 Classical Techniques
 SER Specific Techniques
 Full-Spectrum Techniques
 Research Topic: Self-Healing Systems

 Robust Low-Power Design Techniques



Power and Reliability: How are they related?

The move to smaller features can help with power – with 
qualifications

Smaller features increase design margins
 reduce power savings
 reduce performance gains
 reduced area benefits



Why does power matter?

 “… left unchecked, power consumption will reach 1200 
Watts for high-end processors in 2018. … power 
consumption [is] a major shows topper with off-state 
current leakage ‘a limiter of integration’.” 

Intel chairman Andrew Grove Int. Electron Devices Meeting keynote Dec. 2002



Total Power of CPUs in PCs
 Early ’90’s  – 100M CPUs @ 1.8W = 180MW
 Early 21st – 500M CPUs @ 18W = 10,000MW
 Exponential growth
 Recent comment in a Financial Times article: 

10% of US’s energy use is for computers
• exponentially growth implies it will overtake 

cars/homes/manufacturing

 NOT! – why we’re here
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Algorithmic SER-Tolerance [Shanbhag]

Energy 
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 Employ two estimators in 
SEU/MEU scenario

 Robust to error frequencies up to:
 1 in 100 samples for SEU
 1 in 1000 samples for MEU
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Timing Error Tolerant Links [De Micheli]

 Aggressively clock on-chips links with high frequency/low voltage
 Double-sample link output
 Once speculatively, then again with reliable timing

 Stall receiver for recovery data if samples disagree
 Non-speculative if receiver incurs additional delay
 Otherwise, receiver must perform internal recover

Pipeline
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Delayed
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Input data
output

Error?

Pipeline
buffer i+1

Vdd Vdd 

Frequency/Voltage Controller

f req



Research Topic: Razor Error Resilient Circuits [Austin/Blaauw]

 In-situ detection/correction of 
timing errors

 Tune processor voltage based on errors
 Eliminate process, temperature, and noise 

margins (tune for near-zero errors)
 Purposely run below critical voltage to 

capture data-dependent latency margins

 Implemented with architecture 
and circuit support

 Double-sampling metastability-tolerant
Razor flip-flops validate pipeline results

 Pipeline initiates recovery after timing 
errors, forward progress is guaranteed
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Energy/Performance Characteristics

Decreasing Supply Voltage

Energy

Energy of Processor
Operations, Eproc

Energy of
Pipeline

Recovery,
Erecovery

Total Energy,
Etotal = Eproc + Erecovery

Optimal Etotal

Pipeline
Throughput

IPC

Energy of Processor
w/o Razor Support

30-50%

1%
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