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Building Secure Hardware and Software

Todd Austin

University of Michigan

Two Day Tutorial

Why is Security Important?
(to Architects and Compiler Designers)

 Hardware and system-level solutions are needed to protect 

software and intellectual property (IP)

 Hardware and low-level software support improves speed and 

quality of cryptography

 Hardware and system-level software support can most 

effectively seal up security vulnerabilities

 Hardware and system-level software vulnerabilities enable 

security attacks
2
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The Security Arms Race

Develop/Debug
Applications

and Platforms

Deploy
Counter-
measures

Attackers
Hack Customers
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Why Do Attackers Attack?

 To gain control of machines, e.g., BotNets

 To gain access to private information, e.g., credit card numbers

 To punish/embarrass individuals and institutions, e.g., Sony

 To educate and advocate, e.g., FireSheep

 To earn reputation in the cracking community, e.g., hackers vs. script 

kiddies

 Etc…
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The Ultimate Goal of the Designer

 Win the bear race…

 Value = f(easy of attack, population, loot therein, goodwill, etc…)

Attackers Someone more
valuable

You
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Tutorial Outline
 Security Basics

 Security Exploit Prevention Techniques

 Side-Channel Attacks and Protections

 Hardware for Secure Computing

 Security Vulnerability Analysis

6



4

Acknowledgements

 Colleagues: Valeria Bertacco, Seth Pettie

 Students: Joseph Greathouse, Eric Larson, Andrea Pellegrini

 With contributions from:

 Edward Chow

 Crispin Cowan

 Koji Inoue

 David Lie

 Igor Markov

 Ivo Pooters

 Hovav Shacham

 Andrew Tanenbaum

 Kris Tiri

 Steve Trimberger

 Wikipedia
7

Security Basics
 Cryptography

 Symmetric key cryptography

 Asymmetric key cryptography

 Secure sockets layer (SSL) overview

 Streaming ciphers

 Cryptographic Hashes

 Security Attacks

 Buffer overflow attacks

 Heap spray attacks

 Return-oriented programming attacks

 Hardware-based security attacks

 Discussion Points
8
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Symmetric Key Cryptography

 Sender and receiver share a private key

 Anyone who knows the private key can listen in

 Often called a “private-key cipher”

 Examples: AES, DES, Blowfish

plaintext g(x) g(x)ciphertext plaintext

Private Key Private Key

9

Block Cipher

encrypting each block separately not secure:  
identical plaintext blocks --> identical cipher 

text blocks

Image from: Security Basics for
Computer Architects, Ruby Lee
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Block Cipher Operation Modes

Ek

Cipher Block 
Chaining

(CBC)

Counter Mode
(CTR)

Images from: Security Basics for
Computer Architects, Ruby Lee
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ECB vs. CBC Streaming Modes

Original ECB Encrypted CBC Encrypted

12



7

Asymmetric Key Cryptography
plaintext ciphertext plaintextf(x) g(x)

Public Key Private Key

 Sender has the receiver’s public key, receiver has the private key

 Anyone can encrypt a message with the public key, only the 

holder of the private key can decrypt the message

 Allows sharing of private information with no initial shared secret

 The reverse path also works: everyone can decrypt a message 

that was encrypted by the holder of the private key

 Often called a “public-key cipher”

 Examples: RSA, Diffie-Hellman 13

RSA Authentication

 Client sends a unique message to 

server

 Server encrypts unique message 

with private key

 Client decrypts the message with 

public key and verifies it is the same

 Authentication: only server could 

return private-key encrypted unique 

message

Public Key
(e,n)

Private Key
(d,n)

m

s m

14
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Symmetric vs. Asymmetric Ciphers

 Symmetric Ciphers

 Fast to compute

 Require prior shared knowledge to establish private communication

 Asymmetric Ciphers

 Orders of magnitude slower to compute

 No shared secrets required to establish private communication

 Individual benefits create a need for both types of cryptography

15

Secure Sockets Layer (SSL) Overview

authenticate

private key

serverclient

https get

public

.

.

.

https recv

close

private

Encrypt client
symmetric key

with server
public key

Decrypt with
server private key

to get symmetric key,
return “finished”

message encrypted
by symmetric key

Decrypt with
symmetric key

to ensure
authentication

successful
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Verifying Integrity: Hash Functions

 Goal: provide a (nearly) unique “fingerprint” of the message

 Hash function for L-bit hash must demonstrate three properties:
1. Fast to compute y from m.

2. One-way: given y = h(m), can’t find m’ satisfying h(m’) = y without O(2L) search

3. Strongly collision-free: For m1 != m2, we find h(m1)=h(m2) with probability 1/2L

 Widely useful tool, e.g., Has this web page changed?

 Examples: MD5 (cryptographically broken), SHA-1, SHA-2

Cryptographic hash 
Function, h

Arbitrary-length
message m

0xdeadbeefbaadf00d

Fixed-length
message digest y

17

Hash Application: Password Storage

 Never store passwords as plain text

 If your machine is compromised, so too are all the user passwords

 E.g., Gawker.com attack in 2010

 Why protect passwords on a compromised machine?

 Instead, store a cryptographic hash of the password

 Even with a compromised password file, the passwords are still unknown

 Use “salt” to eliminate the use of “rainbow tables”

User Hashed Password
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CERT-Cataloged Vulnerabilities

Security Vulnerabilities are Everywhere

 Most often born out of software bugs

 NIST estimates that S/W bugs cost U.S. $60B/year

 Many of these errors create security vulnerabilities

19

Buffer Overflow Attack

 Buffer overflows constitute a large class of security vulnerabilities

 Goal: inject code into an unsuspecting machine, and redirect control

void foo()
{

int local_variables;
int buffer[256];
…
buffer = read_input();
…
return;

}

Return address

Local variables

buffer

B
u
ffe

r F
ill

New Return address

Bad Local variables

If read_input() reads 200 intsIf read_input() reads >256 ints

buffer

20
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Escalate: No code allowed on stack
 Use a heap-spray attack

 Inject executable data into heap, then perform random stack smash

 Example, generate many strings in Javascript that are also real code

 Generous heap sprays will likely be found by stack smash attack
21

Escalate: No new code allowed at all

 Use return-oriented programming to attack…

 “RET” instruction transfers control to address on top of stack. 

 Return-oriented programming introduces no new instructions, just 

carefully craft injected stack returns to link existed function tails

 New program is formed from sequence of selected function tails 

composed from existing code
22
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New Threats: Hardware Based Attacks
 2008: Kris Kapersky announced the discovery of an OS-independent 

remote code execution exploit based on an Intel CPU bug (not disclosed)

 2008: UIUC researcher Sam King demonstrate that 1400 additional gates 

added to a Leon SPARC processor creates an effective Linux backdoor

 2008: Princeton researcher Ed Felten demonstrates that disk encryption 

keys can be extraction after system shutdown from frozen DRAM chips

 2010: Christopher Tarnovsky announced a successful hardware exploit of 

an Infineon TPM chip

 2011: Sturton/Hicks develop non-stealthy malicious circuits, provide 

plausible deniability to rogue designers

 2014: Rowhammer bug demonstrated, able to flip DRAM bits in adjacent 

rows even without access permission

23

Security Basics: Discussion Points

 Does the security arms race ever end?

 How do I know that I have the server’s true public key?

 Can hardware-based security exploits be fixed?

 Do all security protocols and algorithms have a fixed shelf life?

24
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Security Exploit Prevention Techniques

 No-Execute (NX) Stacks

 Address Space Layout Randomization (ASLR)

 Stack Canaries

 Encrypted Pointers

 Hardware-Based Buffer Overflow Protection

 Safe Languages

 Discussion Points

26
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No-Execute (NX) Stacks

 Eliminate stack code injection by 

preventing code execution on stack

 Can be a problem for some safe 

programs, e.g., JITs

 NX bit in newer x86 PTEs indicates 

no-execute permission for pages static

text

stack

heapheap

unused

Execute

No Execute

27

Address Space Layout Randomization (ASLR)

 At load time, insert random-sized 

padding before all code, data, 

stack sections of the program

 Successfully implementing a buffer 

overflow code injection requires 

guessing the padding geometry on 

the first try

 Implemented in recent Windows, 

Linux and MacOS kernels

static

text

stack

heapheap

unused

Random
Sized Padding

Random
Sized Padding

Random
Sized Padding

Random
Sized Padding

28
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Attacking ASLR

 ASLR make stack based code 

injection difficult because the 

injected return address is 

different for each execution

 A successful attack requires a 

brute-force guess of an address 

containing injected code on the 

first try

 ASLR can be compromised with 

heap-spray attacks

Return address

Local variables

buffer

B
u
ffe

r F
ill

New Return address

Bad Local variables

buffer
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Escalate: No code allowed on stack
 Use a heap-spray attack

 Inject executable data into heap, then perform random stack smash

 Example, generate many strings in Javascript that are also real code

 Generous heap sprays will likely be found by stack smash attack
30
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Stack Canaries with StackGuard
 Implemented in compiler (GCC), runtime check of stack integrity

 Embed “canaries” in stack frame before the return address, in 

function prologue, verify their integrity in function epilogue

 Canary is a per-instance random value that attacker must guess 

on the first try for a successful attack

 About 10% overhead for typical programs

 Can be thwarted with overflow attacks on function pointers

strretsfplocal

top
of

stack
canarystrretsfplocal canary

Frame 1Frame 2

31

StackGuard Variant - ProPolice

args

ret addr

SFP

CANARY

arrays

Local variables

Stack
Growth

No arrays or pointers

Ptrs, but no arrays

String
Growth

 IBM enhancement of StackGuard, in GCC, deployed in OpenBSD

 Moves pointers in front of arrays, to protect from overflows

32
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Encrypting Pointers with PointGuard

 Encrypt all pointers while in memory

 Using a per-instance random key, generated when program starts

 Each pointer is XOR’ed with this key (decrypted) when loaded from memory 

to registers or when stored back into memory (encrypted)

 Pointers cannot be overwritten by buffer overflow while in registers

 Protects return addresses and function pointers

 Attackers must guess, on the first try, the random key to 

implement a successful pointer attack

 Otherwise, when pointer is overwritten its XOR decrypted value will 

dereference to a random memory address

 Very difficult to thwart, but pointer encryption/decryption can slow 

programs by up to 20% 33

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
by corrupted pointer

Attack
code

34
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CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer 
value

0x1234

2. Access data referenced by pointer

PointGuard Dereference

0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
segmentation fault and crash

Attack
code

1. Fetch pointer 
value

0x9786

Decrypt

Decrypts to
random value

0x9786

35

Sandboxing: Imprison Potential 
Violators Early

 Often attackers will infiltrate one 

program domain to attack another

 E.g., inter-tab “man-in-the-browser” attacks

 Sandboxes utilize virtual memory 

system to contain potential damage

 Programs inside sandbox run in NaCl mode

 External interactions require validation 

 Generally reliable but still attackable

 Through missed external interactions

 Through bugs in the policy manager

 Through system-level bugs or external 

services, e.g., Flash 36

Chrome NaCL Sandbox Architecture
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NaCL Native Execution:
The Rules of the Game

Perhaps We Should Go to the Root of the 
Problem

 Most buffer overflows occur due to memory access errors

 Spatial - Buffer overflow

char *c = malloc(100);

c[101] = ‘a’;

 Temporal - Dangling reference

char *p1 = malloc(100);

char *p2 = p1;

free(p1);

p2[0] = ‘x’;

a

c

0 99

p1

0 99

p2

x

38
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Safe Languages Prevent Many Attacks

 Runtime checks verify as the program runs that all accesses are in 

the bounds of intended live storage

 Examples: Python, Javascript, Java, Ruby, Go

 Reduces the attack surface available to attackers

 It is also possible to provide runtime checking in non-safe 

languages, but at some cost

39

Are Safe Languages Safer?

 Qualys top 5 vulnerabilities for February 2015

1. Microsoft Internet Explorer Vulnerability

2. Oracle Java SE Critical Patch Update

3. Adobe Flash Player and AIR Multiple Vulnerabilities

4. Microsoft .Net Framework Elevation of Privilege Vulnerability

5. Microsoft Windows Network Location Awareness Service Security Bypass

 Yes, but safe languages are not a panacea

 Buffer overflows still occur in the interpreter, JIT, runtime, OS, and drivers

 Doesn’t mitigate non-buffer overflow based attacks, such as SQL injection

 Not easily made available to legacy programs in unsafe languages

 But, if given a choice, why not choose a safer (and likely more 

productive) language?
40
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[PIs: Austin, Das]

Protecting Control Flow with Control-Data Isolation (CDI)

• All indirection removed, use whitelisted direct jumps to thwart all code 
injection
• Direct, as specified by programmer

• Validated, via whitelisting, before the transition occurs

• Complete, no jumps data segment, no instructions move data to PC

• System supports run-time code gen and dynamic libraries

return

jreg

41

Architecture Optimized for CDI Execution

• S/W-only CDI has19% worst-case slowdown (7% average)
• Due to indirect edge whitelist validation that occurs at all indirect jumps

• Edge cache memoizes edge validations, doubles as predictor
• With range table, 6kB edge cache reduces slowdowns to 0.3%

• Indirect target prediction cuts misprediction rate in half over simple BTB

42

PC

GHR

BTB

Predictor 
Array Edge 

Cache 
with

Range Table
Commit

Fetch

<src,target>

=

Squash, 
execute 

sled

No

YesRetire

[PIs: Austin, Das]
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Prevention: Discussion Points

 Are hardware based security protection mechanisms worth the 

silicon to manufacture them?

 Software-based protection mechanisms seem to be more 

hardened than hardware-based techniques, why is this the case?

43
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Side Channel Attacks and Protections

 Timing-Based Attacks

 Cache-Based Attacks

 Power Monitoring Attacks

 Fault-Based Attacks

 Discussion Points

45

Side Channel Attacks

 Even carefully designed systems 

leak info about internal computation

 E.g., safes can be cracked by carefully 

listening to the tumblers

 Clever attackers can utilize leaked 

information to grain secrets

 Generally not directly

 Use statistical methods over time

 These attacks are often considered 

attacks on the implementation, 

rather than the algorithm

46
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Cache-Based Side Channel Attack

MEMORY

CACHE

CPU  Snoop on cache misses to 

determine code and data 

accesses

 Second process can force 

misses to DRAM

 Reveals another process’ 

memory accesses

 Algorithms such as AES are 

designed from the ground 

up to thwart these attacks

47

Cache-Based Side Channel Attacks

1. Resource sharing 

Cache accesses observed by spy

process evicting cached data

2. Optimization features 

Cache implemented to overcome 

latency penalty 

3. Increased visibility 

Performance counters provide 

accurate picture 
MEMORY

CACHE

CPU

48
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1. Resource sharing 
 Reduces hardware needed to implement design functionality

 Results in interaction and competition revealed in timing and power

2. Design optimizations
 Typical case optimized, thus the corner cases leak information

 Corner cases run slower and use different hardware leading to distinct 
timing and power signatures

3. Increased visibility and functionality 
 Provides more information or introduces new interactions

 Facilitates observation of unique activities/interactions with unique timing 
and power signatures

Hardware Design Techniques 
Facilitate Side Channel Attacks

49

Types of Side-Channel Attacks

 Simple attacks

 Measure the time to perform expected operations

 Requires precise knowledge of implementation 

and effect on measurement sample

 E.g. textbook square-and-multiply RSA algorithm

 Relatively easy to protect from this attack

 Differential attacks

 Many observations made holding only one aspect of the input constant

 Statistical techniques reveal the timing effects of this one input

 Correlate timings between known amd unknown key tests to guess key

50
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 Daniel Bernstein announces successful timing attacks against 

AES in April 2005, exploiting cache timing of table lookups

 Requires cycle-accurate cipher runtime measurement and ability to control 

plaintext on the attacked machine

 Requires access to an identical machine with cycle-accurate cipher runtime 

measurement, and ability to control plaintext and key values

 Guesses private key by correlating timings of a target machine to those of 

an identical reference machine with a known key

 Cache conflicts in AES encryption steps slow computation and 

leak private key information

 High number of samples required, best case as reported by 

Bernstein is around 227.5 tests to recover 128-bit private key

Timing-Based Side-Channel Attacks

51

7 2 0 8 4 0 2 7 2  
3 3 6 7 1 2 8 7 5
3 1 8 2 6 5 5 2 3

P = S-1(KGC)

E = HmW(P)
estimation

device

key fragment guess

unknown secret key

input

measurement

model

analysis 

P = S-1(KGC)

E = HmW(P)

Side-Channel Power Attacks

e.g. guess 8 bits
brute force easy

compare both and 
choose key guess 
with best match

e.g. estimated power =
number of changing bits
can be lousy model

AES: 128-bit secret key
brute force impossible

52
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supply current

‘start encryption’-signal

clock cycle of interest

 Unprotected ASIC AES

with 128-bit datapath, key 

scheduling

 Measurement: Ipeak in round 11

 Estimation: HamDistance

of 8 internal bits

 Comparison: correlation

 Key bits easily found despite 

algorithmic noise

 128-bit key under 3 min.

Power Analysis Example

53

Fault-Based Attack of RSA

Correct behavior:

 Server challenge:

s = md mod n

 Client verifies:

m = se mod n

Faulty Server:

ŝ != md mod n

Public Key
(e,n)

Private Key
(d,n)

m

s

Public Key
(e,n)

Private Key
(d,n)

m

ŝ

m

54
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Fault-Based Attack of RSA

 The attacker collects the faulty signatures

 The private key is recovered one window at the time

 The attacker checks its guess against the collected signatures

Public Key
ŝŝŝŝ

Private Key
m

ŝŝ ŝ

ŝ
d= XXXXd3 d2d1d0

55

Retrieving the Private Key

 The private key is recovered one window at the time, guessing 

where and when the fault hits

 Extend the window if no signature confirms value of guess

ŝ = (∙∙∙(md3)16)md2)2)2 ±2f)2)2)md1)16md0

Already
known Value?

Which Multiplication?

Which bit?

d= XXXd3 d2

56
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Fault Injection Mechanisms

How to make hardware fail:

 Lower voltage causes signals to slow down, thus missing the deadline 

imposed by the system clock

 High temperatures increase signal propagation delays

 Over-clocking shortens the allowed time for traversing the logic cloud

 Natural particles cause internal signals to change value, causing errors

All these sources of errors can be controlled to tune the fault injection rate 

and target some units in the design

57

Physical Demonstration of Attack

Leon3

58
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Attack Completed Successfully

RSA 1024-bit private key 

8,800 corrupted signatures 
collected in 10 hours

Distributed application with 81 machines for offline analysis

Private key recovered in 100 hours
59

Security Implications of Approximate HW

Approximate Memory 

Applicable to image processing, 
Machine Learning, Sensor Networks

Observation:

1. Memory cells decay in order that is robust against environmental 
conditions

2. Memory cells decay rate is largely due to manufacturing variances

Vulnerability:
De-anonymize approximate systems by using memory errors as a fingerprint 

Man-in-the-Middle Attack Scenario

[PI: Hicks]
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Row Hammer Attack
 Attack flips bits in victim DRAM 

row, without permission to access

 Result of wordline crosstalk

 Creates small pulses on adjacent 

wordlines, increases bitcell leakage

 Hammer enough times (~400k) in 

one refresh cycle (~64ms) and bits 

will flip in victim row

 Typical protection requires 

doubling the refresh rate

 Why doesn’t this happen all the 

time?

61

victim

aggressor

wordlines

cr
o
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a
n

n
e
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ANVIL S/W-Based Rowhammer Protection

• Rowhammer attack exposes memory
• “Hammering” adjacent DRAM rows flips bits

• Remedy: 2x refresh (32ms) or no CLFLUSH

• Current protections are easily broken
• With efficient CLFLUSH hammer or cache tricks

• We announced world-first CLFLUSH-free attack

• Developed ANVIL S/W protection
• H/W perf counters identify high-locality misses

• Refreshes potential victims, <1% slowdown
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Hardware Trojans

 Hardware-based back doors 

inserted into the design by a 

rogue engineer

 Typically coupled with a trigger 

circuit that recognizes a code 

or data sequence

 Implement with hash function

 Difficult to detect

 Given range of approaches

 Many points of entry in the design 

process 

63

Processor Trojan Example

 Processor updates privilege bit in EX stage

 If code sequence precedes update (recognized by trigger hash)

 Privilege update is always “1” (enter privileged mode)

 Attack: 1) execute trigger code sequence, 2) own machine (as you now have 

privilege mode access) 64

1
privilege bit

=

Trigger hash
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A2 Analog Malicious Circuit

 OpenRISC with (A2) analog malicious circuit

 Charge share with infrequent signals (e.g., Div0, C31) to charge up leaky passive cap

 If cap charges up fully, CPU privilege bit is set

 Attack: 1) frequently execute unlikely trigger code sequence, 2) own machine (as you now have privilege 

mode access)

 Taped out chip, attack sequence working in the lab, no false positives detected

 Malicious circuit is not detectable by current protections (i.e., lacks power/timing signature and it has no digital 
representation)

65

privilege bit

Div0
C31

C47

[PIs: Austin, Hicks]

Another Example of a Hardware Trojan

 WiFi-enabled inline USB key logger

 Install and it will send key presses to remote site

66
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Side Channels: Discussion Points

 Is it possible to close a side channel completely?

 How much concern should we put on attacks that have 

unrealistic/favorable pre-requisites, e.g., Bernstein’s requirement 

to control key and plaintext plus cycle-level timing, Austin’s 

requirement to control server voltage

67
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Hardware for Secure Computing

 Secure boot – TPMs

 Generating True Random Numbers

 Crypto-engines – CryptoManiac

 Physical unclonable functions

 Chiplocking Technologies

 Secure Execution

 High-Bandwidth Digital Content Protection

 Discussion Points
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Bootstrapping a typical PC

What can go wrong before the kernel runs?

INIT POST

BIOS

TPM

GRUB
Stage1
(MBR)

SELinux
Kernel

Bootloader

Stage1.5
GRUB

Stage1.5

Operating 
System

GRUB
Stage2

BIOS
Extensions

Flash memory Disk Disk
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Secure Boot

 Goal of secure boot
 Ensure only a secure system is booted

 Operating system that is bootstrapped is based on a untampered foundation

 Why is this useful?
 Ensure original integrity of system (i.e., no hacking)

 Protect internal intellectual property (i.e., IP)

 Examples: iPhone, Xbox 360, SELinux

 Implementation can only be guaranteed if-and-only-if:
 Base layer is immutable (requires hardware support)

 The integrity of the base layer is verified

 Transition to higher layer only occurs after valid verification
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TCG Trusted Platform Module (TPM)
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SELinux Trusted Boot Stages

Trusted Boot

CRTM

GRUB
Stage1
(MBR)

SELinux
Kernel

PCR01-07

POST

BIOS Bootloader

Stage1.5
GRUB

Stage1.5

PCR04-05TPM

Operating 
System

JVM

MAC
Policy

DB

GRUB
Stage2

PCR08-14

conf

TPM
Flash memory Disk Disk
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[PIs: Austin, Das]

Cold-Boot Attacks are Hot Again

 Cold-boot attacks steal encryption keys

 Super-cool DRAM, rip it from running machine

 Analyze it in a second machine without security

 Many modern DDR3+ interfaces utilize memory 

scrambling

 Data to DRAM is encrypted with per-boot key

 Non-chained cipher, only 48 key expansions

 Recently, we cold-boot attacked a DDR3 

interface with memory scrambling

 Used known plaintext to identify key expansions

 Located TrueCrypt AES keytable, regen’ed key

 Developed a strongly encrypted DDR3+ 

interface

 Encryption uses counter-mode AES, it lacks correlation 
that makes current CPUs attackable

 Encryption has zero exposed latency for DRAM row 
buffer hits
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Why Are Random Numbers Important?

 Generally, secret key == random number

 If your random number generator is weak (i.e., guessable), then 

your secret key are guessable

 Example: Early Netscape implementation seeded a pseudo-random 

number generator with <time of day, process ID, parent process ID>

 Where can we find true random numbers?

 Random atomic or subatomic physical phenomenon whose unpredictability 

can be traced to the laws of quantum mechanics (Best)

 Human behavior, e.g., moving a mouse (OK)
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Intel Random Number Generator
Thermal noise

drives oscillator

von Neumann
corrector removes

bias

Slow oscillator
samples fast one

Voila! Variable-rate
random bit stream
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Metastability Based RNG

77

But, If You Need an Exceptional RNG

 SGI Lavarand – Lava lamp based random number generator

 US Patent #5732138 – hash the image of the lamp

 Provided an online source of random numbers, 1997-2001
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CryptoManiac Crypto Processor

 Goal - fast programmable private-key bulk cryptographic processing

 Fast : efficient execution of computationally intensive cryptographic workloads

 Programmable: support for algorithms within existing protocols, support for new 
algorithms

 Motivation

 Cipher kernels have very domain specific characteristics

 Solution - hardware/software co-design

 Software: crypto-specific ISA

 Hardware: efficient co-processor implementation

 Results

 More than 2 times faster than a high-end general purpose processor and orders of 
magnitude less area and power
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CryptoManiac System Architecture [ISCA’01]

 A highly specialized and efficient crypto-processor design
 Specialized for performance-sensitive private-key cipher algorithms

 Chip-multiprocessor design extracting precious inter-session parallelism

 CP processors implement with 4-wide 32-bit VLIW processors

 Design employs crypto-specific architecture, ISA, compiler, and circuits
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CryptoManiac Processing Element (CM)

B
T
B

I
M
E
M

RF

FU

FU

FU

FU

Data
Mem

InQ/OutQ
Interface

Keystore
Interface

IF ID/RF EX/MEM WB

81

Crypto-Specific Instructions

 frequent SBOX substitutions

 X = sbox[(y >> c) & 0xff]

 SBOX instruction

 Incorporates byte extract

 Speeds address generation 

through alignment restrictions

 4-cycle Alpha code sequence 

becomes a single CryptoManiac 

instruction

 SBOX caches provide a high-

bandwidth substitution 

capability (4 SBOX’s/cycle)

010 08162431

opcode

00

SBOX Table

Table Index
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Crypto-Specific Instructions

 Ciphers often mix logical/arithmetic operation

 Excellent diffusion properties plus resistance to attacks

 ISA supports instruction combining

 Logical + ALU op, ALU op + Logical

 Eliminates dangling XOR’s

 Reduces kernel loop critical paths by nearly 25%

 Small (< 5%) increase in clock cycle time

Instruction Semantics

Add-Xor r4, r1, r2, r3 r4 <- (r1+r2)r3

And-Rot r4, r1, r2, r3 r4 <- (r1&&r2)<<<r3

And-Xor r4, r1, r2, r3 r4 <- (r1&&r2)r3
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Crypto-Specific Functional Unit

Pipelined
32-Bit
MUL 1K Byte

SBOX
Cache

32-Bit
Adder

32-Bit
Rotator

XOR AND

Logical Unit

XOR AND

Logical Unit

{tiny}

{short}

{tiny}

{long}
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Scheduling Example: Blowfish

SBOX SBOX SBOX SBOX

ADD

XOR

ADD

XOR

Sign
Ext

Load

XOR

SBOX   SBOX SBOX SBOX
Add-XOR   Load
Add   XOR
XOR-SignExt

Takes only 4 cycles per iteration 
to execute!
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Encryption Performance (250nm)
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Crypto Support in Modern CPUs

 IBM Power7 and Power8: Implement multiple AES block cipher 

operation modes entirely in hardware (AES-GCM, AES-CTR, 

AES-CBC, AES-ECB)

 Intel Westmere(32nm) and newer: implement AES block 

cipher hardware accelerators; software implements 

operation modes
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AESENC. This instruction performs a single round of encryption. 
AESENCLAST. Instruction for the last round of encryption.
AESDEC. Instruction for a single round of decryption
AESDECLAST. Performs last round of decryption. 
AESKEYGENASSIST is used for generating the round keys used for encryption.
AESIMC is used for converting the encryption round keys to a form usable for decryption 
using the Equivalent Inverse Cipher.

Hardware for Per-IC Authentication

 How can we securely authenticate devices?

 Keycards, RFIDs, mobile phones

 Genuine electronics vs. counterfeits

 Device allowed to display a purchased movie

 Ensure we are communicating with a specific server

 Each system must have a unique IC

 Expensive to customize each manufactured IC

 Physical unclonable functions (PUFs) implement this very cheaply
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Physical Unclonable Functions (PUFs)

 Extract secrets from a complex physical system

 Because of random process variations, no two Integrated Circuits even with the same 
layouts are identical
 Variation is inherent in fabrication process

 Hard to remove or predict

 Relative variation increases as the fabrication process advances

 Delay-Based Silicon PUF concept
 Generate secret keys from unique delay characteristics

of each processor chip

Combinatorial 
Circuit

Challenge
c-bits

Response time
n-bits
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PUF Circuit Using Ring Oscillators

N oscillators

MUX

counter

counter

>?
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Input

Compare frequencies of  two oscillators  The faster oscillator is 
randomly determined by manufacturing variations

0 or 1
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Top Bot. Out
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2 N 1

1

2
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Entropy: How Many Bits Do You Get?

 Each of the N(N-1)/2 distinct pairs will produce a result based on 

IC-specific process variation

 Ordering the speed of all of the oscillators produces a log2(N!) bit 

per-IC unique identifier

 Each ordering is equally likely

 A small number of oscillators can express keys of long length

 35 oscillators produce 133 bits

 128 oscillators produce 716 bits

 256 oscillators produce 1687 bits
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Arbiter-Based Silicon PUF

 Compare two paths with an identical delay in design

 Random process variation determines which path is faster

 An arbiter outputs 1-bit digital response

 Multiple bits can be obtained by duplicating circuit or use different challenges

 Each challenge selects a unique pair of delay paths

…
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G
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XOM Secure Execution

 Programs are encrypted with symmetric key

 XOM processor accesses encrypted program by decrypting IP 

key with XOM public key 

 XOM architecture implements secure and insecure domains, 

with policies to move data between differing domains
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Data 
Encrypt/Decrypt

Insn Decryptor

IF/
ID

ID/
EX

EX/
MEM

MEM
/WB

XIF ID EX MEM WB

Encrypted I$ Encrypted D$

IP Key

Decrypt with
XOM public key

Hardware: Discussion Points

 What are the relative advantages and disadvantages of a crypto 

engine implemented as an ASIC, for a specific cipher?

 Can PUFs be affected by extreme environmental changes and 

silicon wearout can compromise PUF integrity?
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Security Vulnerability Analysis

 Security Vulnerability Analysis Overview

 Program metadata storage mechanisms

 Heavyweight Analyses for Security Vulnerability Analysis

 Scaling the Performance of Heavyweight Analyses
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How We Find Vulnerabilities Today

Develop/Debug
Application

Debug
Customer
Attacks

Attackers
Hack Customers
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A Better Way - Security Vulnerability Analysis

Develop/Debug
Application

Debug
Exposed

Vulnerabilities

Employ
Vulnerability 

Analyses

Deploy

Take the criminal out of your design cycle!
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Bug Bounties: A Clever Approach to 
Security Vulnerability Analysis

 Humans have proven to be 
effective at finding security bugs

 For good or for bad…

 Bug bounties are paid for severe 
bugs in popular software

 Google pays $1337 for each severe 

bug found

 Mozilla pays $3000, plus a t-shirt!

 Pwn-to-Own contest gives away 
hardware for newly exposed bugs

 An effective means of finding 
vulnerabilities and converting 
blackhats to whitehats

Kempelen’s Mechanical Turk 

[PIs: Bertacco, Hicks]

BlueChip Limits Execution to
Known-Secure Function

HW HW HW HW

Test 
cases

Test 
cases

BlueChip

BlueChip

Circuit designed Attack inserted

OS

Design Time

 Design-time analysis tools eliminate/disable untested insecure hardware states and 

components, via semantic guardians

 Run-time support implements function when untrusted (and removed function) is 

encountered

 Resulting design is efficient, simple and 100% verified to security (and functional 

correctness) specification
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Toward Scalable Vulnerability Analysis

Today we look at three powerful technologies that I helped to 

develop:

1) Metadata that restore programmer intent

2) Input bounds checking to expose hidden bugs without an active exploit

3) Dynamic distributed debug (Testudo) to scale the performance of 

vulnerability analysis
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Analysis 
Instrumentation

Software Dynamic Analysis for 
Security

 Valgrind, Rational Purify, DynInst

+ Multiple types of tests, runtime protection

– Extremely high runtime overheads

Developer

Program

Instrumented 
Program

In-House
Test Server(s)

LONG run time
Analysis 
Results
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a += y z = y * 75

y = x * 1024 w = *x Check wCheck w

Security Vulnerability Analysis Example:  
Taint Tracking

validate(x)x = read_input() Clear

a += *y z = *y + 2

y = x * 1024

x = read_input()

Propagate

Associate

Input

Check aCheck a

Check zCheck z

Data

Meta-data
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Key point: Techniques locate bugs without active attack,
only need to analyze vulnerable code path

Testudo: Dynamic Distributed Debug [MICRO’08]

Users running at 
virtually full speed

Reported before they 
are exploited

 Split analysis across population of users

+ Low HW cost, low runtime overhead,

runtime information from the field

– Analysis only

Developer

Instrumented 
Program

Potential 
problems 

encountered

104



53

Vulnerability Analysis:
Discussion Points

 What is the trade-off between static vs. dynamic program 

analysis?

 Is testing all of the paths users execute sufficient to harden a 

program against security attacks?

 Is it possible to combine static and dynamic program analysis?
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Where to Learn More…

 USENIX Security Conference, www.usenix.org

 IEEE Symposium on Security and Privacy, http://www.ieee-

security.org/TC/SP-Index.html 

 International Cryptology Conference, http://www.iacr.org

 Wikipedia, http://en.wikipedia.org/wiki/Computer_security

 Slashdot Security, http://slashdot.org/stories/security 

 Schneier on Security, http://www.schneier.com/
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