
EECS 573
January 29, 2007

Ultra Low-Cost Defect Protection for
Microprocessor Pipelines

Smitha Shyam Kypros Constantinides Sujay Phadke
Valeria Bertacco Todd Austin

Advanced Computer Architecture Lab
University of Michigan

EECS 573
January 29, 2007

2

Transient Faults due to
Cosmic Rays & Alpha Particles

(Increase exponentially with
number of devices on chip)

Key Reliability Threats

Run-Time Defects
(Wire break-down and

transistor wear-out)

Manufacturing Defects
That Escape Testing
(Inefficient Burn-in Testing)

Parametric Variability
(Uncertainty in device and environment)

Increased Heating

Higher
Transistor
Leakage

Thermal
Runaway

Higher
Power

Dissipation

H/W and S/W
Design Errors

(Bugs are expensive and
expose security holes)

Intra-die variations in ILD thickness

Focus of this work: Run-time and
Manufacturing Defects

EECS 573
January 29, 2007

Traditional Defect-Tolerant Techniques

Used at high-end life-critical systems
 N-Version Hardware

 Triple Modular Redundancy (voting scheme)

 Microprocessor Checkers

Utilize redundant hardware to validate computation
 Results in very high area cost

 Very costly to employ for mainstream systems

M

M

M

V

TMR

Main
Processor

Checker
Processor

Processor Level
Checking

Processor
Type A

2-Version Hardware

Processor
Type B C

h
ec

ke
r

EECS 573
January 29, 2007

Goal: BulletProof Pipeline

Area Cost

 Ultra low-cost solution

Provided Reliability

 Support recovery from first defect

Performance

 After recovery the system still operates

in degraded performance mode

Area Performance

Reliability

BulletProof
Pipeline

EECS 573
January 29, 2007

Approach: BulletProof Pipeline

 Employ microarchitectural checkpointing to provide a computational epoch

 Computational Epoch: a protected period of computation over which the

underlying hardware is checked

 Use on-line distributed testing techniques to verify the hardware is free of

defects, on idle cycles

 If a component is defective disable it, rollback state, and continue

operation under a degraded performance mode on remaining resources

For inexpensive defect protection, don’t check computation,
Instead… Validate H/W is free of defects, otherwise, rollback and recover.

EECS 573
January 29, 2007

X

Fault
Manifests

Distributed Testing and Recovery

Key idea:

Add distributed specialized checkers

Use idle cycles to completely verify the underlying hardware

LOCAL TESTER
CHECKER

LOCAL TESTER
CHECKER

IF/
ID

ID/
EX

LOCAL TESTER
CHECKER

EX/
MEM

LOCAL TESTER
CHECKER

MEM
/WB

Computation

Checking

State
Checkpoint

Checking
Complete

Computational Epoch

No Checking

Failure
Detected

Extended epoch

X

R
ec

on
fig

ur
at

io
n

Recovery

EECS 573
January 29, 2007

Micro-Architectural Checkpointing

A mechanism to create coarse-grained epochs of execution

 Augment each cache block with a Volatile bit to indicate speculative state

 Backup Register File: single-port SRAM (simpler and smaller than regular RF)

A computational epoch must end when:

 All cache blocks in a set are volatile OR an I/O operation is requested

Average epoch size is in the order of 10,000+ of instructions

REGISTER
FILE L1 Data Cache

4-way set-associative

data datadata data

L2 Cache
OR

Main MemoryBACKUP
REGISTER

FILE

Vol Vol Vol Vol

EECS 573
January 29, 2007

X

R
ec

on
fig

ur
at

io
n

VolVol

Micro-Architectural Checkpointing

Computation

Checking

Checkpoint

Computational Epoch

REGISTER
FILE L1 Data Cache

4-way set-associative

data datadata data

L2 Cache
OR

Main MemoryBACKUP
REGISTER

FILE

Speculative Data

Committed Data

Recovery

Invalid Data

EECS 573
January 29, 2007

EX/
MEM

ID/EX

MUX

MUX

Testing
Mode

Testing clk

clk

ALU

forwarding logic
• On idle cycles the ALU enters

into testing mode

• Built-In Self-Test vectors are
sent to ALU

• Output verified by a 9-bit mini-
ALU checker

• 4 cycles to fully verify the ALU

• Other checkers covered
in paper

CHECKER
(9-bit ALU)

BIST
Test Vectors

Specialized Distributed Online Testing/Checking

Tester/Checker for the ALU/Address Generation Unit

EECS 573
January 29, 2007

Experimental Methodology - Baseline Architecture

 Baseline Architecture:

 5-stage 4-wide VLIW architecture, 32KB I-Cache, 32KB D-Cache

 Embedded designs: Need high reliability with high cost sensitivity

 Circuit-Level Evaluation:

 Prototype with a physical layout (TSMC 0.18um)

 Accurate area overhead estimations

 Accurate fault coverage area estimations

 Architecture-Level Evaluation:

 Trimaran toolset & Dinero IV cache simulator

 Average computational epoch size

 Performance while in graceful degradation

 Benchmarks:

 SPECINT2000, MediaBench, MiBench

ID/EXIF/ID

I-CACHE

32KB

PC

REGISTER
FILE

4-write/8-read

address

DECODER

DECODER

DECODER

DECODER

MULT

Agen

ALU

ALU

MULT

Agen

EX/
MEM

D-CACHE

32KB

MEM
/WB

data

ID/EXIF/ID

I-CACHE

32KB

PC

REGISTER
FILE

4-write/8-read

address

DECODER

DECODER

DECODER

DECODER

MULT

Agen

MULT

Agen

ALU

ALU

MULT

Agen

MULT

Agen

EX/
MEM

D-CACHE

32KB

MEM
/WB

data

EECS 573
January 29, 2007

Area Overhead Summary

 Overhead calculated using a physical-level prototype

 Place & routed synthesized Verilog description of the design

 EX stage dominates area cost contribution

 Functional unit checkers

 Test vectors

 Next is ID stage

 Decoder checkers

 Test vectors

 Backup register file

 The rest is:

 Cache parity/volatile bits

 Testing logic

Overall design area cost: 5.8%
ID 1.6% (27%) EX 3.8% (66%)

IF+L1 I-CACHE
0.2% (3%) L1 D-Cache 0.1% (3%)

WB 0.05%
(1%)

EECS 573
January 29, 2007

Design Defect Coverage

Defect Coverage: total area of the design in which a defect can be

detected and corrected

The unprotected area of the design mainly consists:

 Resources that do not exhibit inherent redundancy

 E.g., Interconnect (i.e., buses connecting the components) and control logic

IF
92.2%

ID
92%

EX
81.3%

MEM
92.4%

WB
63.4%

Overall Design Defect Coverage 88.6%

EECS 573
January 29, 2007

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

17
5.
vp

r

18
1.
m
cf

19
7.
pa

rs
er

25
6.
bz

ip
2

un
ep

ic
ep

ic

m
pe

g2
de

c

pe
gw

itd
ec

pe
gw

ite
nc

FF
T

pa
tri

ci
a

qs
or

t

av
er
ag

e

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

k

2ALU/2LSM - Reference Config.

2ALU/1LSM

1ALU/2LSM

Performance Under Degraded Mode Execution

 The system recovers from a defect by disabling the defective component

 Losing an ALU results in average 18% performance degradation

 Losing an Addr. Gen/MULT unit results in average 4% perf. degradation

Defective ALU: 18% Defective AG/MULT: 4%

EECS 573
January 29, 2007

BulletProof
Pipeline

Conclusions

Presented the BulletProof pipeline

 First ultra-low cost defect protection mechanism for microprocessors

 Propose the combination of on-line distributed testing with
microarchitectural checkpointing for low-cost defect protection

 Implemented a physical-level prototype of the technique

 Area cost: 5.8%

 Reliability: 89%
(coverage for first defect)

 Performance loss: 18%
(after graceful degradation)

Area Cost
5.8%

Performance
< 18%

Reliability
89%

March, 2008 15

BulletProof
Pipeline

Silicon
Area Cost

< 2%

Runtime
Performance

Overhead
< 6%

Provided Reliability:
Silicon defects

99%+

BulletProof: Key Ideas:
• No expensive computation checking
• Protect computation and test H/W
• Repair by disabling redundant parts

Approach:
1. Execute and protect state
2. Test s/w periodically checks for underlying faults
3. If tests fails → roll back state, disable component and restart

Computation
No Testing

ComputationComputation

ReconfigTestingTesting

Computational Epoch

Time

X
Fault

Manifests
Fault

Detected

Checkpoint Recovery

Resource
Reconfiguration

BulletProof Architecture Measured Results

Later Work: Migrate Testing Into S/W Lower Cost

Processor State
Processor

ACE HardwareACE Hardware

H
ar

dw
ar

e

ACE ExtensionACE Extension
ACE FirmwareACE Firmware

Operating SystemOperating System
ApplicationsApplications

S
of

tw
ar

e

ISA

PI: AUSTIN/BERTACCO

EECS 573
January 29, 2007

Discussion Points

How useful is single defect coverage? Could this work be extended

to multiple faults in a straightforward low-cost manner?

 Is the measured design coverage “good enough”? Are the area and

performance overheads too high?

Does it make good sense to build in defect coverage without support

for soft-errors?

