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Architecture’s Diminishing Return

» Staples of value we strive for...
* High Speed
* Low Power
* Low Cost
+ Tricks of the trade
» Faster clock rates, via pipelining
« Higher instruction throughput, via ILP extraction
* Homogeneous parallel systems
+ Strong evidence of diminishing return, Plll vs. P4
* Plll vs. P4: 22% less P4 throughput (0.35 vs. 0.45 SPECInt/MHz)
» Parallel resources not fully harnessed by today’s software

e Less return = less value =
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Moore’s Law Performance Gap
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Performance Demands Continue to Grow:
Speech Recognition
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Remedy #1: Chip Multiprocessors
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The Dark Silicon Dilemma

Advanced Scaling:
Dennard: “Computing Capabilities

IfS=1.4x ... Scale by S°~ 2.8x”
____________________________________ S3
S=1.4x
Faster Transistors
____________________________________ S2
S2=2x
More Transistors
i, - o r---—----1 Specific Architectures
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The Dark Silicon Dilemma

Dennard:
“We can keep power consumption
constant”
____________________________________ S3
S=14x S=14x
Faster Transistors Lower Capacitance
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The Dark Silicon Dilemma g &
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Fast forward to 2005:
Threshold Scaling Problems due to
Leakage Prevents Us From Scaling Voltage
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A Powerful Solution: Eschew Generality

Speed, Flexibility,
Efficiency Programmability
H/W designs Application General Purpose General Purpose
Specific Processors Processors
Processor + ISA Extensions

» Specialization limits the scope of a device’s operation

» Produces stronger properties and invariants

* Results in higher return optimizations

» Programmability preserves the flexibility regarded by GPP’s
* A natural fit for embedded designs

*  Where application domains are more likely restrictive

« Where cost and power are 15t order concerns
* Overcomes growing silicon/architecture bottlenecks

» Concentrated computation overcomes dark silicon dilemma

» Customized acceleration speeds up Amdahl’s serial codes
Advanced Computer Architecture Laboratory Application Specific Architectures
University of Michigan Todd Austin

First Case Study: CryptoManiac [ISCA’01]

CM
Proc
s CM Out ) )
Encrypt/decrypt gp Proc Ciphertext/plaintext
requests, o] results
g8
CM
Proc

A highly specialized and efficient crypto-processor design
+ Specialized for performance-sensitive private-key cipher algorithms
+Chip-multiprocessor design extracting precious inter-session parallelism
+ CP processors implement with 4-wide 32-bit VLIW processors
+ Design employs crypto-specific architecture, ISA, compiler, and circuits
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Crypto-Specific Instructions

« frequent SBOX substitutions Table Index
o X= sbox[(y >> C) & Oxﬁ] |31 10| 0| | 24| 1|6 g| 0|
+ SBOX instruction —

* Incorporates byte extract " opcode
+ Speeds address generation
through alignment restrictions
+ 4-cycle Alpha code sequence
becomes a single CryptoManiac
instruction
+  SBOX caches provide a high-
bandwidth substitution
capability (4 SBOX's/cycle)

SBOX Table
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Crypto-Specific Functional Unit
LoD

{tiny}

32-Bit

{tiny}

{long}
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Crypto-Specific Circuits

)/
» Overclock design until decryption check fails
» Demonstrated approach with dual SA-1110 IPAQs

« 26% performance increase at room temperature
* Chill for more improvements, ~10% per 30 degree C

Advanced Computer Architecture Laboratory Application Specific Architectures
University of Michigan Todd Austin

CryptoManiac Results

* Design implemented in 0.25um physical design flow
« All components synthesized with Synopsys tools
« Evaluated with timing analysis and high-level simulation
* Encryption Speed
* Nearly 1.5x faster than a 600Mhz Alpha 21264 (both 0.25um)
» 2.25x fast for AES encryption standard
» Design Cost
+ 2 mm?Ztotal area for a single CryptoManiac processor
* Less than 1/100t the size of an Alpha 21264 (205 mm?2)
* Power Characteristics
» Less than 750 mW total power dissipation
+ Nearly 1/100t the power dissipation of an Alpha 21264 (72 W)
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Second Case Study: Subliminal Systems [ISCA’05]

+ Project goals

+ Explore area-constrained low-energy systems 0
+ Develop 100% silicon platforms Memory /Sensors 7
CPU Power

<0.5mm

+ Target form factors below 1 mm?3

110

+ Technology Developments
+ Subthreshold-voltage processors and memories
+ Robust subthreshold circuit/cell designs
+ Compact integrated wireless interfaces
+ Energy scavenging technologies
+ Sensor designs

Energy Efficiency: A Key Requirement

+ They live on a limited amount of energy generated from a small battery
or scavenged from the environment.

+ Traditionally the communication component is the most power-hungry
element of the system. However, new trends are emerging:

Piczoclectric PZT cantilever with
metal electrodes (spring constant k)

( “ Ny . dary clectrons nization
9 Lo} Electrons emitted e/ d
o ~al v
Eatracorpol Unka Radioisotope—=> lons lemited

Passive telemetry Self-powered RF Proximity comm.

A — G Yy R—|




Performance of Various Platforms
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XRT rating: how many times faster than real-time the processor can handle the worst-case data stream rate|
on the most computationally intensive sensor benchmark

The Basics of Subthreshold Circuit
Operation

A Short Animation by Leyla Nazhandali
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Episode 1: Inverter operation in
superthreshold domain
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Episode 2: Inverter operation in
subthreshold domain
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Summary from Architecture Study

+ We studied 21 different processors experimenting with following options:

+ Number of stages
+ w/ vs. wlo instruction prefetch buffer
+ w/ vs. wio explicit register file

+ Harvard vs. Von-Neumann architecture

+ To minimize energy at subthreshold voltages, architects must:

Minimize area = To reduce leakage energy per cycle
Maximize Transistor utility = To reduce V,,;, and energy per cycle

Minimize CPI = To reduce Energy per instruction

+ The memory comprises the single largest factor of leakage energy, as
such, efficient designs must reduce memory storage requirements.
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Microarchitecture Overview
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Pareto Analysis for Several
Processors
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Third Case Study: Taking Computer Vision Mobile{

¢ Embedded mobile computation on the rise
+ Smart Phones, Tablets

+ Improved sensors
+ High megapixel cameras, HD video
+ New capabilities from new sensors

+ There is a need for near real time computation
+ Users don't want to wait

+ Why not use the cloud?
+ High latency
+ Bandwidth Limits
+ Reliability
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Computer Vision

Typical computer vision pipeline
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A Taste of the Results
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Outlook for App-Specific Design is Unsure:
The Good, the Bad and the Ugly

¢ The Good: Moore’s law will continue for the
near future _
+ It won't last forever, but that another problem '-!r'f-lll-zll

ot

¢ The Bad: Dennard scaling has all but stopped,
leaving innovation to fill the performance/power I
scaling gap il

+ E.g., app-specific design, custom accelerators UL}

« The Ugly: Hardware innovation requires design | gl i 'i_Jfr:.I_illl
diversity, which is ultimately too expensive to ' : rl'l["]
afford s

+ Skyrocketing NREs will necessitate broadly
applicable (vanilla and slow) H/W designs

50
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Design Costs Are Skyrocketing
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High Costs Will be a Showstopper

+ Heterogeneous designs often serve smaller markets

2 $10M
O $1M
o
o
L $100

1K 10K 100K 1M 10M
Production Volume
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Outcome: “Nanodiversity” is Dwindling

12000
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Expensive development costs demand BIGGER markets,
this trend works against customized designs.

R R =
©o ©o ©o
© © ©
a o ~

$S00T
9002
£00T

866T
666T
0002
T00T
2002
€00C
002
800¢C
600C

Year

Source: Gartner Group

53

53

The Remedy: Scale Innovation

« Ultimate goal: accelerate system architecture innovation and make it
efficient and inexpensive enough that anyone can do it anywhere

+ Approach #1: Embrace system-level innovation

+ Approach #2: Leverage technology advances on CMOS silicon

+ Approach #3: Reduce the cost to design custom hardware

+ Approach #4: Widen the applicability of custom hardware

+ Approach #5: Reduce the cost of manufacturing custom H/W
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1) Embrace system-level innovation

“Give me 15% “I need 1%

speedupand I'll speedup for 1%
accept your paper” P
ISCA 201 ptyourpap gles
Proceedings of the 38th Annual
INTERNATIONAL SYMPOSIUM on
COMPUTER ARCHITECTURE

“Your system-level ideas
needs to deliver 2x or
more, or someone else
should fund it"
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HELIX-UP Unleashed Parallelization

David Brooks @ Ha ard

+ Traditional parallelizing compilers must

honor possible dependencies Thread 0! Iteration 0
Thread 1] 3B fteration 1 |
« HELIX-UP manufactures parallelism bYI'hread 2 \Data :
profiling which deps do not exist and Th |
read 3 @sﬁ .
which are not needed . !
+ Based on user supplied output
distortion function Nehalem 6 cores, 2 threads per core
15| Herdare hreacs [ HELIX BB Static HELIX-UP | |

+ Big step for parallelization

=)

0%
Output distortion 2%

:
+ 2x speedup over parallelizing 58 545
compilers, 6x over serial, < 7% § 8
distortion 5"
2
0 177.mesa 179.art 183.equake 256.bzip2  blackscholes  swaptions Geomean
56
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Association Rule Mining with the
Automata Processor Kevin Skadron KA

+ Micron’s Automata processor

+ Implements FSMs at memory
+ Massively parallel with accelerators

+ Mapped data-mining ARM rules to memory-
based FSMs

+ ARM algorithms identify relationships between
data elements

+ Implementations are often memory bottlenecked

+ Big-data sets had big speedups

(a) Automaton for itemset {0, 2}

+ 90x+ over single CPU performance Level 01 Level 1 1 Level 21 Level 3 | Level 4
+ 2-9x+ speedups over CMPs and GPUs @ @ @ @ m
+ Joint effort with UVA and Micron O @ '@ @ @

(b) Automaton for itemset {1. 3. 5}

57

2) Leverage technology advances on CMOS
silicon

+ Recent success: the reduced leakage and
transient fault protection of FinFETs

+ Upcoming: the density and durability of
Intel/Micron’s XPoint memory technology

+ Many additional opportunities possible: TFETs, CNTSs, spin-tronics, novel
materials, analog accelerators, etc...

+ Key challenge: integration of non-silicon technologies

« Advice: to maximize benefits of these devices, architects need to work
with device and materials researchers

58
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Top 10 Technology Plays that Would Make
Architects REALLY Excited

+ Reduced leakage for memory
+ Helps with low power sleep states, allows lower computational power states
+ Reduced leakage for computation
+ Re-balances the power-parallelism tradeoff in favor of more performance/watt
+ Controllable and recognizable analog functions
+ Allow computation to be replaced with potentially fast and efficient analog compute
+ Ultra-cheap fabrication technologies
+ Re-balances the specialization-cost tradeoffs, making system-level optimization more valuable
& Emerging technologies that deliver additional traditional value at low fault rates
+  We have many low-cost system-level fault tolerance technologies, let's use them!, limit faults to < 0.1%
« Emerging technologies that are not too fiddly, unless they deliver significant value
+  We need clean productive abstractions, CMOS is the benchmark, compare to asynch and CUDA
« Faster, more energy efficient, less destructive writes for nonvolatile storage
+ Allows for simpler, denser, more efficient memory designs, supports ultra-low power states
« Computation/memory capabilities with no power/electrical/efc. signature
+ Today's systems are fraught with side channels, this is needed as a basis for establishing H/W trust
+ More energy efficient communication that doesn't overtly exacerbate latency
+ Allows for more system scalability — both scale-in and scale-out
+ More energy efficient computation that is dense and cheap
+ Allows for more T-flops, since almost all computational capabilities today are energy bounded
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3) Reduce the cost to design custom hard

Shared Memory/Interconnect

Model
@EALADDIN odels
. A RN
Unmodified [ v I \
C-Code = 1 .
: Accelerator privatel1/ | | David Brooks
Accelerator Desigh | Specific Scratchpad | 1 @ Harvard
Parameters =3l Datapath 1
! 1
(e.g., #FU, mem.BW) | A | ;
N e e e e e e e e e e e e e -

. Better tools and infrastructure

- Scalable accelerator synthesis and compilation, generate code and H/W for highly
reusable accelerators

- Composable design space exploration, enables efficient exploration of highly
complex design spaces
- Well put-together benchmark suites to drive development efforts

60
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CortexSuite:
A Synthetic Brain Benchmark Suite

Michael Taylor @ UCSD
NETFLIX CMU SPHINX

Vector

Machines

NAND DDR2/3 DDR23 DDR3

Red = non-free IP, Green = free IP
62
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Embrace Open-Source Concepts to
Reduce Costs

APPLICATIONS

MEWORK

As a community, we need to consider:
How much of our basic technology
should be collectively maintained?
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4) Widen the Applicability of Customized H

|
Krste Asanovic @ UC-Berkeley

P Computer Multimedia Machine
——

Computational Patterns[ Dense ][ Sparse ]"' Graph ]

Specializers\with custom imple mentatlons and autotuning
Glue “Sparse Graph 7] EsP
Code Code Code_ | Code

ILP Dense || Sparse |[ Graph | ESP

Engine J| Engine J| Engine J{ Engine Core

+ ESP: Ensembles of Specialized Processors

+ Ensembles are algorithmic-specific processors optimized for code “patterns”

+ Approach uses composable customization to deliver speed and efficiency that is
widely applicable to general purpose programs

+ Grand challenges remain: what are the components and how are they
connected?
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5) Reduce the cost of manufacturing custom
H/W Martha Kim @ C U

+ ABrithenthaoght siipenmentewhsddiblyiting @ibiouseation, i.e., MCMs + 3D +
vrereAikesfatimieating a chip?

Ao
«‘N:M‘N:M‘N:M‘» Brick-and-mortar silicon

— design flow:
1) Assemble brick layer
“N:”‘N:N‘N:N‘. 2) Connect with mortar layer
«‘»c:w‘»c:w‘»@«‘» 3) Package assembly
)

4) Deploy software

+ Diversity via brick ecosystem & interconnect flexibility

*

Brick design costs amortized across all designs
+ Robust interconnect and custom bricks rival ASIC speeds

« Facilitates non-silicon integration and mature design strategies
66
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Summary: Benefits of App-Specific Design

Speed, Flexibility,
Efficiency Programmability
H/W designs  Application General Purpose  General Purpose
Specific Processors Processors
Processor + ISA Extensions

+ Specialization limits the scope of a device’s operation

+ Produces stronger properties and invariants

+ Results in higher return optimizations

+ Programmability preserves the flexibility regarded by GPP’s
+ A natural fit for embedded designs

+ Where application domains are more likely restrictive

+ Where cost and power are 1%t order concerns
+ Overcomes growing silicon/architecture bottlenecks

+ Concentrated computation overcomes dark silicon dilemma
+ Customized acceleration speeds up Amdahl's serial codes
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